

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики Кафедра высокопроизводительных вычислений и системного программирования Лаборатория ITLab

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики Кафедра высокопроизводительных вычислений и системного программирования Лаборатория ITLab

ВВЕДЕНИЕ В АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ И ОПТИМИЗАЦИЮ ПРОГРАММ

Степень посредничества вершин. Матрично-векторная реализация алгоритма Брандеса

Устинов А.В., Пирова А.Ю., Мееров И.Б.

Содержание

- □ Введение
- □ Степень посредничества вершины. Алгоритм Брандеса
- □ Матричная версия алгоритма
- □ Оптимизация алгоритма
- □ Результаты экспериментов
- □ Заключение

Цель лекции

- □Рассмотреть проблематику, связанную с высокопроизводительной реализацией алгоритмов на графах
 - Изучить проблемы производительности при реализации алгоритмов на графах
 - Познакомиться с подходом, лежащим в основе библиотеки GraphBLAS
 - На примере алгоритма поиска степени посредничества вершин изучить некоторые типовые приёмы оптимизации производительности, применяемые при реализации алгоритмов на графах

ВВЕДЕНИЕ

1.1. Алгоритмы на графах и их проблемы

- □ Алгоритмы на графах применяются для анализа сетей в различных предметных областях (химия, биология, медицина, транспортные и социальные сети)
- □ Трудности реализации алгоритмов на графах:
 - Многообразие форматов хранения графов
 - Плотная матрица смежности, список смежности, CRS, специальные форматы
 - Низкая производительность
 - Малая арифметическая интенсивность, нелокальный доступ к памяти
 - Сложность эффективной параллельной реализации
 - Ограничения по скорости работы памяти, синхронизация между потоками
- □ Есть ли решения для этих проблем?

1.1. Алгоритмы на графах и их проблемы

- □ Алгоритмы на графах применяются для анализа сетей в различных предметных областях (химия, биология, медицина, транспортные и социальные сети)
- □ Трудности реализации алгоритмов на графах:
 - Многообразие форматов хранения графов
 - Плотная матрица смежности, список смежности, CRS, специальные форматы
 - Низкая производительность
 - Малая арифметическая интенсивность, нелокальный доступ к памяти
 - Сложность эффективной параллельной реализации
 - Ограничения по скорости работы памяти, синхронизация между потоками
- □ Частичное решение стандарт GraphBLAS

1.2. GraphBLAS

- □ Стандарт GraphBLAS определяет набор матрично-векторных операций для реализации алгоритмов на графах
- □ Граф представляется в виде разреженной матрицы смежности
- □ Основные матрично-векторные операции:
 - Применение функции к элементам матрицы
 - Поэлементные сложение и умножение матриц: A .* B
 - Умножение матриц: A ⊕. \otimes B
- □ Достоинства:
 - Единый формат представления графов
 - Высокая производительность достигается за счёт оптимизации небольшого набора основных операций

1.3. Полукольца в GraphBLAS

- □ Сложение и умножение в GraphBLAS возможны в различных *полукольцах*
- □ Полукольцо $(R, \oplus, \otimes, 0, 1)$ множество R с заданными на нём бинарными операциями *сложения* \oplus и *умножения* \otimes со следующими свойствами:
 - Сложение ассоциативность, коммутативность, существование нейтрального элемента 0
 - Умножение ассоциативность, существование нейтрального элемента 1
 - Дистрибутивность сложения и умножения
- \square Умножение матриц и векторов в полукольце обозначается $A \oplus . \otimes B$ или AB
- □ Примеры полуколец в GraphBLAS и их применения:
 - $-(\mathbb{R},+,\times,0,1)-$ стандартная арифметика подсчёт числа кратчайших путей
 - $(\{0,1\},\lor,\land,0,1)$ булева алгебра поиск в ширину, проверка связности вершин
 - $(\mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0)$ *тропическое полукольцо (min-plus semiring)* поиск кратчайших путей во взвешенном графе

1.4. Операции с масками

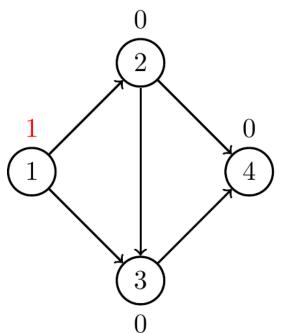
- □ Операции GraphBLAS поддерживают использование маски, которая является вектором или матрицей той же размерности, что и результат операции
- \square Применение маски M к объекту A обозначается как $M \odot A$
- □ В результате применения маски входящие в маску элементы не меняются, а остальные становятся равными нулю
- \square Возможно использование инвертированной маски $\neg M$, тогда исключаются входящие в маску элементы, а не входящие не меняются
- □ Пример:

$$-A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$-A+B=\begin{pmatrix}2&2\\2&2\end{pmatrix}, M\odot(A+B)=\begin{pmatrix}0&2\\2&0\end{pmatrix}, \neg M\odot(A+B)=\begin{pmatrix}2&0\\0&2\end{pmatrix}$$

1.5. Пример. Поиск в ширину (1)

□ Подсчёт числа кратчайших путей от вершины 1 до остальных вершин в невзвешенном ориентированном графе – полукольцо (ℝ, +,×, 0,1):



Матрица смежности:
$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

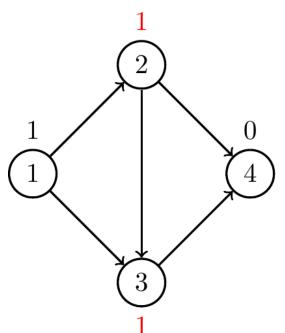
Вектор числа кратчайших путей на шаге 0:
$$c = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Фронт поиска в ширину на шаге 0:
$$f = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Шаг
$$i$$
: $f := (\neg c) \odot (A^T f), c := c + f$

1.5. Пример. Поиск в ширину (2)

□ Подсчёт числа кратчайших путей от вершины 1 до остальных вершин в невзвешенном ориентированном графе – полукольцо (ℝ, +,×, 0,1):



