
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer software and supercomputer technologies

Educational course

«Introduction to deep learning

using the Intel® neon™ Framework»

Recurrent neural networks

Valentina Kustikova,
Phd, lecturer, department of Computer software

and supercomputer technologies

Supported by Intel

2

Content

 Recurrent neural networks

 Generalizing the concept of a computational graph. Deployment of

the computational graph. The Elman network

 Training the recurrent neural network

 Deep recurrent neural networks

 Neural networks of long short-term memory

– The problem statement

– General structure of a long short-term memory unit

 Gated recurrent unit

 Example of a recurrent neural network for predicting a person's sex

from a photo

Nizhny Novgorod, 2018 Recurrent neural networks

RECURRENT NEURAL NETWORKS

Nizhny Novgorod, 2018 Recurrent neural networks
3

4

Recurrent neural networks

 Recurrent neural networks (RNN) are networks with a feedback

or crosslinking between different layers of neurons

 Initially recurrent networks are proposed for processing data

sequences of the same type, i.e. the order of providing objects to

the network is important

 Typical examples:

– Natural language processing: processing a sound sequence,

processing natural language texts

– Computer vision: processing a sequence of video frames, some

problems of image processing

 A recurrent network approximates the behavior of any

dynamical system

Nizhny Novgorod, 2018 Recurrent neural networks
4

GENERALIZING THE CONCEPT OF

A COMPUTATIONAL GRAPH.

GRAPH DEPLOYMENT
Nizhny Novgorod, 2018 Recurrent neural networks

5

6

Generalizing the concept of a computational graph.

Deployment of the computational graph

 Introduction of recurrent neural networks requires generalizing the

concept of a computational graph, which was considered in the

course earlier

 The computational graph of recurrent neural networks can contain

loops that reflect the dependence of the variable value at the next

time from its current value

 The idea is to deploy recursive calculations into a

computational graph of a repetitive structure that usually reflects

the sequence of events

Nizhny Novgorod, 2018 Recurrent neural networks

7

Deployment of the computational graph. An example

of a classical dynamic system (1)

 A classical form of dynamic system:

ℎ 𝑡 = 𝑓 ℎ 𝑡−1 ; 𝜃 ,

where ℎ 𝑡 is a state of the system at the time 𝑡,
𝜃 is a set of parameters

 The system can be represented as a recurrent network

 The above equation is recurrent, since the state at each

subsequent time depends on the state at the previous moment

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

8

Deployment of the computational graph. An example

of a classical dynamic system (2)

 For a fixed time interval from 1 to 𝜏, this equation can be expressed

as follows:

ℎ 𝜏 = 𝑓 ℎ 𝜏−1 ; 𝜃 = 𝑓 𝑓 ℎ 𝜏−2 ; 𝜃 ; 𝜃 = ⋯ = 𝑓 𝑓 …𝑓 ℎ 1 ; 𝜃 ; 𝜃 ; 𝜃

 The final expression no longer contains a recurrence relation and

can be represented by an acyclic computation graph

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1ℎ …

9

Deployment of the computational graph. An example

of a system controlled by an external signal (1)

 Deployment of the computational graph. An example of a system

controlled by an external signal 𝑥 𝑡 :

ℎ 𝑡 = 𝑓 ℎ 𝑡−1 ; 𝑥 𝑡 ; 𝜃

 The corresponding recurrent network is as follows:

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

𝑥

10

Deployment of the computational graph. An example

of a system controlled by an external signal (2)

 In such a system, the current state contains information about the

entire previous sequence of the signals

 The computational graph deployed in time for a dynamic system

controlled by an external signal is as follows:

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1ℎ …

𝑥 𝑡+1𝑥 𝑡𝑥 𝑡−1

11

Deployment of the computational graph. Typical

patterns of recurrence dependencies (1)

 A recurrent network providing an output signal at each time, and

containing recurrent dependencies between the elements of the

hidden layer

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1ℎ …

𝑥 𝑡+1𝑥 𝑡𝑥 𝑡−1

 𝑦 𝑡+1 𝑦 𝑡 𝑦 𝑡−1

ℎ

𝑥

 𝑦

12

Deployment of the computational graph. Typical

patterns of recurrence dependencies (2)

