

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики Кафедра высокопроизводительных вычислений и системного программирования Лаборатория ITLab

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики Кафедра высокопроизводительных вычислений и системного программирования Лаборатория ITLab

ВВЕДЕНИЕ В АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ И ОПТИМИЗАЦИЮ ПРОГРАММ

Примеры оптимизации приложений для процессоров с архитектурой RISC-V

Волокитин В.Д., Козинов Е.А., Васильев Е.П., Кустикова В.Д., Мееров И.Б.

Содержание

- □ Введение
- □ Тестовая инфраструктура
- □ Метод сравнения производительности на разных вычислительных системах
- □ Примеры оптимизации приложений
 - Транспонирование матриц
 - Фильтрация изображений
- □ Векторизация на RISC-V
- □ Заключение

ВВЕДЕНИЕ

Введение

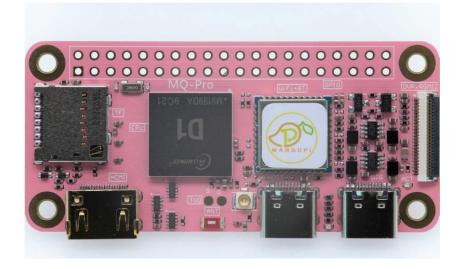
□ **Цель лекции** — изучение и апробация некоторых принципов оптимизации вычислений для процессоров с архитектурой RISC-V на примере реализации алгоритмов транспонирования матриц, а также фильтрации изображений методом Гаусса.

□ Задачи:

- Познакомиться с новой архитектурой RISC-V
- Провести анализ производительности нескольких устройств с различной архитектурой на известных тестах STREAM
- Реализовать алгоритмы транспонирования матриц, а также фильтрации изображений методом Гаусса
- Проверить различные подходы к оптимизации приложений на процессорах с разной архитектурой
- Произвести анализ результатов оптимизации

ТЕСТОВАЯ ИНФРАСТРУКТУРА

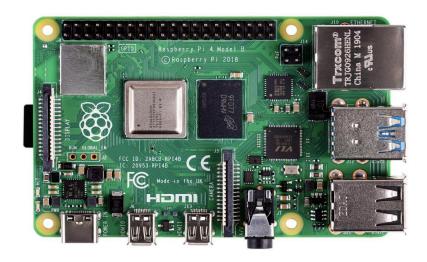
- Mango Pi MQ-Pro (D1)
 - Процессор Allwinner D1 (1 x XuanTie C906, 1GHz)
 - 1GB DDR3L RAM
 - Операционная система Ubuntu 22.10 (RISC-V edition)
 - Компилятор GCC 12.2



- ☐ StarFive VisionFive (v1)
 - Процессор StarFive JH7100 (2 x StarFive U74, 1 GHz)
 - 8 GB LPDDR4 RAM
 - Операционная система Ubuntu 22.10 (RISC-V edition)
 - Компилятор GCC 12.2

- □ LicheePi 4A (TH1520)
 - Процессор Т-Head TH1520 (4 x XuanTie C910, 1.85 (2.5) GHz)
 - 8-16GB LDDR4X RAM
 - Операционная система Debian 12 (RISC-V edition)
 - Компилятор GCC 12.2

- □ Raspberry Pi 4 модель В
 - Процессор Broadcom BCM2711 (4 x Cortex-A72, up to 1.5 GHz)
 - 4GB LPDDR4 RAM
 - Операционная система Ubuntu 20.04
 - Компилятор GCC 9.4



- □ Сервер с Intel Xeon
 - Процессор 2xIntel Xeon 4310Т (2 x 10 Ice Lake cores, up to 3.4 GHz)
 - 64 GB DDR4 RAM
 - Операционная система CentOS 7
 - Компилятор GCC 9.5

МЕТОД СРАВНЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ НА РАЗНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ

Методы оценки производительности. Вычислительные эксперименты.

- □ Проводимые вычислительные эксперименты:
 - STREAM определение пропускной способности памяти (https://www.cs.virginia.edu/stream/).
 - Транспонирование матриц один из основных алгоритмов линейной алгебры.
 Рассматривается случай плотных матриц.
 - Фильтрация изображения с ядром фильтра Гаусса пример реализации и оптимизации алгоритма.
- □ Для алгоритмов транспонирования матриц и фильтра Гаусса, представлено несколько реализаций:
 - Реализации показывают, как типичные методы оптимизации работы с памятью,
 хорошо работающие на процессорах x86 и ARM, работают на устройствах RISC-V.

Методы оценки производительности. Вычислительные эксперименты.

- □ Время вычислений.
 - Основной показатель эффективности.
 - Показатель недостаточный, так как сравниваются маломощные устройства в начале жизненного цикла на основе архитектуры RISC-V и процессор с долгой историей развития Intel Xeon.
- □ Пропускная способность памяти.
- □ Ускорение относительно наивной реализации.
- □ Утилизация подсистемы памяти.
 - Метод вычисления.
 - Вычисляем отношение объема данных, которые необходимо переместить между DRAM и CPU, ко времени вычислений.
 - Делим рассчитанное таким образом значение на достигнутую пропускную способность памяти, измеренную бенчмарком STREAM.

ПРИМЕРЫ ОПТИМИЗАЦИИ ПРИЛОЖЕНИЙ

Tесты STREAM

- □ **Цель запуска STREAM** измерить эффективность работы памяти.
- □ STREAM использует 4 теста с разными значениями bytes/iter и FLOPs/iter:
 - СОРУ простое копирование из одного массива в другой
 (a[i]=b[i]). Эта операция передает 16 байтов за итерацию и не выполняет
 вычисления с плавающей запятой.
 - SCALE копирование из одного массива в другой с умножением на константу (a[i]=d∗b[i]). Эта операция передает 16 байт за итерацию и выполняет 1 FLOPs/iter.
 - SUM сумма элементов из двух массивов записывается в третий массив
 (a[i]=b[i]+c[i]). Эта операция передает 24 байта за итерацию, но по-прежнему
 выполняет 1 FLOPs/iter.
 - TRIAD FMA из элементов двух массивов (a[i]=b[i]+d∗c[i]) записывается в третий массив. Эта операция передает 24 байта за итерацию и выполняет 2 FLOPs/iter.