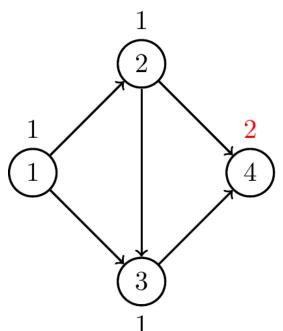
Шаг 1:
$$c = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, $f = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

$$A^{T}f = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$f \coloneqq (\neg c) \odot (A^T f) = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \odot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, c \coloneqq \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

1.5. Пример. Поиск в ширину (3)

□ Подсчёт числа кратчайших путей от вершины 1 до остальных вершин в невзвешенном ориентированном графе – полукольцо (ℝ, +,×, 0,1):



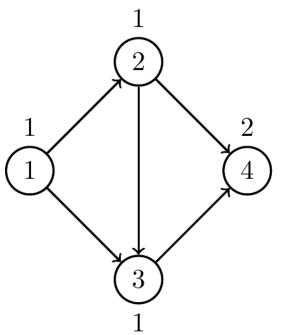
Шаг 2:
$$c = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
, $f = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$

$$A^{T}f = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$f \coloneqq (\neg c) \odot (A^T f) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \odot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}, c \coloneqq \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$

1.5. Пример. Поиск в ширину (4)

□ Подсчёт числа кратчайших путей от вершины 1 до остальных вершин в невзвешенном ориентированном графе – полукольцо (ℝ, +,×, 0,1):



Вектор числа кратчайших путей: $c = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

СТЕПЕНЬ ПОСРЕДНИЧЕСТВА ВЕРШИНЫ. АЛГОРИТМ БРАНДЕСА

2. Степень посредничества вершины. Алгоритм Брандеса

2.1. Степень посредничества вершины

- \square Пусть G = (V, E) сильно связный граф, n число вершин, m число рёбер
- \Box Степень посредничества вершины $v \in V$ есть

$$C_B(v) = \sum_{s,t \in V \setminus \{v\}} \frac{\sigma_{st}(v)}{\sigma_{st}},\tag{1}$$

где σ_{st} - число всех кратчайших путей из s в t,

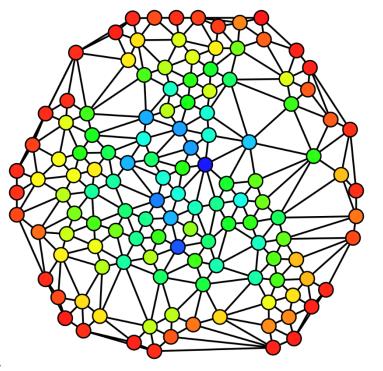
 $\sigma_{st}(v)$ - число кратчайших путей из s в t, проходящих через v

- □ Введена Дж. Антониссе в 1971 г. и Л. Фриманом в 1977 г.
- □ Используется в биоинформатике и в анализе социальных и транспортных сетей для определения важности вершин: чем больше степень посредничества, тем важнее вершина

2. Степень посредничества вершины. Алгоритм Брандеса

2.1. Степень посредничества вершины

□ Пример:



Красный – меньше степень посредничества Синий – больше степень посредничества

Как вычислить?

2. Степень посредничества вершины. Алгоритм Брандеса

2.2. Простой алгоритм

- \square Как определить, что v лежит на кратчайшем пути из s в t?
 - Пусть d_{xy} длина кратчайшего пути из $x \in V$ в $y \in V$
 - Тогда должно выполняться $d_{st}=d_{sv}+d_{vt}$
- \square Как посчитать число кратчайших путей из s в t, проходящих через v?
 - Вспомним, что σ_{xy} число кратчайших путей из $x \in V$ в $y \in V$
 - Любой такой путь состоит из кратчайшего пути из s в v и кратчайшего пути из v в t, каждый из них выбирается независимо от другого
 - Поэтому $\sigma_{st}(v) = \sigma_{sv} \cdot \sigma_{vt}$
- \square Как посчитать d_{xy} и σ_{xy} ?
 - d_{xy} алгоритм Флойда-Уоршелла $(\Theta(n^3))$ или алгоритм Дейкстры $(O(mn+n^2\log n))$
 - σ_{xy} поиск в ширину $(O(mn+n^2))$
- \square Затем $C_R(v)$ считается для всех $v \in V$ за $\Theta(n^3)$

2. Степень посредничества вершины. Алгоритм Брандеса 2.3. Проблемы простого алгоритма

- □Длина и число кратчайших путей хранятся для всех пар вершин
 - $\Theta(n^2)$ памяти неприемлемо для достаточно больших графов
- \square Общее время работы составляет $\Theta(n^3)$
 - Как минимум, вычисление $C_B(v) = \sum_{s \in V \setminus \{v\}} \sum_{t \in V \setminus \{v\}} \frac{\sigma_{sv} \cdot \sigma_{vt}}{\sigma_{st}}$ для всех вершин требует столько времени
 - Даже для небольших графов ($n pprox 10^5$) время работы слишком большое
- \square Следовательно, для больших задач (n порядка 10^6-10^9) алгоритм не подходит
- □ Какие возможны улучшения?

2. Степень посредничества вершины. Алгоритм Брандеса 2.3. Проблемы простого алгоритма

- □Длина и число кратчайших путей хранятся для всех пар вершин
 - $\Theta(n^2)$ памяти неприемлемо для достаточно больших графов
- \square Общее время работы составляет $O(n^3)$
 - Как минимум, вычисление $C_B(v) = \sum_{s \in V \setminus \{v\}} \sum_{t \in V \setminus \{v\}} \frac{\sigma_{sv} \cdot \sigma_{vt}}{\sigma_{st}}$ для всех вершин требует столько времени
 - Даже для небольших графов ($n \approx 10^4$) время работы слишком большое
- \square Следовательно, для больших задач (n порядка 10^6-10^9) алгоритм не подходит
- □ Какие возможны улучшения? Алгоритм Брандеса

2. Степень посредничества вершины. Алгоритм Брандеса 2.3. Алгоритм Брандеса

- □ Алгоритм предложен в 2001 г. У. Брандесом
- \square Время работы составляет O(nm) на невзвешенных графах и $O(nm+n^2\log n)$ на взвешенных графах
- \square Потребление памяти составляет O(n+m)
- \square Введём понятие зависимости v от s:

$$\delta_{S}(v) = \sum_{t \in V \setminus \{v\}} \frac{\sigma_{St}(v)}{\sigma_{St}} \tag{2}$$

Это вклад, который вносит начальная вершина s в $C_B(v)$.