 A recurrent network that provides an output signal at each time,

and has recurrent dependencies between the output element of the

current time and the hidden element of the next time

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1

 𝑦 …

𝑥 𝑡+1𝑥 𝑡𝑥 𝑡−1

 𝑦 𝑡+1 𝑦 𝑡 𝑦 𝑡−1

ℎ

𝑥

 𝑦

13

Deployment of the computational graph. Typical

patterns of recurrence dependencies (3)

 A recurrent network that has recurrent dependencies between

elements of the hidden layer that reads the input data sequence

and provides a single output signal

 The output element requires complete information about the past to

predict the future

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝜏ℎ …ℎ 𝑡ℎ 𝑡−1ℎ …

𝑥 …𝑥 𝑡𝑥 𝑡−1

 𝑦 𝜏

ℎ

𝑥

 𝑦

14

The Elman’s and Jordan’s networks

 A recurrent neural network with the dependence of hidden neurons

on itself is the simplest one and is called the Elman's network

– The first and third patterns represent the implementation of the

recurrent Elman’s network

– The scheme of network deployment in time is different

 A recurrent network containing recurrent dependencies between

the output of the current time and the hidden element of the next

time is called the Jordan's network

Nizhny Novgorod, 2018 Recurrent neural networks

TRAINING THE RECURRENT

NEURAL NETWORKS

Nizhny Novgorod, 2018 Recurrent neural networks
15

16

Equations for the Elman’s network

 The equations describing the internal state and the output of the

network, which is obtained after the Elman’s network deployment in

time, are as follows:

𝑎 𝑡 = 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏,

ℎ 𝑡 = 𝑓 𝑎 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 ,

𝑜 𝑡 = 𝑉ℎ 𝑡 + 𝑐, 𝑦 𝑡 = 𝑔 𝑜 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐 ,

where 𝑈,𝑊, 𝑉 are weight matrices,

𝑏, 𝑐 are shifts,

ℎ 𝑡 is a vector of hidden variables at the time 𝑡
(processing the training sample of the number 𝑡),

 𝑦 𝑡 is a network output at the time 𝑡,

𝑓 ∙ , 𝑔 ∙ are activation functions

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

𝑥

 𝑦

𝑈

𝑊𝑉

17

The training problem statement for the Elman’s

network

 The task of training Elman's network is to minimize the total error

for all examples of available training sequences:

𝐽 =
1

𝑁

𝑛=1

𝑁

𝑡=1

𝜏𝑛

𝑑 𝑦𝑛
𝑡
, 𝑦𝑛

𝑡
→ min

𝑈,𝑊,𝑉
,

where 𝑁 is a number of input training sequences,

𝜏𝑛 is a number of elements in the sequence with number 𝑛,

𝑦𝑛
𝑡

is an actual output (label) at the time 𝑡 considering the

sequence with number 𝑛,

 𝑦𝑛
𝑡

is a network output at the time 𝑡 when the sequence with

number 𝑛 is the input,

𝑑 𝑦𝑛
𝑡
, 𝑦𝑛

𝑡
– a measure of the similarity of label and network

output (Euclidean distance or cross-entropy)

Nizhny Novgorod, 2018 Recurrent neural networks

18

Backpropagation through time (1)

 A recurrent neural network can be deployed in time, thereby

presenting it as a feed-forward network

 To train network parameters, you can apply the backpropagation

through time method

Nizhny Novgorod, 2018 Recurrent neural networks

19

Backpropagation through time (2)

 Feed forward (from left to right over a network deployed in time)

– The hidden states and outputs of the deployed network are

calculated, as well as the gradients of the activation functions.

– The complexity of computations is proportional to the length of

the input sequence 𝑂 𝜏

– Parallelization of calculations can not be performed, because

each subsequent internal state of the system depends on the

previous one

 Calculating the value of the cost function and the derivatives

of this function

 Backward (from right to left along the network deployed in time).