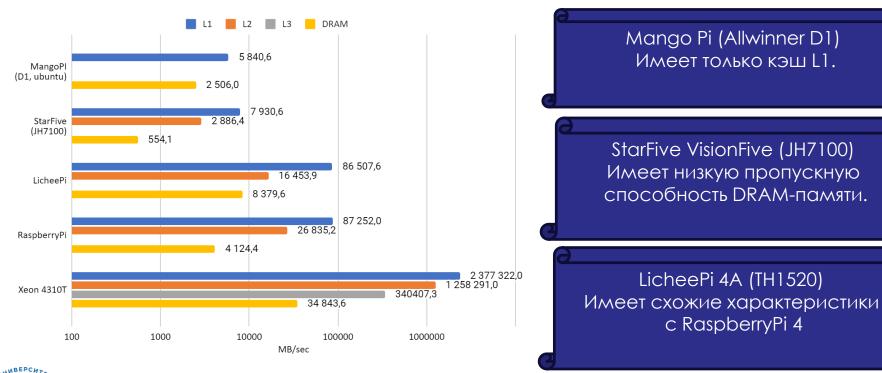
Tесты STREAM

□ Особенности проведения экспериментов:

- В тестах подбирались размеры массивов таким образом, чтобы они не вытеснялись из памяти рассматриваемого уровня (L1, L2, L3, DRAM) и не могли эффективно кэшироваться в более быстрой памяти.
- Для каждого устройства были проведены тесты для каждого уровня памяти (L1, L2, L3, DRAM).
- Запускались многопоточная (для разделяемой памяти) или последовательная (для отдельного ресурса, например L1-кеша) версия STREAM.
 - В последовательных экспериментах результаты умножались на количество ядер.
- Эксперименты запускались несколько раз и выбирались наилучшие достигнутые значения.

Tесты STREAM

□ Пропускная способность памяти на различных устройствах



- □ Рассматриваемые реализации
 - Naïve (наивная реализация).
 - Parallel (параллельная реализация).
 - Blocking (блочная реализация).
 - Manual_blocking (использование локальной памяти).
 - Dynamic (использование динамического планирования в блочной версии кода).

□ Naïve (наивная реализация)

```
void transpose_baseline(double* mat, int n) {
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        std::swap(mat[i * n + j], mat[j * n + i]);
}</pre>
```

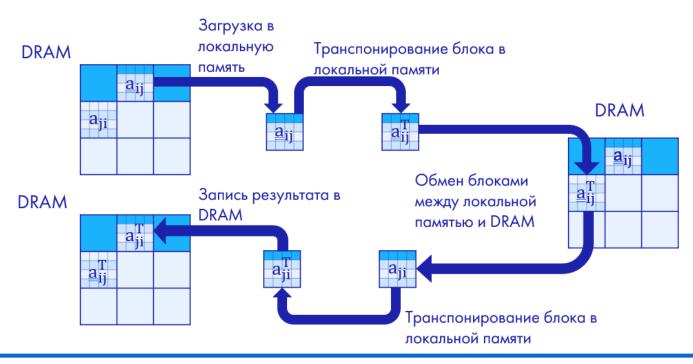
□ Parallel (параллельная реализация).

```
void transpose_baseline_omp(double* mat, int n) {
#pragma omp parallel for
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        std::swap(mat[i * n + j], mat[j * n + i]);
}</pre>
```


□ Blocking (блочная реализация)

```
void transpose block omp(double* mat, int n) {
    int block index = 0; const int block size = 64;
#pragma omp parallel for
    for (int block index = 0; block index < n / block size; block index++) {</pre>
// Транспонирование блока на диагонали
        int block start = block index * block size;
        for (int i = block start; i < block start + block size; i++)</pre>
            for (int j = i + 1; j < block start + block size; j++)</pre>
                 std::swap(mat[i * n + j], mat[j * n + i]);
// Транспонирование блоков вне диагонали
        int bj = block_start + block_size;
        for (; bj + block size < n; bj += block size)</pre>
            for (int i = block start; i < block start + block size; i++)</pre>
                for (int j = bj; j < bj + block size; j++)</pre>
                     std::swap(mat[i * n + i], mat[i * n + i]);
// Обработка границ
        for (int i = block start; i < block start + block size; i++)</pre>
            for (int j = bj; j < n; j++)</pre>
                 std::swap(mat[i * n + j], mat[j * n + i]);
    block index = n / block size;
    for (int i = block index * block size; i < n; i++)</pre>
        for (int j = i + 1; j < n; j++)
            std::swap(mat[i * n + j], mat[j * n + i]);
```


□ Manual_blocking (использование локальной памяти).



□ Manual_blocking (использование локальной памяти).

```
void transpose cache omp(double* mat, int n)
    int block index = 0;
    const int block size = 64;
#pragma omp parallel for
    for (int block index = 0; block index < n / block size; block index++)</pre>
// Транспонирование блока на диагонали
        int block start = block index * block size;
        for (int i = block start; i < block start + block size; i++)</pre>
            for (int j = i + 1; j < block start + block size; j++)</pre>
                std::swap(mat[i * n + j], mat[j * n + i]);
```


□ Manual_blocking (использование локальной памяти).