 \square На основе $\delta_s(v)$ степень посредничества v вычисляется как

$$C_B(v) = \sum_{s \in V \setminus \{v\}} \delta_s(v) \tag{3}$$

2. Степень посредничества вершины. Алгоритм Брандеса 2.3. Алгоритм Брандеса

- \square Алгоритм состоит из **прямого хода** и **обратного хода**, которые выполняются для каждой $s \in V$
- \square В **прямом ходе** с помощью поиска в ширину вычисляются σ_{st} для всех $t \in V$
- \square В **обратном ходе** вычисляется $\delta_s(v)$ для всех $v \in V$ по формуле:

$$\delta_{S}(v) = \sum_{w \in S(S,v)} \frac{\sigma_{Sv}}{\sigma_{Sw}} (1 + \delta_{S}(w)), \tag{4}$$

где S(s,v) – множество вершин, следующих за v на кратчайших путях из s

- □ Время работы прямого хода: для невзвешенного графа O(n+m), для взвешенного графа $O(m+n\log n)$ (алгоритм Дейкстры с фибоначчиевой кучей)
- \square Время работы обратного хода: O(n+m)
- \Box Потребление памяти: O(n+m) храним данные только для текущей s

МАТРИЧНАЯ ВЕРСИЯ АЛГОРИТМА

3.1. Матрично-векторный алгоритм Брандеса

- □ Сфокусируемся на невзвешенных графах
- □ Прямой ход и обратный ход можно описать с помощью матричных операций
 - $\mathbf{A} \in \mathbb{R}^{n \times n}$ матрица смежности графа
 - Σ_k множество вершин на расстоянии k от вершины s
 - $\mathbf{f}^{(k)} \in \mathbb{R}^n$ k-й фронт поиска в ширину: $\mathbf{f}_i^{(k)} = \begin{cases} 0, i \notin \Sigma_k \\ \sigma_{si}, i \in \Sigma_k \end{cases}$ $\mathbf{f}^{(0)} = \begin{cases} 1, i = s \\ 0, i \neq s \end{cases}$, $\mathbf{p}^{(0)} = \mathbf{f}^{(0)}$
 - $\mathbf{p}^{(k)} \in \mathbb{R}^n$ вектор, где отмечены посещённые за

первые
$$k$$
 шагов вершины: $\mathbf{p}_i^{(k)} = \begin{cases} 0, i \notin \bigcup_{j=0}^k \Sigma_j \\ \sigma_{si}, i \in \bigcup_{j=0}^k \Sigma_j \end{cases}$

 $oldsymbol{\mathbf{b}}^{(k)} \in \mathbb{R}^n$ - зависимости от вершины s на шаге k

Прямой ход:

$$\mathbf{f}^{(0)} = \begin{cases} 1, i = s \\ 0, i \neq s \end{cases}, \mathbf{p}^{(0)} = \mathbf{f}^{(0)}$$

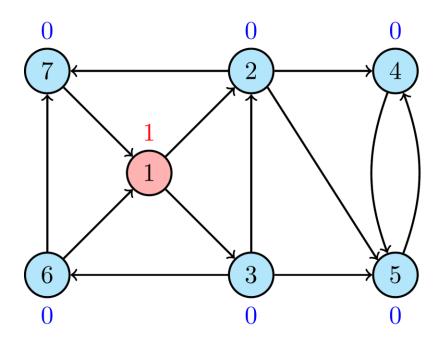
$$\mathbf{f}^{(k+1)} = (\neg \mathbf{p}^{(k)}) \odot (\mathbf{A}^{\mathsf{T}} \mathbf{f}^{(k)})$$

$$\mathbf{p}^{(k+1)} = \mathbf{p}^{(k)} + \mathbf{f}^{(k+1)}$$

Шаг d – последний, если $\mathbf{f}^{(d+1)} = 0$

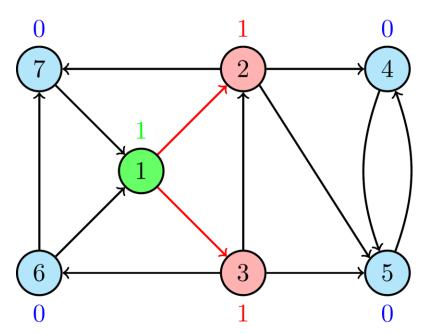
Обратный ход:

$$\mathbf{b}^{(d)} = \mathbf{1}_n = (1,1,...,1)^T$$
 $\mathbf{w}^{(k)} = \mathbf{f}^{(k)} \odot (\mathbf{b}^{(k)}./\mathbf{p})$
 $\mathbf{b}^{(k-1)} = \mathbf{b}^{(k)} + (\mathbf{f}^{(k-1)} \odot \mathbf{A}\mathbf{w}^{(k)}) \cdot \mathbf{p}$
Выполнять, пока $k \ge 2$



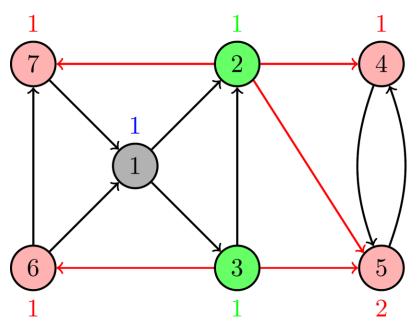
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{f}^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{p}^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \neg \mathbf{p}^{(0)} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$



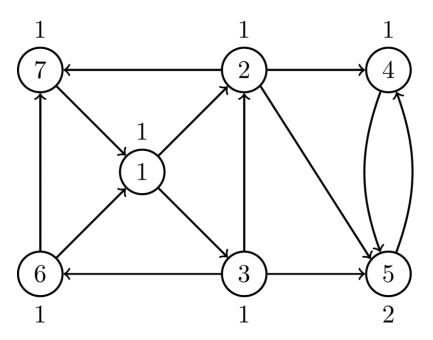
$$\mathbf{f}^{(1)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \odot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{p}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \neg \mathbf{p}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$