The calculation of the error and updating of the network weights

Nizhny Novgorod, 2018 Recurrent neural networks

DEEP RECURRENT NEURAL

NETWORKS

Nizhny Novgorod, 2018 Recurrent neural networks
20

21

Transforms at a recurrent layer

 Calculations in most typical recurrent networks can be

decomposed into three blocks of parameters and their

corresponding transforms:

– Converting input to the hidden state

– Converting previous hidden state

to the next hidden state

– Converting hidden state to output

 Depending on how complex (deep) the transforms are, there are

several types of recurrent networks

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

𝑥

 𝑦

𝑈

𝑊𝑉

22

Types of recurrent neural networks (1)

 A conventional recurrent neural network

ℎ 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 , 𝑦 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

𝑥 𝑡

 𝑦 𝑡

ℎ 𝑡−1

23

Types of recurrent neural networks (2)

 Deep transition recurrent neural network (DT-RNN)

ℎ 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏

= 𝜑𝐿 𝑈𝐿
𝑇𝜑𝐿−1 𝑈𝐿−1

𝑇 𝜑𝐿−2 …𝜑1 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 ,

where 𝐿 is a number of network layers

between input and hidden layers

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

ℎ 𝑡−1

𝑥 𝑡

 𝑦 𝑡

24

Types of recurrent neural networks (3)

 Deep output recurrent neural network (DO-RNN)

 𝑦 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐 = 𝜓𝐿 𝑉𝐿
𝑇𝜓𝐿−1 𝑉𝐿−1

𝑇 𝜓𝐿−2 …𝜓1 𝑉ℎ 𝑡 + 𝑐 ,

where 𝐿 is a number of network layers between a hidden and

output layers

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

𝑥 𝑡

 𝑦 𝑡

25

Stack of recurrent layers

 Constructing a stack of ordinary recurrent networks is another way

to construct deep recursive networks

ℎ𝑙
𝑡

= 𝑓𝑙 𝑊𝑙
𝑇ℎ𝑙

𝑡−1
+ 𝑈𝑙

𝑇ℎ𝑙−1
𝑡

,

where ℎ𝑙
𝑡

is a hidden state of the system

at the layer 𝑙 at the time 𝑡

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ1
𝑡

ℎ1
𝑡−1

𝑥 𝑡

 𝑦 𝑡

ℎ2
𝑡

ℎ2
𝑡−1

NEURAL NETWORKS OF LONG

SHORT-TERM MEMORY

Nizhny Novgorod, 2018 Recurrent neural networks
26

27

The problem statement

 Until now, recurrent neural networks have been trained through

their deployment over time and applying a modified

backpropagation algorithm

 If there are enough long input sequences, the network

“forgets” the information about samples during the training

 In some cases, it is necessary for the network to “remember”

information about samples at the start of the sequence

Nizhny Novgorod, 2018 Recurrent neural networks

28

The problem statement. Examples of computer

vision problems (1)

 Human action recognition

– The task is to determine what type of movement the person is

making on the video sequence (sitting, standing, walking,

running, jumping, etc.)

– For different types of movements, the initial actions can be

identical, therefore for decision-making it is necessary to know

the full sequence of actions

* Recognition of human actions. Action database

[http://www.nada.kth.se/cvap/actions].

Nizhny Novgorod, 2018 Recurrent neural networks

http://www.nada.kth.se/cvap/actions

29

The problem statement. Examples of computer

vision problems (2)

 Semantic segmentation of videos

– The goal is to determine the class of the object to which each

pixel of the scene belongs

– A video is a set of related frames

– During semantic segmentation of the current frame, you can use

the information obtained during the segmentation of previous

frames

Nizhny Novgorod, 2018 Recurrent neural networks

30

The problem statement. Examples of computer

vision problems (3)

 Image captioning

– This task is at the junction of computer vision and natural

language processing

– The goal of the task is to construct

a coherent sentence describing

the contents of the image

– At each stage of the description construction,

an attempt is made to reconstruct the next

word in the sentence based on the context

of the image

* Mao J., Xu W., Yang Y., Wang J., Huang Z., Yuille A.L. Deep Captioning with Multimodal Recurrent

Neural Networks (m-RNN) // ICLR. – 2015. – [https://arxiv.org/pdf/1412.6632.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/pdf/1412.6632.pdf

31

The idea of a long short-term memory unit (1)

 The general structure of a long short-term memory unit (LSTM)

assumes the presence of neurons having a connection on

themselves

 The data is input to the neuron and the processed data is output

 The recurrent connection with its input has a weight equal to 1

 If there is no new input data, the value of the neuron is overwritten

and remains unchanged

Nizhny Novgorod, 2018 Recurrent neural networks

32

The idea of a long short-term memory unit (2)