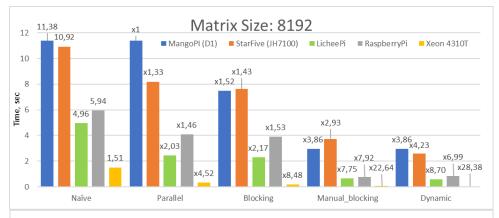
```
// Транспонирование блоков вне диагонали
        double mat a[block size * block size];
        for (block j = block start + block size; block j + block size < n;</pre>
                                                             block j += block size) {
            for (int j = block_j, k1 = 0; j < block_j + block_size; j++, k1++)</pre>
                for (int k2 = 0; k2 < block size; k2++)
                    mat_a[k1 * block_size + k2] = mat[j * n + block_start + k2];
            for (int k1 = 0; k1 < block size; k1++)
                for (int k2 = k1 + 1; k2 < block_size; k2++)</pre>
                    std::swap(mat a[k1 * block size + k2], mat a[k2 * block size + k1]);
            for (int i = block start, k2 = 0; i < block start + block size; i++, k2++)</pre>
                for (int k1 = 0; k1 < block size; k1++)
                  std::swap(mat a[k2 * block_size + k1], mat[i * n + block_j + k1]);
            for (int k1 = 0; k1 < block size; k1++)
                for (int k2 = k1 + 1; k2 < block size; k2++)
                    std::swap(mat_a[k1 * block_size + k2], mat_a[k2 * block_size + k1]);
            for (int j = block j, k1 = 0; j < block j + block size; j++, k1++)
                for (int k2 = 0; k2 < block size; k2++)
                    mat[j * n + block_start + k2] = mat_a[k1 * block_size + k2];
... <Обработка границ>
```

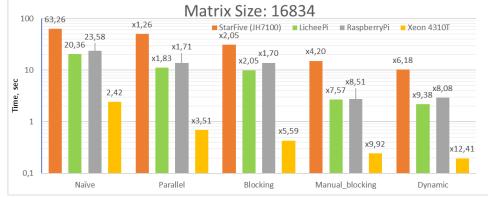
□ Dynamic (использование динамического планирования).

```
void transpose cache omp dyn(double* mat, int n)
    int block index = 0;
    const int block size = 64;
#pragma omp parallel for schedule (dynamic)
    for (int block index = 0; block index < n / block size; block index++)</pre>
     <Tранспонирование Manual blocking>
```


- □ Результаты вычислительных экспериментов
 - На графиках
 - Время вычислений
 - Ускорение относительно базовой реализации

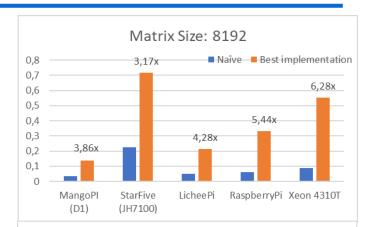
Оптимизации, разработанные для архитектуры x86, хорошо работают и на устройствах RISC-V.

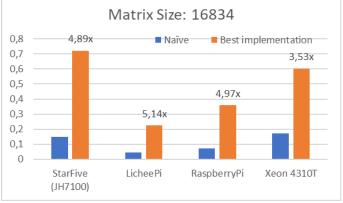




□ Результаты вычислительных экспериментов

- На графиках
- Утилизация подсистемы памяти (синий – базовая реализация, оранжевый – финальная реализация).
 Метрика показывает:
 - Насколько эффективно реализовано повторное использование данных, загружаемых из памяти
 - Насколько существенно время вычислений зависит от свойств подсистемы памяти
 - Оптимальное значение, равное единице, во многих случаях недостижимо, но близость к единице свидетельствует об эффективном использовании памяти.





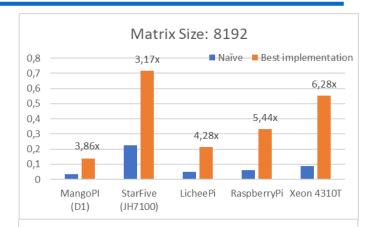
□ Результаты вычислительных экспериментов

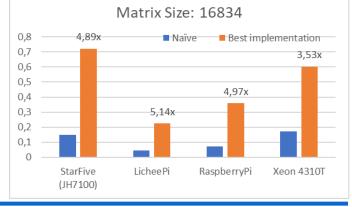
Mango Pi показал плохие результаты улучшения. У Mango Pi только один уровень кэш-памяти не сильно быстрее DRAM, что и влияет на производительность.

StarFive показал хорошие результаты.
У StarFive низкая пропускная способность
памяти, но реализовано два канала памяти на два ядра.

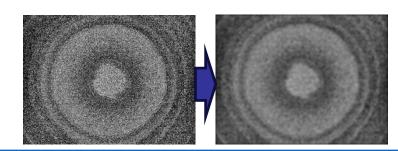
Raspberry Pi и Lichee Pi показали схожие результаты. Низкий абсолютный показатель, вероятно, связан с отсутствием архитектурно-специфических оптимизаций под конкретные платы и процессора.

Все устройства показывают приемлемый рост показателя для достаточно больших матриц.
Оптимизации для архитектуры x86 хорошо работают и на устройствах RISC-V.





- □ Причины выбора фильтра Гаусса:
 - 1. Алгоритм необходим во многих алгоритмах компьютерного зрения (CV) для предварительной подготовки входных данных.
 - 2. Существуют эффективные реализации фильтра Гаусса для разных вычислительных архитектур, в частности, в OpenCV (можно сравнить производительность).
 - 3. Дискретная свертка является базовой операцией сверточных нейронных сетей, которые обычно используются в CV-приложениях.
- □ Пример применения фильтра Гаусса:



- □ Методы хранения изображений
 - Изображение может быть представлено набором пикселей
 - Каждый пиксель имеет свой цвет. Цвет задается одним или несколькими значениями интенсивности
 - В черно-белых изображениях цвет представлен одним значением интенсивности. В цветных несколькими.
 - Структура хранения изображения: последовательный набор интенсивностей для каждого пикселя.