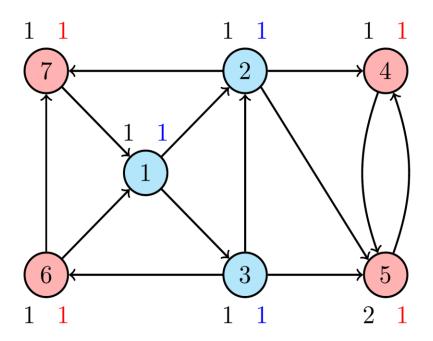
$$\mathbf{f}^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \odot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \mathbf{p}^{(2)} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \neg \mathbf{p}^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

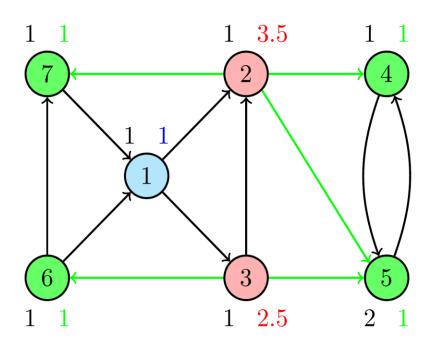


$$\mathbf{f}^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \end{pmatrix} \odot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} =$$

$$=egin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, прямой ход завершён



$$\mathbf{b}^{(2)} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{f}^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \mathbf{p} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$$

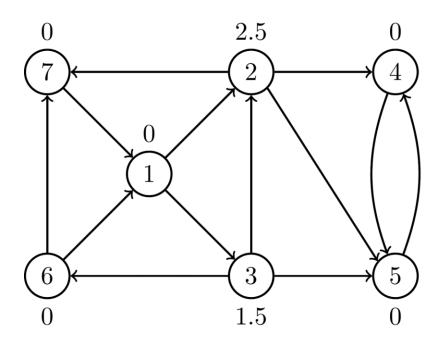


$$\mathbf{b}^{(2)} = \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}, \mathbf{f}^{(2)} = \begin{pmatrix} 0\\0\\0\\1\\2\\1 \end{pmatrix}, \mathbf{p} = \begin{pmatrix} 1\\1\\1\\2\\1\\1 \end{pmatrix}$$

$$\mathbf{w}^{(2)} = (\mathbf{b}^{(2)}./\mathbf{p}) \odot \mathbf{f}^{(2)}$$
= $(1 \quad 1 \quad 1 \quad 0.5 \quad 1 \quad 1)^T$
 $\odot (0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 1 \quad 1)^T$
= $(0 \quad 0 \quad 0 \quad 1 \quad 0.5 \quad 1 \quad 1)^T$

$$\mathbf{b}^{(1)} = \mathbf{b}^{(2)} + (\mathbf{A}\mathbf{w}^{(2)} \odot \mathbf{f}^{(1)}) \cdot \mathbf{p} =$$
= $(1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1)^{T}$
+ $(0 \quad 2.5 \quad 1.5 \quad 0 \quad 0 \quad 0 \quad 0)^{T} =$
= $(1 \quad 3.5 \quad 2.5 \quad 1 \quad 1 \quad 1 \quad 1)^{T}$

3.2. Матрично-векторный алгоритм Брандеса. Пример



$$\mathbf{b}^{(1)} = egin{pmatrix} 1 \\ 3.5 \\ 2.5 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, обратный ход завершён

Вектор зависимостей вершин от s = 1:

$$\mathbf{b} = \mathbf{b}^{(1)} - \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\3.5\\2.5\\1\\1\\1\\1 \end{pmatrix} - \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\2.5\\1.5\\0\\0\\0\\0 \end{pmatrix}$$

3.3. Переход к матричному алгоритму

- \square Приведённая матрично-векторная версия вычисляет зависимости от одной начальной вершины s
- □ Зависимости для различных начальных вершин не зависят друг от друга
- □ Поэтому можно выполнять операции сразу для нескольких начальных вершин достаточно заменить векторы матрицами, для этого выполним конкатенацию векторов по горизонтали:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Такой алгоритм называется *пакетным* (batched)

□ Появляется потенциал для эффективной реализации за счёт использования матричных операций

3.4. Параллельный матричный алгоритм

- □ В алгоритме Брандеса можно выделить два способа распараллеливания:
 - 1. Разным процессорам даются различные начальные вершины подходит для систем с распределённой памятью (MPI)
 - 2. Параллельная реализация матричных операций подходит для систем с общей памятью (OpenMP, TBB)
- □ Оба подхода независимы и могут использоваться одновременно
 - Можно распределять по узлам наборы вершин и запускать на каждом узле пакетный алгоритм с распараллеленными матричными операциями
- □ Количество вершин в одном наборе следует выбирать так, чтобы все матрицы помещались в оперативную память

3.5. Базовая реализация, псевдокод

```
s_i (j = \overline{1, k}) – набор начальных вершин F – текущий фронт поиска в ширину, P – матрица с числами
кратчайших путей, \mathbf{S}_i (i=1,2,...) – все фронты поиска в ширину, \mathbf{Pinv} – матрица с обратными числами
кратчайших путей, В – матрица зависимостей,
W – вспомогательная матрица; F, P, S_i - разреженные, Pinv, B, W – плотные
Прямой ход:
\mathbf{F} \coloneqq \mathbf{O}_{nm}, \mathbf{P} \coloneqq \mathbf{O}_{nm}, d \coloneqq 0
for i = 1, k:
       \mathbf{F}_{s_i s_i} \coloneqq 1
while \mathbf{F} \neq \mathbf{0}_{nm}: // \mathbf{0}_{nm} - нулевая матрица n \times m
       S_d := F
        P := SparseAdd(P, F) // P := P + F
        \mathbf{F} \coloneqq \mathsf{MaskedSparseGEMM}(\mathbf{A^T}, \mathbf{F}, \neg \mathbf{P}) / / \mathbf{F} \coloneqq \neg \mathbf{P} \odot (\mathbf{A^T} \mathbf{F})
        d \coloneqq d + 1
Обратный ход:
Pinv := 1_{nm} ./ P, B := 1_{nm} ... // 1_{nm} - матрица n \times m, заполненная единицами
for i = \overline{d - 1.2}:
        W := MaskedElementWiseMult(B, Pinv, S_i) // W := S_i \odot (B \cdot Pinv)
        \mathbf{W} := \text{MaskedSparseDenseMM}(\mathbf{A}, \mathbf{W}, \mathbf{S}_{i-1}) // \mathbf{W} := \mathbf{S}_{i-1} \odot \mathbf{AW}
        ElementWiseMultAdd(\mathbf{W}, \mathbf{P}, \mathbf{B}) // \mathbf{B} := \mathbf{B} + \mathbf{W} \cdot \mathbf{P}
```