 Three gates are used to control this structure, which determine the

passage of the signal: the input gate, the forget gate and the

output gate

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

𝑥

 𝑦

Input gate

Forget gate

Output gate

33

The idea of a long short-term memory unit (3)

 If the input gate is open (set to 1), the input signal is written to the

hidden neuron, the value is recorded and stored in the neuron due

to the recurrent feedback

 If the input valve is closed (set to 0), the values ​​entering the

neuron input do not affect its content

 If you want to get the value stored in the cell, you need to open the

output gate (set to 1)

 If the value contained in the cell is required to be “forgotten”, it is

necessary to close the forget gate. Further, the value will be erased

from the neuron, and the neuron will be ready to store the new

input value

Nizhny Novgorod, 2018 Recurrent neural networks

34

The scheme of a long short-term memory unit

 𝑐 is the memory cell, 𝑐 is the new memory cell content

 𝑡ℎ is the activation function hyperbolic tangent

* Chung J., Gulcehre C., Cho K.H., Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling. – 2014. – [https://arxiv.org/pdf/1412.3555.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks

𝑐𝑥 𝑦

Input gate

Forget gate

Output gate

+ 𝑐 + 𝑡ℎ

https://arxiv.org/pdf/1412.3555.pdf

35

Long short-term memory network (1)

 Let us consider the implementation of long short-term memory

network (LSTM)

 LSTMs have their own repeating unit, deployed in time

* Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. – 1997. – P.1735-1780. –

[http://www.bioinf.jku.at/publications/older/2604.pdf].

** Greff K., Srivastava R.K., Koutnık J., Steunebrink B.R., Schmidhuber J. LSTM: A Search Space Odyssey //

Transactions on Neural Networks and Learning Systems. – 2017. – [https://arxiv.org/pdf/1503.04069.pdf].

*** Understanding LSTM Networks [http://colah.github.io/posts/2015-08-Understanding-LSTMs].

Nizhny Novgorod, 2018 Recurrent neural networks

http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1503.04069.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs

36

Long short-term memory network (2)

 The main component of the LSTM-unit is its state 𝐶𝑡, which is

transmitted in time

 A unit is capable of adding or removing information from a state,

carefully regulated by structures called gates

 A gate is a way of conveying information. It consists of a sigmoidal

layer and an operation of element-wise multiplication

Nizhny Novgorod, 2018 Recurrent neural networks

37

Long short-term memory network (3)

 Step 1: make a decision which elements from the state must be

“forgotten”

– To go through the forget gate layer. The forget gate layer is the

sigmoid layer of the network

– Determine the weights with which the state elements are

skipped

– A value of 0 means that the element is not skipped, 1 – the

element is skipped completely

Nizhny Novgorod, 2018 Recurrent neural networks

38

Long short-term memory network (4)

 Step 2: determine which new information should be stored in the

unit state

– The sigmoidal layer is the input gate layer. It decides which

values to update

– A layer with an activation function corresponding to a hyperbolic

tangent constructs a vector of new candidates that are added to

the current state

Nizhny Novgorod, 2018 Recurrent neural networks

39

Long short-term memory network (5)

 Step 3: update unit status

– It is necessary to remove information from the state vector for

which it was decided that it can be “forgotten” and add new

information

Nizhny Novgorod, 2018 Recurrent neural networks

40

Long short-term memory network (6)

 Step 4: make a decision what to use as the output

– The output is based on the unit state and represents its filtered

version

– Make a decision which parts of the state must be removed by

introducing a sigmoidal layer

– Next, the unit state elements are normalized to the interval

[−1, 1] using the hyperbolic tangent function and multiplied by

the output of the sigmoidal layer

Nizhny Novgorod, 2018 Recurrent neural networks

41

Note

 The above implementation of the LSTM-unit is not the only possible

one, there are many modifications

* Understanding LSTM Networks [http://colah.github.io/posts/2015-08-Understanding-LSTMs].