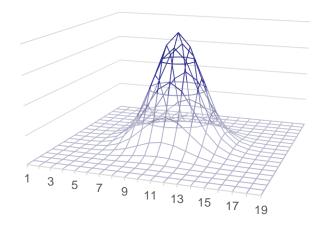
- Значения интенсивности могут быть заданы как целыми числами типа unsigned char, так и вещественными числами типа float
- При наложении фильтра Гаусса будем использовать вещественный тип данных

□ Фильтр Гаусса задается ядром:

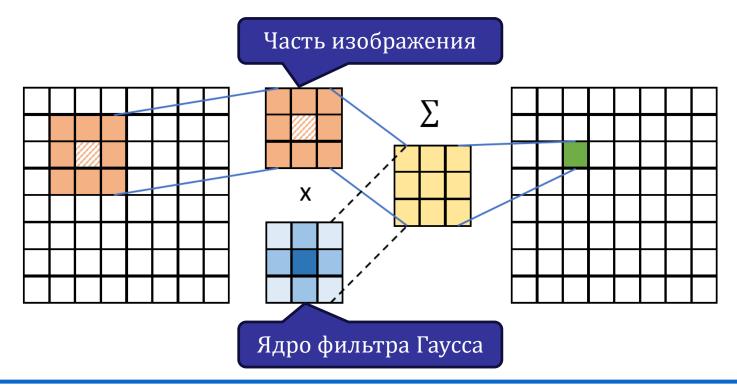
$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- х, у координаты точки
- σ среднеквадратическое отклонение (от значения зависит сила размытия)
- □ Пример матрицы ядра (N=5, σ=2)

0,015	0,021	0,024	0,021	0,015
0,021	0,031	0,035	0,031	0,021
0,024	0,035	0,040	0,035	0,024
0,021	0,031	0,035	0,031	0,021
0,015	0,021	0,024	0,021	0,015



□ Общая схема применения фильтра для получения значений каждого пикселя:



- □ Рассматриваемые реализации
 - Naïve (наивная реализация).
 - Unit-stride (последовательный доступ к памяти).
 - 1D_kernels (алгоритмическая оптимизация).
 - Memory (улучшение доступа к памяти).
 - Parallel (параллельная реализация).

□ Naïve (наивная реализация)

```
//Заполнение матрицы фильтра
float* create2DFilter(int n, float sigma)
 float* filter = new float[n * n];
 float coeff = 1.0f / (2.0f * PI * sigma * sigma);
 int middle = n / 2;
 for (int i = 0; i < n; i++)
   for (int j = 0; j < n; j++)
     float x = j - middle;
     float y = i - middle;
     filter[i * n + j] = coeff * expf(-(x * x + y * y) / (2.0f * sigma * sigma));
 return filter;
```

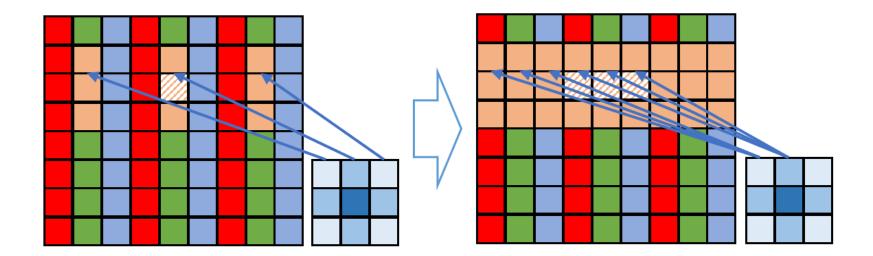

□ Naïve (наивная реализация)

```
// Базовая реализация фильтра
void filterBase(cv::Mat& dist, cv::Mat& src, float sigma, int sizeFilter)
 float* filter = create2DFilter(sizeFilter, sigma);
 int w = src.size().width;
 int h = src.size().height;
 float* srcData = (float *)src.data;
 float* distData = (float *)dist.data;
 int middle = sizeFilter / 2;
 const int cntChannel = 3;
```


□ Naïve (наивная реализация)

```
for (int i = 0; i < h - sizeFilter; i++) {
  for (int j = 0; j < w - sizeFilter; j++) {
    for (int c = 0; c < cntChannel; c++) {</pre>
      float sum = 0.f;
      for (int i f = 0; i f < sizeFilter; i f++) {</pre>
        for (int j f = 0; j f < sizeFilter; j f++) {</pre>
          int pos i = (i + i f) * (w * cntChannel);
          int pos j = (j + j_f) * (cntChannel) + c;
          sum += srcData[pos_i + pos_j] * filter[i_f * sizeFilter + j_f];
      int i d = i + middle, j d = j + middle;
      distData[(i d * w + j d) * cntChannel + c] = sum;
delete[] filter;
```

- □ Unit-stride (последовательный доступ к памяти).
 - В базовой версии неоптимальный обход по памяти



□ Unit-stride (последовательный доступ к памяти).

```
for (int i = 0; i < h - sizeFilter; i++) {</pre>
  for (int j = 0; j < w - sizeFilter; j++) {
    for (int c = 0; c < cntChannel; c++) {</pre>
      float sum = 0.f;
      for (int i f = 0; i f < sizeFilter; i f++) {</pre>
        for (int j f = 0; j_f < sizeFilter; j_f++) {</pre>
          int pos i = (i + i_f) * (w * cntChannel);
          int pos j = (j + j f) * (cntChannel) + c;
          sum += srcData[pos i + pos j] * filter[i f * sizeFilter + j f];
      int i d = i + middle, j d = j + middle;
      distData[(i d * w + j d) * cntChannel + c] = sum;
delete[] filter;
```


