The oneAPI Center of Excellence

The oneAPI Center of Excellence is created at UNN in December 2020 with Intel support. The Center conducts research in the field of high-performance computing, parallel and heterogeneous programming in solving problems of computational physics using Intel technologies, software, and hardware, and also develops and implements relevant educational materials. It is the first such center in Russia and the fourth in the world.

Team

The center is established based on scientific groups working at the ITMM Institute (Department of Mathematical Software and Supercomputing Technologies) and the UNN HPC Center. The head of the center is prof. Iosif Meyerov, an expert in high-performance computing and scientific software development, with relevant experience in leading interdisciplinary scientific projects. The center’s team includes researchers, teachers, engineers, and students working on problems of numerical modeling of laser plasma, quantum dynamics and quantum computing, decision making, etc. The educational direction of the center is supervised by an expert in parallel computing, prof. Alexander Sysoyev. The center actively cooperates with the research teams of prof. Arkady Kim (IAP RAS), prof. Arkady Gonoskov (University of Gothenburg, Sweden), prof. Sergey Denisov (Oslo Metropolitan University, Norway), and with the Intel R&D Center in Russia.

I.B. Meerov

A.V. Sysoev

A. V. Kim

A. A. Gonoskov

S.V. Denisov

Selected HPC Papers

  1. Muraviev, A., Bashinov, A., Efimenko, E., Volokitin, V., Meyerov, I., & Gonoskov, A. (2021). Strategies for particle resampling in PIC simulations. Computer Physics Communications, vol. 262, 107826.
  2. Meyerov, I., Liniov, A., Ivanchenko, M., & Denisov, S. (2020). Modeling Complex Quantum Dynamics: Evolution of Numerical Algorithms in the HPC Context. Lobachevskii Journal of Mathematics, 41(8), 1509-1520.
  3. Liniov, A., Meyerov, I., Kozinov, E., Volokitin, V., Yusipov, I., Ivanchenko, M., & Denisov, S. (2019). Unfolding a quantum master equation into a system of real-valued equations: Computationally effective expansion over the basis of SU (N) generators. Physical Review E, 100(5), 053305.
  4. Meyerov, I., Sysoyev, A., Pirova, A., Shestakova, N., & Ivanchenko, M. (2019). Bridging the Gap Between Applications and Supercomputing: A New Master’s Program in Computational Science. In Russian Supercomputing Days (pp. 529-541). Springer, Cham.
  5. Meyerov, I., Panov, A., Bastrakov, S., Bashinov, A., Efimenko, E., Panova, E., Surmin I., Volokitin V., Gonoskov, A. (2019). Exploiting Parallelism on Shared Memory in the QED Particle-in-Cell Code PICADOR with Greedy Load Balancing. In International Conference on Parallel Processing and Applied Mathematics (pp. 335-347). Springer, Cham.
  6. Larin A. et al. (2018) Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science, vol 10777. Springer, Cham.
  7. Volokitin, V., Liniov, A., Meyerov, I., Hartmann, M., Ivanchenko, M., Hänggi, P., & Denisov, S. (2017). Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method. Physical Review E, 96(5), 053313.
  8. Surmin I., Bastrakov S., Matveev Z., Efimenko E., Gonoskov A., Meyerov I. (2016) Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi: A First Look at Knights Landing. In: Carretero J. et al. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science, vol 10049. Springer, Cham.
  9. Laptyeva, T. V., Kozinov, E. A., Meyerov, I. B., Ivanchenko, M. V., Denisov, S. V., & Hänggi, P. (2016). Calculating Floquet states of large quantum systems: A parallelization strategy and its cluster implementation. Computer Physics Communications, 201, 85-94.
  10. Surmin I.A., Bastrakov S.I., Efimenko E.S., Gonoskov A.A., Korzhimanov A.V., Meyerov I.B. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Computer Physics Communications, 202, 204-210 (2016)
  11. Gonoskov A., Efimenko E., Ilderton A., Marklund M., Meyerov I., Muraviev A., Sergeev A., Surmin I., Wallin E. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. Physical review E, 92 (2015)
  12. Meyerov, I., Sysoyev, A., Astafiev, N., & Burylov, I. (2014). Performance optimization of Black-Scholes pricing. In High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches (pp. 319-340).
  13. Bastrakov S., Gonoskov A., Donchenko R., Efimenko E., Malyshev A., Meyerov I., Surmin I. Particle-in-Cell Plasma Simulation on Heterogeneous Cluster Systems. Journal of Computational Science. 3 (6), 474-479 (2012)

Press

  1. Intel Academic Program for oneAPI (2020)
  2. Lobachevsky State University of Nizhni Novgorod to accelerate studies of quantum processes using oneAPI (2020)
  3. Chirgwin, R. Hot iron: Knights Landing hits 100 gigaflops in plasma physics benchmark.The Register (2016)
  4. Barney L.Particle-in-cell Plasma Simulation Using Supercomputers Enhances Computational Physics. Scientific Computing (2016).