Nizhny Novgorod, 2018 Recurrent neural networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs

GATED RECURRENT UNIT

Nizhny Novgorod, 2018 Recurrent neural networks

43

Gated recurrent unit (1)

 An alternative to a long short-term memory unit is the gated

recurrent unit (GRU)

 The scheme of gated recurrent Unit (GRU) construction:

 ℎ is an activation, ℎ is an activation candidate
* Chung J., Gulcehre C., Cho K.H., Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling. – 2014. – [https://arxiv.org/pdf/1412.3555.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ𝑥 𝑦

Reset gate

Update gate

 ℎ

https://arxiv.org/pdf/1412.3555.pdf

44

Gated recurrent unit (2)

 Gated recurrent unit contains one gate less than long short-term

memory unit

 The update gate determines the amount of information received

from the previous state

 The reset gate works by analogy with the forget gate in long short-

term memory unit

Nizhny Novgorod, 2018 Recurrent neural networks

45

Gated recurrent unit. Implementation

Nizhny Novgorod, 2018 Recurrent neural networks

 ℎ𝑡−1, ℎ𝑡 are hidden neuron states, 𝑥𝑡 is an input

 𝑟𝑡 implements reset gate, 𝑧𝑡 implements update gate

* Visualization of RNN units. Diagram of RNN unrolling, LSTM and GRU

[https://kvitajakub.github.io/2016/04/14/rnn-diagrams].

https://kvitajakub.github.io/2016/04/14/rnn-diagrams

EXAMPLE OF A RECURRENT NEURAL

NETWORK FOR PREDICTING

A PERSON'S SEX FROM A PHOTO
Nizhny Novgorod, 2018 Recurrent neural networks

46

47

Example of the recurrent neural network

 Let us continue considering the problem of predicting a person’s

sex from a photo

 This example demonstrates the use of recurrent networks for non-

classical input data, which explicitly does not represent a sequence

of elements of the same type

 The structure of the recurrent block being developed is described

in the following paper:

– Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M.,

Courville A. ReSeg: A Recurrent Neural Network-based Model for Semantic

Segmentation // In CVPR Deep Vision Workshop, 2016. – 2016. –

[https://arxiv.org/abs/1511.07053]

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/abs/1511.07053

48

Max pooling: 3×3, 2

Recurrent neural network (1)

Nizhny Novgorod, 2018 Recurrent neural networks

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Convolutional layer

32: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Batch normalization

Reduction of the image scale

by 2 times as a result of pooling

49

Recurrent neural network (2)

Nizhny Novgorod, 2018 Recurrent neural networks

Max pooling: 3×3, 2

Convolutional layer

64: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Reduction of the image scale

by 4 times as a result of pooling

50

Recurrent neural network (3)

Nizhny Novgorod, 2018 Recurrent neural networks

Max pooling: 3×3, 2

Convolutional layer

128: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Reduction of the image scale

by 8 times as a result of pooling

51

Recurrent neural network (4)

Nizhny Novgorod, 2018 Recurrent neural networks

Convolutional layer

256: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

The shape of the feature map at

the input of the convolutional layer

and at the output one differs only in

the third dimension

52

Recurrent neural network (5)

Nizhny Novgorod, 2018 Recurrent neural networks

Recurrent layer

256,
ℎ𝑒𝑖𝑔ℎ𝑡

8
,
𝑤𝑖𝑑𝑡ℎ

8
, 256, 2,2 , BiRNN

Recurrent layer

512,
ℎ𝑒𝑖𝑔ℎ𝑡

16
,
𝑤𝑖𝑑𝑡ℎ

16
, 512, 2,2 , BiRNN

Batch normalization Two recurrent blocks
Activation function: hyperbolic tangent

Batch normalization
Activation function: hyperbolic tangent

53

Recurrent neural network (6)

Nizhny Novgorod, 2018 Recurrent neural networks

Average pooling: all, 1

Convolutional layer

2: 1 × 1, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Activation function

Softmax

Classifier

54

The structure of recurrent block (1)

 Let 𝐻 × 𝑊 × 𝐶 is a shape of feature map which is an input of the

recurrent block, 𝐻 is a height, 𝑊 is a width, 𝐶 is a number of

channels

 We divide the feature map into 𝐼 × 𝐽 blocks, each block contains

vectors consisting of 𝐶 elements

 We denote each block as 𝑝𝑖𝑗 ∈ ℝ𝐻𝑝×𝑊𝑝×𝐶

* Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M., Courville A.

ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation // In CVPR Deep

Vision Workshop, 2016. – 2016. – [https://arxiv.org/abs/1511.07053].

Nizhny Novgorod, 2018 Recurrent neural networks

𝑊 = 6, 𝐽 = 2

https://arxiv.org/abs/1511.07053

55

The structure of recurrent block (2)

 We implement two bidirectional recurrent networks by columns and

rows of block matrices constructed on feature maps:

– The first bidirectional network consists of two recurrent layers:

• The first layer corresponds to traversing the blocks from the top to the

bottom

• The second layer corresponds to traversing the blocks from the bottom to

the top

– The second bidirectional network consists of two recurrent

layers too:

• The first layer corresponds to block traversing from the left to the right

• The second layer corresponds to the blockade from the right to the left

Nizhny Novgorod, 2018 Recurrent neural networks

56

The structure of recurrent block (3)

 The scheme of the element dependence for the first bidirectional

network is as follows:

 The feature map elements are calculating according to the

equations:

𝑜𝑖,𝑗
↓ = 𝑓↓ 𝑧𝑖−1,𝑗

↓ , 𝑝𝑖𝑗 , 𝑖 = 1,… , 𝐼

𝑜𝑖,𝑗
↑ = 𝑓↑ 𝑧𝑖+1,𝑗

↑ , 𝑝𝑖𝑗 , 𝑖 = 𝐼, … , 1

Nizhny Novgorod, 2018 Recurrent neural networks

𝑊 = 6, 𝐽 = 2 𝑊 = 6, 𝐽 = 2

57

The structure of recurrent block (4)

 The feature map at the output of the first recurrent layer is

constructed by concatenating feature vectors counted by traversing

the blocks from the top to the bottom and from the bottom to the

top

𝑂↕ = 𝑜𝑖,𝑗
↓ , 𝑜𝑖,𝑗

↑

𝑖,𝑗
= 𝑜𝑖𝑗

↕ , 𝑜𝑖𝑗
↕ ∈ ℝ2𝑈 ,

where 𝑈 is a number of elements recurrent layer elements

 The second bidirectional network receives the feature map 𝑂↕, this

network is constructed in the same way, but horizontal

dependencies are established between the blocks

* Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M., Courville A.

ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation // In CVPR Deep

Vision Workshop, 2016. – 2016. – [https://arxiv.org/abs/1511.07053].

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/abs/1511.07053

58

Example of a recurrent neural network for predicting

a person's sex from a photo (1)

Nizhny Novgorod, 2018 Recurrent neural networks

def generate_rnn1_cls_model(input_shape=(3, 128, 128)):

iC = input_shape[0]

iH = input_shape[1]

iW = input_shape[2]

class_count = 2

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

convolutional encoder / feature extractor

resolution 1

BatchNorm(),

Conv(fshape=(3, 3, 32), padding=2, strides=1,

dilation=2, init=Kaiming(), bias=Constant(0),

activation=Rectlin()),

...

59

Example of a recurrent neural network for predicting

a person's sex from a photo (2)

Nizhny Novgorod, 2018 Recurrent neural networks

BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

resolution 1/2

Conv(fshape=(3, 3, 64), padding=2, strides=1,

dilation=2, init=Kaiming(), bias=Constant(0),

activation=Rectlin()),

BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

resolution 1/4

Conv(fshape=(3, 3, 128), padding=2, strides=1,

dilation=2, init=Kaiming(), bias=Constant(0),

activation=Rectlin()),

60

Example of a recurrent neural network for predicting

a person's sex from a photo (3)

Nizhny Novgorod, 2018 Recurrent neural networks

BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

resolution 1/8

Conv(fshape=(3, 3, 256), padding=2, strides=1,

dilation=2, init=Kaiming(), bias=Constant(0),

activation=Rectlin()),

BatchNorm(),

implemented recurrent block

SpatialRNN(input_shape=(256, iH // 8, iW // 8),

block_shape=(256, 2, 2), RNN=BiRNN,

RNN_params={'output_size': 256,

'init': GlorotUniform(), 'activation': Tanh()}

), # outputs: (2 * 256, iH // 16, iW // 16, N)

resolution 1/16

61

Example of a recurrent neural network for predicting

a person's sex from a photo (4)