□ Unit-stride (последовательный доступ к памяти).

```
void filterChannel(cv::Mat &dist, cv::Mat& src, float sigma, int sizeFilter)
 float* filter = create2DFilter(sizeFilter, sigma);
 int w = src.size().width;
 int h = src.size().height;
 float* srcData = (float *)src.data;
 float* distData = (float*)dist.data;
 int middle = sizeFilter / 2;
 const int cntChannel = 3;
 for (int i = 0; i < h - sizeFilter; i++) {
   for (int j = 0; j < w - sizeFilter; j++) {
     int i d = i + middle;
      int j d = j + middle;
     for (int c = 0; c < cntChannel; c++) {</pre>
        distData[(i d * w + j d) * cntChannel + c] = 0.0f;
```

□ Unit-stride (последовательный доступ к памяти).

```
for (int i = 0; i < h - sizeFilter; i++) {
  for (int j = 0; j < w - sizeFilter; j++) {
    int i d = i + middle;
    int i d = i + middle;
    for (int i f = 0; i f < sizeFilter; i f++) {</pre>
      for (int j f = 0; j f < sizeFilter; j f++) {</pre>
        for (int c = 0; c < cntChannel; c++) {</pre>
          int pos i = (i + i f) * (w * cntChannel);
          int pos j = (j + j f) * (cntChannel);
          distData[(i d * w + j d) * cntChannel + c] +=
            srcData[pos i + pos j + c] * filter[i f * sizeFilter + j f];
```


- □ **1D_kernels** (алгоритмическая оптимизация).
 - Возможно следующее разложение ядра фильтра Гаусса*:

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} = \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{y^2}{2\sigma^2}}\right)$$

- Пусть W и H ширина и высота изображения, C количество каналов,
 - F размер ядра фильтра.
 - Сложность базового алгоритма $O(W \cdot H \cdot C \cdot F^2)$
 - Сложность нового алгоритма $O(W \cdot H \cdot C \cdot F)$
- Пример использования разложения:

2	2	4	2	2	1	1								*	*	*	*	*	*
5	2	4	4	2	0									*	44	43	44	34	*
5	1	1	0	5	1				1 2	2	1			*	37	24	29	39	*
0	4	0	0	3	3			2	2 4	4 2	2		7	*	34	22	23	38	*
5	0	5	1	4	0				1 2	2				*	42	39	36	39	*
1	5	3	2	4	2									*	*	*	*	*	*
2	2	4	2	2	1		*	*	*	*	*	*		*	*	*	*	*	*
5	2	4	4	2	0	1	1 <i>7</i>	7	13	10	11	2		*	44	43	44	34	*
5	1	1	0	5	1		15	8	6	4	15	5		*	37	24	29	39	*
0	4	0	0	3	3		10	9	6	1	15	7		*	34	22	23	38	*
5	0	5	1	4	0		11	9	13	4	15	5	l '	*	42	39	36	39	*


```
// Заполнение вектора фильтра
float* create1DFilter(int n, float sigma)
 float* filter = new float[n];
 float coeff = 1.0f / (sqrtf(2.0f * PI) * sigma);
 int middle = n / 2;
 for (int i = 0; i < n; i++)
   float x = i - middle;
   filter[i] = coeff * expf(-(x * x) / (2.0f * sigma * sigma));
 return filter;
```



```
// Инициализация матриц
  float* filter1D = create1DFilter(sizeFilter, sigma);
 cv::Mat tmp;
  src.copyTo(tmp);
  int w = src.size().width;
  int h = src.size().height;
  float* srcData = (float*)src.data;
  float* tmpData = (float*)tmp.data;
 float* distData = (float*)dist.data;
  int middle = sizeFilter / 2;
  const int cntChannel = 3;
 for (int i = 0; i < h; i++) {
    for (int j = 0; j < w * cntChannel; j++) {</pre>
      int i d = i + middle;
      tmpData[i_d * w * cntChannel + j] = 0.0f;
      distData[i d * w * cntChannel + j] = 0.0f;
```



```
// Первая фаза применения фильтра
 for (int i = 0; i < h - sizeFilter; i++)</pre>
    int i d = i + middle;
    for (int j = 0; j < w * cntChannel; j++)</pre>
      for (int i f = 0; i f < sizeFilter; i f++)</pre>
        int pos i = (i + i f) * (w * cntChannel);
        int pos j = j;
        tmpData[i_d * w * cntChannel + j] += srcData[pos_i + pos_j] * filter1D[i_f];
```

```
// Вторая фаза применения фильтра
  for (int i = 0; i < h - sizeFilter; i++)</pre>
    for (int j = 0; j < w - sizeFilter; j++)</pre>
      int i d = i + middle;
      int i d = i + middle;
      for (int j_f = 0; j_f < sizeFilter; j_f++)</pre>
        for (int c = 0; c < cntChannel; c++)</pre>
          int pos i = (i) * (w * cntChannel);
          int pos i = (j + j f) * (cntChannel);
          distData[(i_d * w + j_d) * cntChannel + c] +=
            tmpData[pos i + pos j + c] * filter1D[j f];
```


- Memory (улучшение доступа к памяти).
 - Применение горизонтального ядра фильтра Гаусса реализовано неэффективно.
 - Изменим порядок циклов, при котором каждый элемент ядра взаимодействует со всей строкой исходной матрицы изображения.

```
// Первая фаза применения фильтра
  for (int i = 0; i < h - sizeFilter; i++)</pre>
    int i d = i + middle;
    for (int i f = 0; i_f < sizeFilter; i_f++) {</pre>
      for (int j = 0; j < w * cntChannel; j++)</pre>
        int pos_i = (i + i_f) * (w * cntChannel);
        tmpData[i d * w * cntChannel + j] += srcData[pos i + j] * filter1D[i f];
```


