
MPI-3 Standard and Support in Intel MPI 5.0 beta

Agenda

What’s in MPI-3?

Use cases

 Complete communication/computation overlap

 Sparse communication

 One-sided communication sounds cool (in theory)

 Large messages

 What else?

Intel® MPI Library

 What is it?

 What is supported? (MPI-3)

How do you spell MPI?

A de facto standard for communicating
between processes of a parallel program on
a distributed memory system

 Standardized

 Supported on almost all platforms

 Portable

 No need to modify your code when
porting

 Performance opportunities

 Vendor MPIs can exploit native
hardware features

 Functionality

 Over 125 routines defined by a
committee

#include "mpi.h“

int main(argc,argv){

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf ("Number of tasks= %d \

My rank= %d\n",ntasks,rank);

/******* do some work *******/

MPI_Finalize();

}

Example (C)

MPI include file

Initialize MPI
environment

Terminate MPI
environment

Do work and
make MPI calls

What is in MPI-3?

Topic Motivation Main Result

Collective Operations Collective performance Non-Blocking & Sparse Collectives

Remote Memory Access Cache coherence, PGAS support Fast RMA

Backward Compatibility Buffers > 2 GB
Large buffer support, const
buffers

Fortran Bindings Fortran 2008
Fortran 2008 bindings
Removed C++ bindings

Tools Support PMPI Limitations MPIT Interface

Hybrid Programming Core count growth
MPI_Mprobe, shared memory
windows

Fault Tolerance Node count growth None. Next time?

I want a complete comm/comp overlap

Problem

 Computation/communication overlap is

not possible with the blocking collective

operations

Solution: Non-blocking Collectives

 Add non-blocking equivalents for

existing blocking collectives

 Do not mix non-blocking and blocking

collectives on different ranks in the

same operation

// Start synchronization

MPI_Ibarrier(comm, &req);

// Do extra computation

…

// Complete synchronization

MPI_Test(&req, …);

Example (C)

I have a sparse communication network

Problem

 Neighbor exchanges are poorly served

by the current collective operations

(memory and performance losses)

Solution: Sparse Collectives

 Add blocking and non-blocking
Allgather* and Alltoall*

collectives based on neighborhoods
call MPI_NEIGHBOR_ALLGATHER(&

& sendbuf, sendcount, sendtype,&

& recvbuf, recvcount, recvtype,&

& graph_comm, ierror)

Example (FORTRAN)

I want to use one-sided calls to reduce sync overhead

Problem

 MPI-2 one-sided operations are too
general to work efficiently on cache
coherent systems and compete with
PGAS languages

Solution: Fast Remote Memory Access

 Eliminate unnecessary overheads by
adding a ‘unified’ memory model

 Simplify usage model by supporting the
MPI_Request non-blocking call, extra
synchronization calls, relaxed
restrictions, shared memory, and much
more

call MPI_WIN_GET_ATTR(win, MPI_WIN_MODEL, &

memory_model, flag, ierror)

if (memory_model .eq. MPI_WIN_UNIFIED) then

! private and public copies coincide

Example (FORTRAN)

I’m sending *very* large messages

Problem

 Original MPI counts are limited to 2

Gigaunits, while applications want to

send much more

Solution: Large Buffer Support

 “Hide” the long counts inside the

derived MPI datatypes

 Add new datatype query calls to

manipulate long counts

// mpi_count may be, e.g.,

// 64-bit long

MPI_Get_elements_x(&status,

datatype, &mpi_count);

Example (FORTRAN)

None of these apply to me. What else you got?

I have a hybrid application

 Create a communicator inside a shared memory domain (intranode, via
MPI_Comm_split_type)

 Use the new MPI_Mprobe calls

I need to know what architecture I’m running on

 Predefined info object MPI_INFO_ENV allows for environment query

I’m using the C++ bindings

 Tough luck. C++ bindings have been removed from the standard.

Tell me more about this Intel® MPI Library

Optimized MPI application performance

 Application-specific tuning

 Automatic tuning

Lower Latency and Multi-vendor interoperability

 Optimized support for latest OFED* features

Faster MPI communication

 Optimized collectives

Sustainable scalability beyond 120K cores

 Native InfiniBand* interface allows for reduced
memory load and higher bandwidth

Simply and Accelerate Clusters

 Intel® Cluster Ready compliance

iWARPiWARP

Intel® MPI Library 5.0 & Intel® Trace Analyzer and Collector 9.0

Beta Nov 2013

Initial MPI-3.0 Support

 Non-blocking Collectives

 Fast RMA

 Large Counts

ABI compatibility with existing Intel® MPI

Library applications

Initial MPI-3.0 Support

Automatic Performance Assistant

 Detect common MPI performance issues

 Automated tips on potential solutions

Intel® MPI Library Intel® Trace Analyzer and Collector

What is supported in Intel® MPI Library 5.0 Beta?

Topic Motivation Main Result Supported in 5.0 Beta?

Collective Operations Collective performance
Non-Blocking & Sparse
Collectives

Yes

Remote Memory Access
Cache coherence, PGAS
support

Fast RMA Yes

Backward Compatibility Buffers > 2 GB
Large buffer support,
const buffers

Yes, partial

Fortran Bindings Fortran 2008
Fortran 2008 bindings
Removed C++ bindings

No support in
MPICH3.0

Tools Support PMPI Limitations MPIT Interface Yes

Hybrid Programming Core count growth
MPI_Mprobe, shared
memory windows

Yes