Nizhny Novgorod, 2018 Recurrent neural networks

BatchNorm(),

SpatialRNN(input_shape=(512, iH // 16, iW // 16),

block_shape=(512, 2, 2), RNN=BiRNN,

RNN_params={'output_size': 512,

'init': GlorotUniform(), 'activation': Tanh()}

), # outputs: (2 * 512, iH // 32, iW // 32, N)

resolution 1/32

BatchNorm(),

Conv(fshape=(1, 1, class_count), padding=1, strides=1,

dilation=1, init=Kaiming(), bias=Constant(0),

activation=Rectlin()),

Pooling(fshape='all', padding=0, strides=1, op='avg'),

Activation(Softmax())]

62

Example of a recurrent neural network for predicting

a person's sex from a photo (5)

Nizhny Novgorod, 2018 Recurrent neural networks

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyMulti())

return (model, cost)

63

Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)

Nizhny Novgorod, 2018 Recurrent neural networks

64

Experiments

Nizhny Novgorod, 2018 Recurrent neural networks

Network id Training

parameters

Accuracy, % Training time, s

RNN batch_size = 128

epoch_count = 90

backend = gpu

GradientDescentMomen

tum(0.01,

momentum_coef=0.9,

wdecay=0.0005)

81.9 29571

65

Summary results

Nizhny Novgorod, 2018 Recurrent neural networks

Network id Accuracy, % Training time, s

FCNN-1 71.2 932

FCNN-2 73.5 977

FCNN-3 77.7 1013

CNN-1 79.3 1582

CNN-2 83.5 2030

ResNet-18 (90 epochs) 81.3 15127

ResNet-50 (30 epochs) 80.9 11849

TL-1 85.6 119975

TL-2 85.3 119989

TL-3 86.3 39282

RNN 81.9 29571

66

Conclusion

 The complexity of constructing recurrent networks is quite high,

especially in problems where there are no explicit sequences of

input data

 The main application field of recurrent networks is natural language

processing

 At present, recurrent networks are more often involved for solving

problems of analysis and image processing

– Shi B., et al. An End-to-End Trainable Neural Network for Image-based

Sequence Recognition and Its Application to Scene Text Recognition. – 2015.

– [https://arxiv.org/abs/1507.05717]

– Visin F., et al. ReSeg: A Recurrent Neural Network-based Model for Semantic

Segmentation // In CVPR Deep Vision Workshop, 2016. – 2016. –

[https://arxiv.org/abs/1511.07053]

– Cheang T.K., el al. Segmentation-free Vehicle License Plate Recognition using

ConvNet-RNN. – 2017. – [https://arxiv.org/abs/1701.06439]

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1511.07053
https://arxiv.org/abs/1701.06439

67

Literature

 Haykin S. Neural Networks: A Comprehensive Foundation. –

Prentice Hall PTR Upper Saddle River, NJ, USA. – 1998.

 Osovsky S. Neural networks for information processing. – 2002.

 Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press.

– 2016. – [http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Recurrent neural networks

http://www.deeplearningbook.org/

68

Authors

 Kustikova Valentina Dmitrievna

Phd, lecturer, department of Computer software and

supercomputer technologies, Institute of Information Technologies,

Mathematics and Mechanics, Nizhny Novgorod State University

valentina.kustikova@itmm.unn.ru

 Zhiltsov Maxim Sergeevich

master of the 1st year training, Institute of Information Technology,

Mathematics and Mechanics, Nizhny Novgorod State University

zhiltsov.max35@gmail.com

 Zolotykh Nikolai Yurievich

D.Sc., Prof., department of Algebra, geometry and discrete

mathematics, Institute of Information Technologies, Mathematics

and Mechanics, Nizhny Novgorod State University

nikolai.zolotykh@itmm.unn.ru

Nizhny Novgorod, 2018 Recurrent neural networks

mailto:valentina.kustikova@itmm.unn.ru
mailto:zhiltsov.max35@gmail.com
mailto:nikolai.zolotykh@gmail.com
mailto:valentina.kustikova@itmm.unn.ru