- □ Parallel (параллельная реализация).
 - Обе фазы применения фильтра Гаусса могут быть распараллелены по внешнему циклу
 - Итерации внешнего цикла независимые, как следствие, достаточно применить #pragma omp parallel for

- □ Результаты вычислительных экспериментов
 - Решаемая задача:
 - Размер тестового изображения: 2544х2027
 - Размер окна фильтра: 19х19
 - Изображение цветное: 3 канала

- □ Результаты вычислительных экспериментов
 - На графике время вычислений, а также ускорение относительно базовой реализации

Время вычислений первой модификации алгоритма **«Unit-stride»** явно лучше из-за последовательного доступа к памяти, который намного быстрее благодаря эффективной предварительной выборке данных.

Для **StarFive** упреждающая выборка данных не ускоряет расчеты. Низкая пропускная способность памяти не позволяет вовремя подготовить данные, что и приводит к дополнительным накладным расходам.

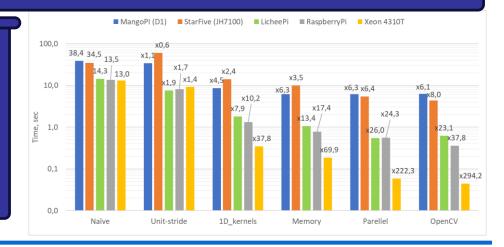


- □ Результаты вычислительных экспериментов
 - На графике время вычислений, а также ускорение относительно базовой реализации

Модификация **«1D_kernels»**. Видно значительное ускорение. При размере фильтра F=19 можно было ожидать большего ускорения.

Большего ускорения нет из-за неэффективного обращения к памяти.

Подтверждение этому результаты Модификации **«Memory»**.

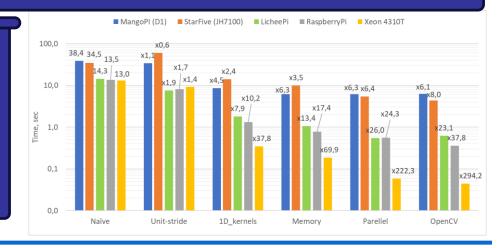


Н. Новгород. 2025

- □ Результаты вычислительных экспериментов
 - На графике время вычислений, а также ускорение относительно базовой реализации

Поскольку задача фильтрации изображений относится к классу **«memory bound»**, ускорение параллельной версии ограничено количеством доступных каналов памяти.

Как и в случае с алгоритмом транспонирования матриц, оптимизации, разработанные для архитектуры x86, хорошо себя демонстрируют и на устройствах RISC-V.



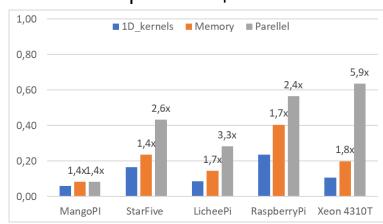
- □ Результаты вычислительных экспериментов
 - На графике утилизация подсистемы памяти

- При расчете этой метрики используется в качестве основы реализация

«1D kernels».

Mango Pi не позволяет обеспечить высокую производительность алгоритма фильтрации изображений из-за отсутствия кэша L2 и медленного кэша L1.

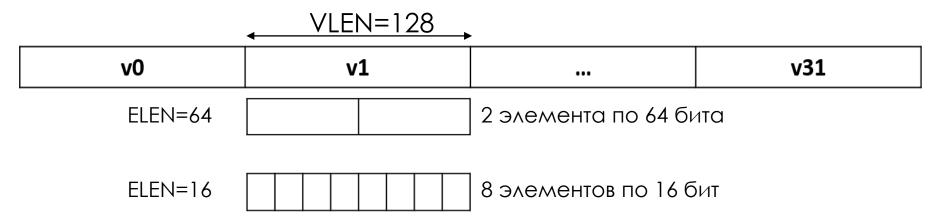
StarFive, LicheePi и Raspberry Pi по ускорению доступа к памяти показывают схожие результаты. Низкая эффективность связана с оптимизацией обходов памяти, а не с переиспользованием данных из кэш-памяти



Ha Intel Xeon 4310Т алгоритм обеспечил хорошее значения метрики за счет наличия большего количества каналов памяти, отсутствующих в других рассматриваемых устройствах.

ВЕКТОРИЗАЦИЯ НА RISC-V

- □ RVV определяет 32 векторных регистра (v0-v31) размера VLEN бит
 - VLEN постоянный параметр, выбранный разработчиком ядра
- □ Векторы в RVV состоят из элементов
 - Размер элементов в битах от 8 бит до ELEN бит
 - ELEN постоянный параметр, выбранный разработчиком ядра



- □ При работе с векторами в RVV используются два регистра
 - **vtype**: векторный тип
 - vI: длина вектора (это не VLEN)
- □ vtype описывает тип вектора, который включает в себя:
 - sew стандартная ширина элемента в битах (8<sew<ELEN)
 - **Imul** множитель длины
- □ Позволяет группировать регистры (Imul = 2^k , где $-3 \le k \le 3$)
 - **vl** количество элементов вектора $(0 \le vl \le vlmax(sew, lmul))$ vlmax(sew, lmul) = (VLEN/sew) * lmul