3.5. Базовая реализация, недостатки

```
s_i (j = \overline{1, k}) – набор начальных вершин F – текущий фронт поиска в ширину, P – матрица с числами
кратчайших путей, \mathbf{S}_i (i=1,2,...) – все фронты поиска в ширину, \mathbf{Pinv} – матрица с обратными числами
кратчайших путей, В – матрица зависимостей,
W – вспомогательная матрица; F, P, S_i - разреженные, Pinv, B, W – плотные
Прямой ход:
\mathbf{F} \coloneqq \mathbf{O}_{nm}, \mathbf{P} \coloneqq \mathbf{O}_{nm}, d \coloneqq 0
for i = 1, k:
       \mathbf{F}_{s_i s_i} \coloneqq 1
while F \neq \mathbf{0}_{nm}:
       S_d := F
       P \coloneqq \text{SparseAdd}(P, F) \leftarrow \text{неэффективно, когда процент заполнения } P высокий
       \mathbf{F} := \text{MaskedSparseGEMM}(\mathbf{A}^{\mathsf{T}}, \mathbf{F}, \neg \mathbf{P})
       d \coloneqq d + 1
Обратный ход:
Pinv := \mathbf{1}_{nm} . / P, B := \mathbf{1}_{nm}
for i = d - 1.2:
       \mathbf{W} := \text{MaskedElementWiseMult}(\mathbf{B}, \mathbf{Pinv}, \mathbf{S}_i)
       \mathbf{W} := \text{MaskedSparseDenseMM}(\mathbf{A}, \mathbf{W}, \mathbf{S}_{i-1})
                                                                  } накладные расходы при работе с W
       ElementWiseMultAdd(W, P, B)
```

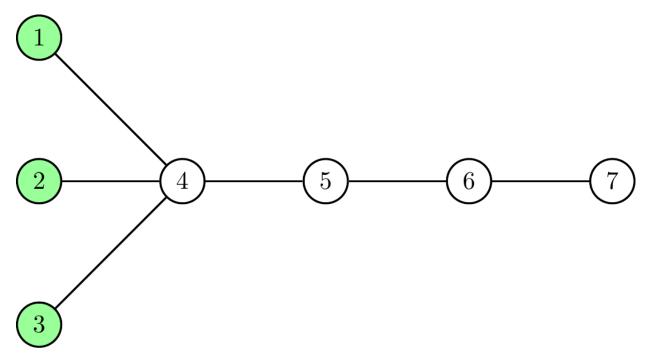

ОПТИМИЗАЦИЯ АЛГОРИТМА

4.1. Проблема 1

- \square В строке $\mathbf{P} \coloneqq \operatorname{SparseAdd}(\mathbf{P}, \mathbf{F})$ выполняется сложение разреженных матриц
- □ Разреженная матрица хранится в формате CRS (Compressed Row Sparse), поэтому сложение напоминает слияние отсортированных массивов
- □ Асимптотика $O(nz(\mathbf{P}) + nz(\mathbf{F}))$ времени и $O(nz(\mathbf{P}) + nz(\mathbf{F}))$ памяти необходимо выделять память под сумму матриц (nz(A) число ненулевых элементов матрицы A)
- □ В начале прямого хода **Р** пустая, в конце **Р** полностью заполняется
- □ Сложение выполняется в цикле и суммарно может занимать много времени, когда **P** оказывается заполнена достаточно плотно в течение многих итераций

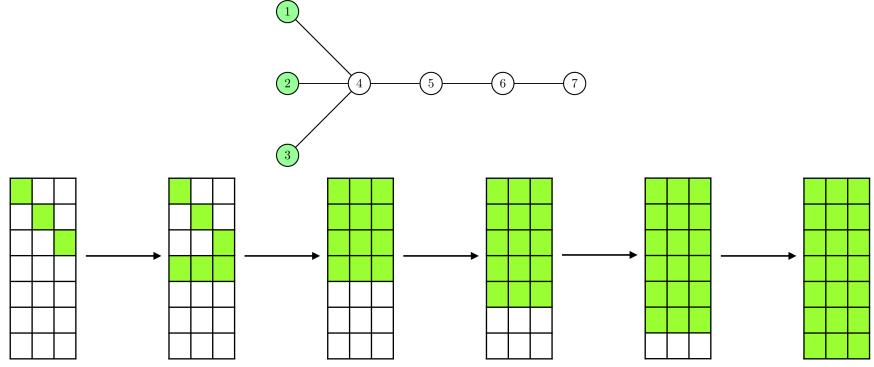
4.2. Проблема 1. Пример

□ Рассмотрим граф и проследим, как меняется заполнение Р со временем:



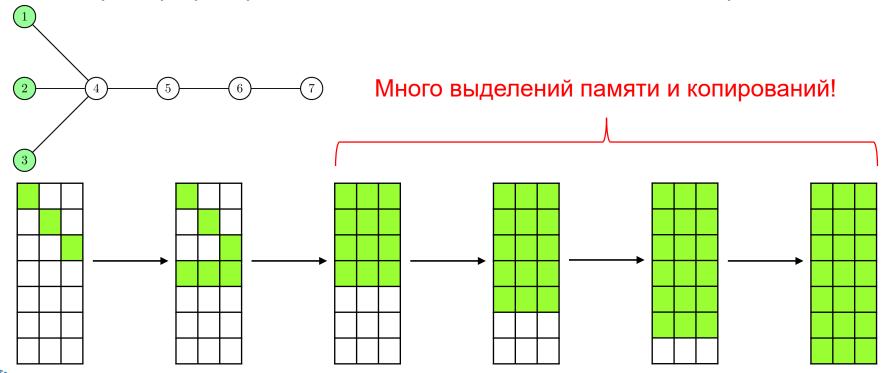
4.2. Проблема 1. Пример

□ Рассмотрим граф и проследим, как меняется заполнение **P** со временем:



4.2. Проблема 1. Пример

□ Рассмотрим граф и проследим, как меняется заполнение **P** со временем:



4.3. Проблема 1. Решение

- □ Оптимизация 1: сделаем матрицу Р плотной
 - Суммарное время выполнения $\mathbf{P} \coloneqq \operatorname{SparseAdd}(\mathbf{P}, \mathbf{F})$ за весь прямой ход будет составлять O(nk), k число начальных вершин, потому что каждый элемент \mathbf{P} обновляется не более одного раза
 - Память будет выделяться лишь один раз перед прямым ходом
- \square Заметим, что **P** является маской в **F** \coloneqq MaskedSparseGEMM($\mathbf{A^T}$, \mathbf{F} , $\neg \mathbf{P}$)
 - Использование плотной маски вместо разреженной может замедлить умножение, поскольку нужно просмотреть больше элементов
 - В случае инвертированной маски выводы неочевидны, поскольку и в разреженном случае может потребоваться просмотреть все элементы матрицы
 - Эксперименты показывают, что оптимизация не ухудшает время работы прямого хода

4.4. Проблема 2

□ В обратном ходе отдельные матричные операции влекут накладные расходы

```
MaskedElementWiseMult(A,B,M):
    DenseMatrix C:
    // заполняем С нулями
    // для всех (i,j), входящих в M: C[i][j] = A[i][j] * B[i][j]
    return C;
MaskedSparseDenseMM(A,B,M):
    DenseMatrix C:
    for (int row = 0; row < n; ++row) {</pre>
        // заполняем строку С нулями
        // считаем строку маскированного произведения А*В
        // записываем в строку С
    return C;
ElementWiseMultAdd(A,B,C):
    // for (i = 0..n-1) for (j = 0..k-1)
    // C[i][i] += A[i][i] * B[i][j]
```


4.4. Проблема 2

□ В обратном ходе отдельные матричные операции влекут накладные расходы

```
MaskedElementWiseMult(A,B,M):
    DenseMatrix C:
    // заполняем С нулями ← каждый раз заполняется плотная матрица
    // для всех (i,j), входящих в M: C[i][j] = A[i][j] * B[i][j]
    return C;
MaskedSparseDenseMM(A,B,M):
    DenseMatrix C:
    for (int row = 0; row < n; ++row) {</pre>
        // заполняем строку С нулями
                                                                 нулями заполняется вся плотная
        // считаем строку маскированного произведения А*В
                                                                 матрица, а в итоге ненулевых
        // записываем в строку С
                                                                 элементов достаточно мало
    return C;
ElementWiseMultAdd(A,B,C):
    // for (i = 0..n-1) for (j = 0..k-1)
                                             цикл по всем элементам, а ненулевых
    // C[i][j] += A[i][j] * B[i][j]
                                             элементов в А достаточно мало
```


4.5. Проблема 2. Решение

- □ В базовой версии матричные операции реализованы как отдельные функции в отрыве от контекста их использования. Реализация корректная, но накладные расходы из-за необходимости обрабатывать матрицы целиком оказываются значительны
- □ *Оптимизация 2:* объединим матричные операции обратного хода в одну функцию и учтём разреженность результата на некоторых стадиях
- □ Оптимизация исключает накладные расходы и позволяет использовать данные более локально
- □ Для единообразия также объединим матричные операции прямого хода в отдельную функцию

4.5. Проблема 2. Решение

□ Псевдокод реализации прямого и обратного ходов:

```
ForwardStep(AT,P,F):
// прибавляем разреженную матрицу F к плотной матрице P
// считаем произведение AT*F с инвертированной маской P
```

```
BackwardStep(A,P,Pinv,Front,Next,B):

// для всех (row, col), входящих в Front:

// Front[row][col] = B[row][col] * Pinv[row][col]

for (int row = 0; row < n; ++row) {

// считаем строку prod произведения A*Front с маской Next

// для всех col, входящих в prod:

// B[row][col] += prod[col] * P[row][col]

}
```


4.6. Оптимизированный алгоритм. Псевдокод

```
s_i \ (j=1,k) – набор начальных вершин F – текущий фронт поиска в ширину, P –
матрица с числами кратчайших путей, S_i (i = 1, 2, ...) – все фронты поиска в ширину,
Pinv – матрица с обратными числами кратчайших путей, В – матрица зависимостей;
\mathbf{F}, \mathbf{S}_i - разреженные, \mathbf{P}, \mathbf{Pinv}, \mathbf{B} - \mathbf{плотныe}
Прямой ход:
\mathbf{F} \coloneqq \mathbf{O}_{nm}, \mathbf{P} \coloneqq \mathbf{O}_{nm}, d \coloneqq 0
for i = 1, k:
        \mathbf{F}_{S_iS_i}\coloneqq 1
while \mathbf{F} \neq \mathbf{0}_{nm}:
         S_d := F
         ForwardStep(A^T, P, F) // P := P + F; F := (\neg P) \odot (A^T F)
         d \coloneqq d + 1
Обратный ход:
 Pinv := 1_{nm} / P, B := 1_{nm}
for i = d - 1.2:
         BackwardStep(\mathbf{A}, \mathbf{P}, \mathbf{Pinv}, \mathbf{S}_i, \mathbf{S}_{i-1}, \mathbf{B}) // \begin{cases} \mathbf{S}_i \coloneqq \mathbf{S}_i \odot (\mathbf{B} \cdot \mathbf{Pinv}) \\ \mathbf{B} \coloneqq \mathbf{B} + (\mathbf{S}_{i-1} \odot \mathbf{AS}_i) \cdot \mathbf{P} \end{cases}
```


РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

5.1. Методика проведения экспериментов

□Параметры тестового окружения (узел кластера Лобачевский):

Процессор	Два 8-ядерных процессора Intel Xeon CPU E5-2660 2.2
	GHz
Память	64 GB
Операционная система	Linux CentOS 6.4
Компилятор	Intel C++ Compiler 2023

