
MPI-3 Standard and Support in Intel MPI 5.0 beta

Agenda

What’s in MPI-3?

Use cases

 Complete communication/computation overlap

 Sparse communication

 One-sided communication sounds cool (in theory)

 Large messages

 What else?

Intel® MPI Library

 What is it?

 What is supported? (MPI-3)

How do you spell MPI?

A de facto standard for communicating
between processes of a parallel program on
a distributed memory system

 Standardized

 Supported on almost all platforms

 Portable

 No need to modify your code when
porting

 Performance opportunities

 Vendor MPIs can exploit native
hardware features

 Functionality

 Over 125 routines defined by a
committee

#include "mpi.h“

int main(argc,argv){

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf ("Number of tasks= %d \

My rank= %d\n",ntasks,rank);

/******* do some work *******/

MPI_Finalize();

}

Example (C)

MPI include file

Initialize MPI
environment

Terminate MPI
environment

Do work and
make MPI calls

What is in MPI-3?

Topic Motivation Main Result

Collective Operations Collective performance Non-Blocking & Sparse Collectives

Remote Memory Access Cache coherence, PGAS support Fast RMA

Backward Compatibility Buffers > 2 GB
Large buffer support, const
buffers

Fortran Bindings Fortran 2008
Fortran 2008 bindings
Removed C++ bindings

Tools Support PMPI Limitations MPIT Interface

Hybrid Programming Core count growth
MPI_Mprobe, shared memory
windows

Fault Tolerance Node count growth None. Next time?

I want a complete comm/comp overlap

Problem

 Computation/communication overlap is

not possible with the blocking collective

operations

Solution: Non-blocking Collectives

 Add non-blocking equivalents for

existing blocking collectives

 Do not mix non-blocking and blocking

collectives on different ranks in the

same operation

// Start synchronization

MPI_Ibarrier(comm, &req);

// Do extra computation

…

// Complete synchronization

MPI_Test(&req, …);

Example (C)

I have a sparse communication network

Problem

 Neighbor exchanges are poorly served

by the current collective operations

(memory and performance losses)

Solution: Sparse Collectives

 Add blocking and non-blocking
Allgather* and Alltoall*

collectives based on neighborhoods
call MPI_NEIGHBOR_ALLGATHER(&

& sendbuf, sendcount, sendtype,&

& recvbuf, recvcount, recvtype,&

& graph_comm, ierror)

Example (FORTRAN)

I want to use one-sided calls to reduce sync overhead

Problem

 MPI-2 one-sided operations are too
general to work efficiently on cache
coherent systems and compete with
PGAS languages

Solution: Fast Remote Memory Access

 Eliminate unnecessary overheads by
adding a ‘unified’ memory model

 Simplify usage model by supporting the
MPI_Request non-blocking call, extra
synchronization calls, relaxed
restrictions, shared memory, and much
more

call MPI_WIN_GET_ATTR(win, MPI_WIN_MODEL, &

memory_model, flag, ierror)

if (memory_model .eq. MPI_WIN_UNIFIED) then

! private and public copies coincide

Example (FORTRAN)

I’m sending *very* large messages

Problem

 Original MPI counts are limited to 2

Gigaunits, while applications want to

send much more

Solution: Large Buffer Support

 “Hide” the long counts inside the

derived MPI datatypes

 Add new datatype query calls to

manipulate long counts

// mpi_count may be, e.g.,

// 64-bit long

MPI_Get_elements_x(&status,

datatype, &mpi_count);

Example (FORTRAN)

None of these apply to me. What else you got?

I have a hybrid application

 Create a communicator inside a shared memory domain (intranode, via
MPI_Comm_split_type)

 Use the new MPI_Mprobe calls

I need to know what architecture I’m running on

 Predefined info object MPI_INFO_ENV allows for environment query

I’m using the C++ bindings

 Tough luck. C++ bindings have been removed from the standard.

Tell me more about this Intel® MPI Library

Optimized MPI application performance

 Application-specific tuning

 Automatic tuning

Lower Latency and Multi-vendor interoperability

 Optimized support for latest OFED* features

Faster MPI communication

 Optimized collectives

Sustainable scalability beyond 120K cores

 Native InfiniBand* interface allows for reduced
memory load and higher bandwidth

Simply and Accelerate Clusters

 Intel® Cluster Ready compliance

iWARPiWARP

Intel® MPI Library 5.0 & Intel® Trace Analyzer and Collector 9.0

Beta Nov 2013

Initial MPI-3.0 Support

 Non-blocking Collectives

 Fast RMA

 Large Counts

ABI compatibility with existing Intel® MPI

Library applications

Initial MPI-3.0 Support

Automatic Performance Assistant

 Detect common MPI performance issues

 Automated tips on potential solutions

Intel® MPI Library Intel® Trace Analyzer and Collector

What is supported in Intel® MPI Library 5.0 Beta?

Topic Motivation Main Result Supported in 5.0 Beta?

Collective Operations Collective performance
Non-Blocking & Sparse
Collectives

Yes

Remote Memory Access
Cache coherence, PGAS
support

Fast RMA Yes

Backward Compatibility Buffers > 2 GB
Large buffer support,
const buffers

Yes, partial

Fortran Bindings Fortran 2008
Fortran 2008 bindings
Removed C++ bindings

No support in
MPICH3.0

Tools Support PMPI Limitations MPIT Interface Yes

Hybrid Programming Core count growth
MPI_Mprobe, shared
memory windows

Yes