- □ Вектора объединяются в группы из нескольких векторных регистров. Группа векторов идентифицируется векторным регистром с наименьшим номером в группе
 - 16 векторных групп lmul = 2: v0, v2, v4, v6, v8, v10, v12, ..., v28, v30
 - 8 векторных групп lmul = 4: v0, v4, v8, v12, v16, v20, v24, v28
 - 4 векторные группы lmul = 8: v0, v4, v8, v16

	v0	v1	•••	v31
sew = 18 Imul = 2			$0 \le vl \le 16$	
sew = 32 Imul = 2			$0 \le vl \le 8$	

- □ Проект векторных инструкций RVV 0.7.1, представленный T-Head в 2019 г. Поддерживает некоторые ядра T-Head
 - Впоследствии улучшилось до 0.8
 - *VLEN*=128
- □ Стандарт RVV 1.0 принят в 2021 г. Сейчас начали появляться платы с ядрами, поддерживающими RVV 1.0
 - Имя расширения «V» резервируется для версии 1.0+
 - $-8 \le VLEN \le 2^{16}$
- □ RVV 0.7.1 и RVV 1.0 очень похожи, но не совместимы на уровне двоичного кода
 - Есть инструменты для конвертации RVV 1.0 в RVV 0.7.1 на уровне ассемблера

OpenCV

- □ OpenCV это библиотека алгоритмов компьютерного зрения с открытым исходным кодом
- □ OpenCV использует модульную архитектуру (базовый модуль, обработка изображений, обработка видео и т.д.)
- □ Концепция универсальных векторных интринсик в OpenCV:
 - Объявлен набор функций (intrinsics), необходимых в библиотеке и работающих с векторами
 - Существует базовая реализация с использованием обычных циклов (может быть автоматически векторизована компилятором)
 - Для каждой платформы векторы преобразуются в стандартные типы векторов платформы
 - Для каждой платформы универсальные встроенные функции реализуются с использованием встроенных функций платформы

Изменения кода OpenCV

- □ Метрики оценки производительности:
 - Время работы
 - Ускорение от векторизации

До изменений (~3000 строк)

Длина вектора 128 бит

Типичная реализация универсальных интринсик: vfmadd vv f32m1

<Команда>_<тип данных>m<кол-во рег.>

После изменений (~5000 строк)

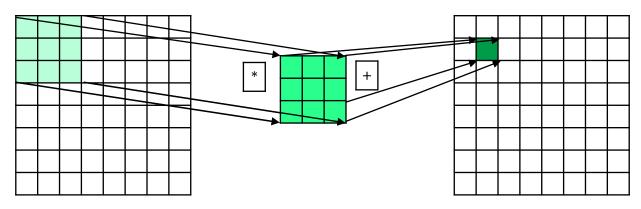
Длина вектора 512 бит

Типичная реализация универсальных интринсик: vfmadd_vv_f32m4

Также добавлены преобразования типов m8->m1->m4, так как в стандартном функционале нет прямого преобразования m8->m4

Фильтрация в OpenCV

- □ В данном тесте мы использовали общий алгоритм фильтрации
- □ OpenCV имеет оптимизацию для специальных фильтров (фильтр Гаусса, медианный фильтр и т. д.)
- □ В OpenCV для ядер размером больше 11 используется алгоритм с преобразованием Фурье. Для ядер меньшего размера используется тривиальный оптимизированный алгоритм. Параллельная версия отсутствует



Фильтрация в OpenCV. Результаты

Mango Pi

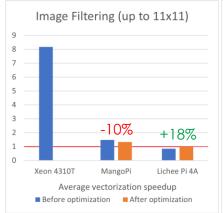
Kernel size	SeqScalar	SeqVector	Optim	139	Optimization	
				speedup	speedup	
3x3	1,26	0,69	0,76	1,84	0,90	
5x5	2,61	1,42	1,79	1,84	0,80	
7x7	4,34	2,72	3,29	1,59	0,83	
9x9	6,52	6,00	5,97	1,09	1,01	
11x11	6,55	6,26	5,98	1,05	1,05	
13x13	6,55	6,08	6,00	1,08	1,01	

Lichee Pi

Kernel size	SeqScalar	SeqVector	Optim	Vectorization speedup	Optimization speedup
3x3	0,19	0,20	0,14	0,97	1,41
5x5	0,31	0,44	0,44	0,71	1,00
7x7	0,48	0,78	0,71	0,62	1,11
9x9	0,61	0,64	0,59	0,95	1,08
11x11	0,61	0,65	0,60	0,94	1,09
13x13	0,61	0,65	0,60	0,95	1,09

x86

Kernel size	SeqScalar	SeqVector	Vectorization speedup
3x3	0,058	0,010	6,06
5x5	0,168	0,022	7,70
7x7	0,376	0,040	9,35
9x9	0,641	0,065	9,89
11x11	1,071	0,095	11,24
13x13	0,177	0,152	1,17



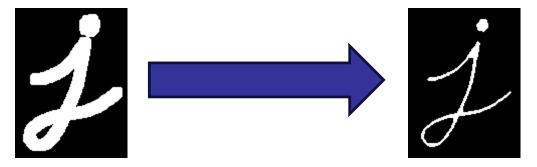
FullHD 1920x1080

Эрозия в OpenCV

□ Эрозия выбирает минимум из некоторой области:

$$extsf{dst}(x,y) = \min_{(x',y'): \, extsf{element}(x',y')
eq 0} \, extsf{src}(x+x',y+y')$$

□ Эрозия работает с одноканальными изображениями⇒ последовательный доступ к памяти



□ Параллельная версия отсутствует

Эрозия в OpenCV. Результаты

Mango Pi

Resolution	Filter size	SeqScalar	SeqVector	Optim	Vectorization speedup	Optimization speedup
1920x1080	1	0,163	0,060	0,043	2,71	1,40
1920x1080	2	0,246	0,073	0,048	3,37	1,51
1920 x 1080	3	0,320	0,084	0,054	3,79	1,57
3840x2160	1	0,586	0,242	0,157	2,42	1,54
3840x2160	2	0,900	0,297	0,180	3,03	1,65
3840x2160	3	1,189	0,361	0,201	3,29	1,79