□Проводилось сравнение базовой и оптимизированной реализаций алгоритма Брандеса с эталонной реализацией от PASSIONLab (https://github.com/PASSIONLab/MaskedSpGEMM)

5.1. Методика проведения экспериментов

- □Тестовые матрицы
 - Матрицы общего вида из коллекции SuiteSparse

Граф	Вершин	Рёбер
human_gene1	22283	24647360
bmwcra_1	148770	10641602
af_shell2	504855	17084020
packing- 500x100x100-b050	2145852	34976486
Freescale1	3428755	17052626

 Матрицы, полученные генератором R-MAT, и графы Кронекера из SuiteSparse

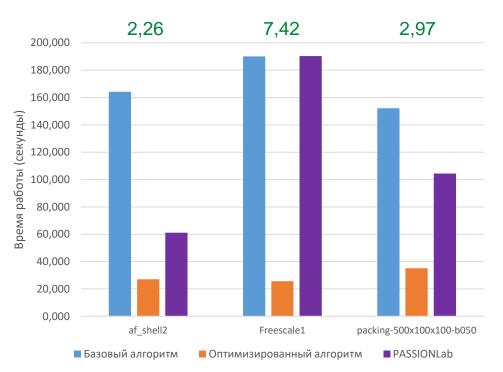
Граф	Вершин	Рёбер
rmat18	262144	5284330
rmat19	524288	10783504
rmat20	1048576	20537868
kron_g500-logn18	262144	21165372
kron_g500-logn19	524288	43561574
kron_g500-logn20	1048576	89238804

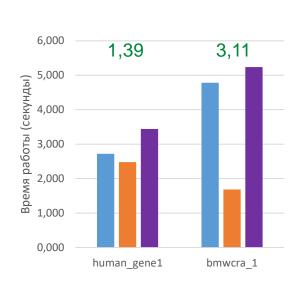
5.1. Методика проведения экспериментов

- □Количество стартовых вершин в наборе составляло 128 или 256□Сравниваемые характеристики:
 - Время работы всего алгоритма (с указанием, во сколько раз оптимизированная реализация быстрее эталонной реализации)
 - Ускорение многопоточной версии относительно однопоточной версии
 - Время работы прямого и обратного ходов

5.2. Время работы на 16 потоках

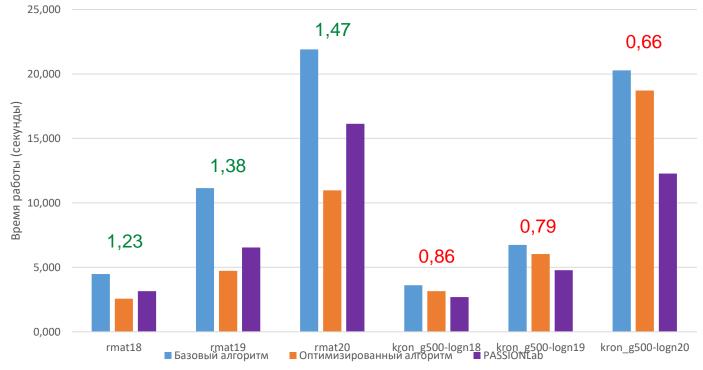
□Матрицы общего вида:





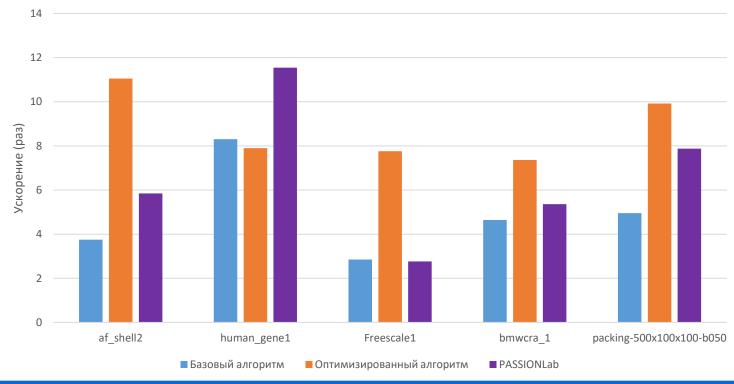
5.2. Время работы на 16 потоках

□ R-MAT и графы Кронекера:



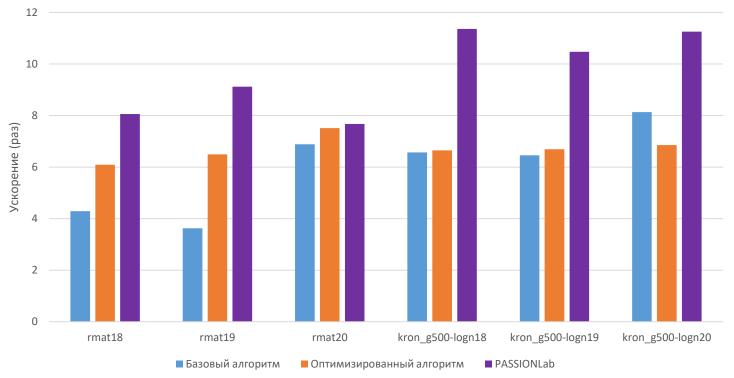
5. Результаты экспериментов5.3. Ускорение на 16 потоках

□Матрицы общего вида:



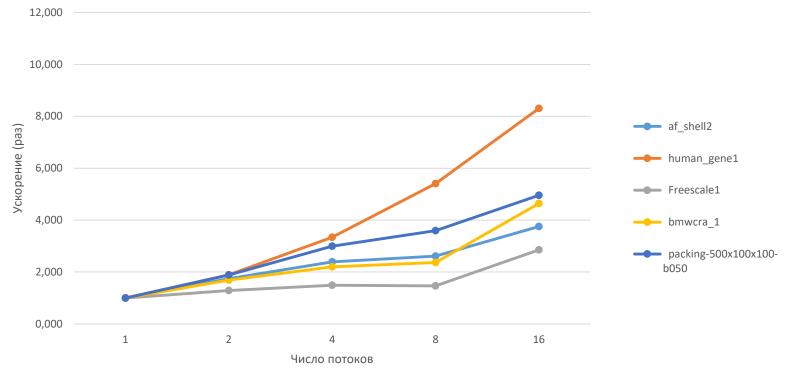
5. Результаты экспериментов 5.3. Ускорение на 16 потоках