Lichee Pi

Resolution	Filter size	SeqScalar	SeqVector	Optim	Vectorization speedup	Optimization speedup
1920 x 1080	1	0,020	0,004	0,004	4,56	1,17
1920 x 1080	2	0,031	0,005	0,004	5,91	1,27
1920 x 1080	3	0,049	0,006	0,004	7,93	1,37
3840x2160	1	0,060	0,017	0,015	3,47	1,17
3840x2160	2	0,095	0,023	0,016	4,21	1,39
3840x2160	3	0,147	0,026	0,018	5,56	1,44

x86

Resolution	Filter size	SeqScalar	SeqVector	Vectorization speedup
1920x1080	1	0,007	0,001	5,17
1920×1080	2	0,010	0,001	6,78
1920 x 1080	3	0,013	0,001	8,60
3840x2160	1	0,025	0,005	5,59
3840x2160	2	0,037	0,005	7,61
3840x2160	3	0,050	0,005	9,92

Bag-of-words и SVM в OpenCV

- □ Обучение включает в себя следующие этапы:
 - Обнаружение ключевых точек на каждом изображении набора обучающих данных (SIFT)
 - Построение дескрипторов ключевых точек
 - Кластеризация дескрипторов ключевых точек. В результате кластеризации находятся центры построенных кластеров
 - Построение нормализованной гистограммы встречаемости «слов» для каждого обучающего изображения
 - Обучение классификатора (SVM) с использованием рассчитанного описания признаков изображения.

Bag-of-words и SVM в OpenCV

- □ Тестирование включает в себя следующие этапы:
 - Обнаружение ключевых точек с использованием того же алгоритма
 - Построение нормализованной гистограммы встречаемости «слов» для каждого изображения тестовой выборки. Словарь получается на этапе обучения
 - Прогнозирование класса изображения с использованием обученной модели SVM

Bag-of-words и SVM в OpenCV. Результаты

Mango Pi

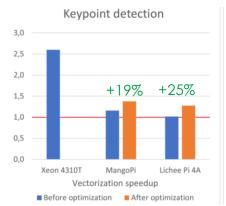
SVM step	SeqScalar	SeqVector	Optim	Vectorization speedup	Optimization speedup
keypoint detection	269,67	231,86	194,38	1,16	1,19
feature generation	388,95	338,99	298,82	1,15	1,13
prediction	3,27	3,25	3,24	1,01	1,00

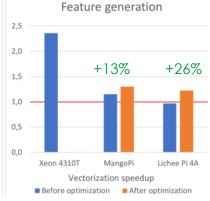
x86

SVM step	SegScalar	ParScalar	SeqVector	ParVector	Vectorization
S TILL STOP	Sequence		504,00001		$_{ m speedup}$
keypoint detection	9,21	9,07	3,54	3,84	2,60
feature generation	10,85	8,63	5,10	3,67	2,36
prediction	0,06	0,06	0,06	0,06	0,99

Lichee

				Pi			
SVM step	SeqScalar	ParScalar	SeqVector	ParVector	Optim	Vectorization	Optimization
	974					speedup	speedup
keypoint detection	26,82	24,59	25,71	24,16	19,27	1,02	1,25
feature	36,02	25,96	36,71	26,76	21,30	0,97	1,26
generation prediction		0,30	0,30	0,30	0,30	1,00	1,00





ЗАКЛЮЧЕНИЕ

Заключение

- □ В лекции исследованы возможности и перспективы вычислительной архитектуры RISC-V на примере реализации нескольких алгоритмов.
- □ В рамках лекции показана вычисленная с помощью теста STREAM пропускная способность памяти. Результаты показали, что существующие прототипы RISC-V по пропускной способности памяти все еще значительно отстают от устройств ARM и х86.
- □ Показано, что в алгоритме транспонирования матриц устройства RISC-V демонстрируют отличное использование доступных ресурсов, тогда как при фильтрации изображений память используется менее эффективно.
- □ В лекции показано, что типичные методики оптимизации работы с памятью, отработанные за последние десятилетия на ARM и х86, ведут себя ожидаемо на RISC-V, позволяя значительно ускорить вычисления.
- □ Показаны варианты RISC-V специфичных оптимизаций при векторизации кода

Литература

- Volokitin V.D., Kustikova V.D., Kozinov E.A., Linev A.V., Meyerov I.B. Case Study for Running Memory-Bound Kernels on RISC-V CPUs // Parallel Computing Technologies. 17th International Conference, PaCT 2023, Astana, Kazakhstan, August 21–25, 2023, Proceedings.. Springer Lecture Notes in Computer Science (LNCS, volume 14098). 2023. P. 51–65.
- 2. Козинов Е.А., Сысоев А.В., Волокитин В.Д., Кустикова В.Д., Линев А.В., Мееров И.Б. Оптимизация работы с памятью при решении задач на процессорах архитектуры RISC-V. Н.Новгород: Издательство ННГУ. 2024. 31 с.
- 3. Volokitin V.D., Vasilyev E.P., Kozinov E.A., Kustikova V.D., Liniov A.V., Rodimkov Yu.A., Sysoyev A.V., Meyerov I.B. Improved Vectorization of OpenCV Algorithms for RISC-V CPU // Lobachevskii Journal of Mathematics. V. 45. № 1. 2024. P. 130-142.

Контакты

Нижегородский государственный университет

http://www.unn.ru

Институт информационных технологий, математики и механики http://www.itmm.unn.ru

Кафедра высокопроизводительных вычислений и системного программирования