□ R-MAT и графы Кронекера:



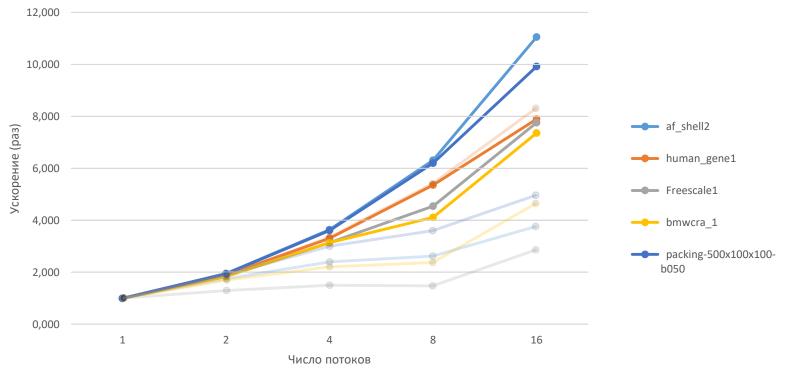
5.3. Ускорение в зависимости от числа потоков

□Матрицы общего вида, базовая версия:



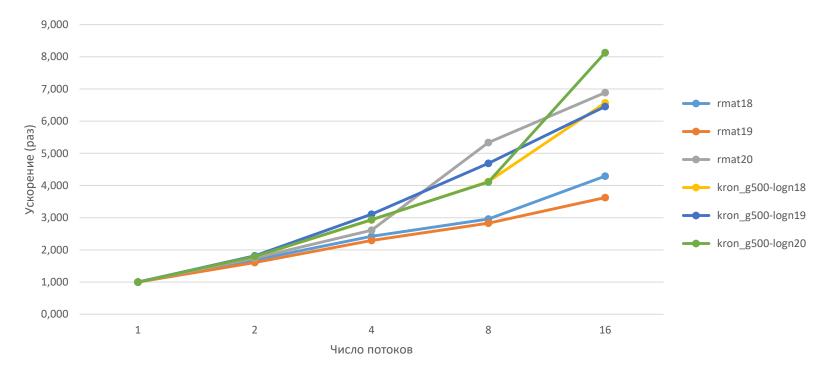
5.3. Ускорение в зависимости от числа потоков

□Матрицы общего вида, оптимизированная версия против базовой:



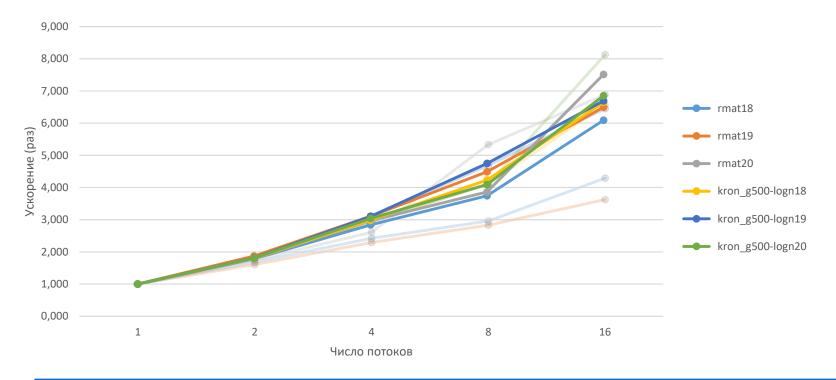
5.3. Ускорение в зависимости от числа потоков

□ R-MAT и графы Кронекера, базовая версия:



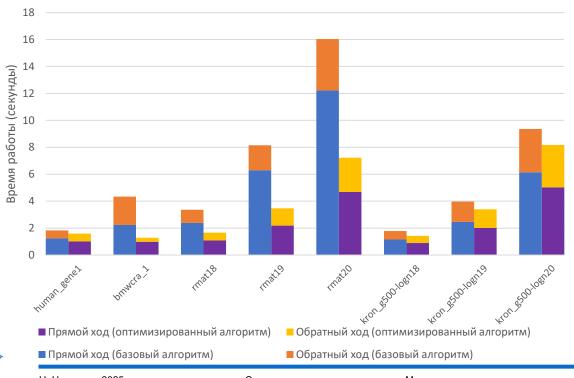
5.3. Ускорение в зависимости от числа потоков

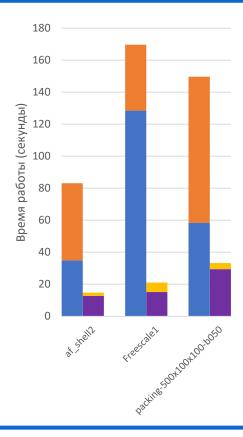
□ R-MAT и графы Кронекера, оптимизированная версия против базовой:



5.4. Прямой и обратный ходы

□Время работы на 16 потоках:





ЗАКЛЮЧЕНИЕ

6. Заключение

- □ GraphBLAS является перспективной технологией для масштабируемых высокопроизводительных вычислений с графами и разреженными матрицами
- □На примере алгоритма Брандеса вычисления степени посредничества вершин можно увидеть проблемы, возникающие в реализации алгоритмов на графах, и способы оптимизации вычислений
- □Оптимизации, направленные на более эффективное использование данных, позволили существенно сократить время работы алгоритма и улучшить масштабируемость на многих тестовых графах

Литература

- 1. Kepner J. et al. Graphs, matrices, and the GraphBLAS: Seven good reasons. Procedia Computer Science, 2015. T. 51.
- 2. Buluç A. et al. Design of the GraphBLAS API for C. IPDPSW, 2017.
- Kepner, Jeremy, and John Gilbert, eds. Graph algorithms in the language of linear algebra. – SIAM, 2011.
- 4. Brandes, Ulrik. A faster algorithm for betweenness centrality. Journal of mathematical sociology 25.2, 2001.

Контакты

Нижегородский государственный университет

http://www.unn.ru

Институт информационных технологий, математики и механики http://www.itmm.unn.ru

Кафедра высокопроизводительных вычислений и системного программирования

