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Recurrent neural networks

 Recurrent neural networks (RNN) are networks with a feedback 

or crosslinking between different layers of neurons

 Initially recurrent networks are proposed for processing data 

sequences of the same type, i.e. the order of providing objects to 

the network is important

 Typical examples:

– Natural language processing: processing a sound sequence, 

processing natural language texts

– Computer vision: processing a sequence of video frames, some 

problems of image processing

 A recurrent network approximates the behavior of any 

dynamical system

Nizhny Novgorod, 2018 Recurrent neural networks
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Generalizing the concept of a computational graph. 

Deployment of the computational graph

 Introduction of recurrent neural networks requires generalizing the 

concept of a computational graph, which was considered in the 

course earlier

 The computational graph of recurrent neural networks can contain 

loops that reflect the dependence of the variable value at the next 

time from its current value

 The idea is to deploy recursive calculations into a 

computational graph of a repetitive structure that usually reflects 

the sequence of events

Nizhny Novgorod, 2018 Recurrent neural networks
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Deployment of the computational graph. An example 

of a classical dynamic system (1)

 A classical form of dynamic system:

ℎ 𝑡 = 𝑓 ℎ 𝑡−1 ; 𝜃 ,

where ℎ 𝑡 is a state of the system at the time 𝑡, 
𝜃 is a set of parameters

 The system can be represented as a recurrent network

 The above equation is recurrent, since the state at each 

subsequent time depends on the state at the previous moment

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ
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Deployment of the computational graph. An example 

of a classical dynamic system (2)

 For a fixed time interval from 1 to 𝜏, this equation can be expressed 

as follows:

ℎ 𝜏 = 𝑓 ℎ 𝜏−1 ; 𝜃 = 𝑓 𝑓 ℎ 𝜏−2 ; 𝜃 ; 𝜃 = ⋯ = 𝑓 𝑓 …𝑓 ℎ 1 ; 𝜃 ; 𝜃 ; 𝜃

 The final expression no longer contains a recurrence relation and 

can be represented by an acyclic computation graph

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1ℎ …
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Deployment of the computational graph. An example 

of a system controlled by an external signal (1)

 Deployment of the computational graph. An example of a system 

controlled by an external signal 𝑥 𝑡 :

ℎ 𝑡 = 𝑓 ℎ 𝑡−1 ; 𝑥 𝑡 ; 𝜃

 The corresponding recurrent network is as  follows:

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ

𝑥
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Deployment of the computational graph. An example 

of a system controlled by an external signal (2)

 In such a system, the current state contains information about the 

entire previous sequence of the signals

 The computational graph deployed in time for a dynamic system 

controlled by an external signal is as follows:

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1ℎ …
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Deployment of the computational graph. Typical 

patterns of recurrence dependencies (1)

 A recurrent network providing an output signal at each time, and 

containing recurrent dependencies between the elements of the 

hidden layer

Nizhny Novgorod, 2018 Recurrent neural networks
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Deployment of the computational graph. Typical 

patterns of recurrence dependencies (2)

 A recurrent network that provides an output signal at each time, 

and has recurrent dependencies between the output element of the 

current time and the hidden element of the next time

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ …ℎ 𝑡+1ℎ 𝑡ℎ 𝑡−1

 𝑦 …
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Deployment of the computational graph. Typical 

patterns of recurrence dependencies (3)

 A recurrent network that has recurrent dependencies between 

elements of the hidden layer that reads the input data sequence 

and provides a single output signal

 The output element requires complete information about the past to 

predict the future

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝜏ℎ …ℎ 𝑡ℎ 𝑡−1ℎ …

𝑥 …𝑥 𝑡𝑥 𝑡−1

 𝑦 𝜏
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𝑥
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The Elman’s and Jordan’s networks

 A recurrent neural network with the dependence of hidden neurons 

on itself is the simplest one and is called the Elman's network 

– The first and third patterns represent the implementation of the 

recurrent Elman’s network

– The scheme of network deployment in time is different

 A recurrent network containing recurrent dependencies between 

the output of the current time and the hidden element of the next 

time is called the Jordan's network

Nizhny Novgorod, 2018 Recurrent neural networks
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Equations for the Elman’s network

 The equations describing the internal state and the output of the 

network, which is obtained after the Elman’s network deployment in 

time, are as follows:

𝑎 𝑡 = 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏,

ℎ 𝑡 = 𝑓 𝑎 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 ,

𝑜 𝑡 = 𝑉ℎ 𝑡 + 𝑐,  𝑦 𝑡 = 𝑔 𝑜 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐 ,

where 𝑈,𝑊, 𝑉 are weight matrices,

𝑏, 𝑐 are shifts,

ℎ 𝑡 is a vector of hidden variables at the time 𝑡
(processing the training sample of the number 𝑡),

 𝑦 𝑡 is a network output at the time 𝑡,

𝑓 ∙ , 𝑔 ∙ are activation functions

Nizhny Novgorod, 2018 Recurrent neural networks
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The training problem statement for the Elman’s 

network

 The task of training Elman's network is to minimize the total error 

for all examples of available training sequences:

𝐽 =
1

𝑁
 

𝑛=1

𝑁

 

𝑡=1

𝜏𝑛

𝑑  𝑦𝑛
𝑡
, 𝑦𝑛

𝑡
→ min

𝑈,𝑊,𝑉
,

where 𝑁 is a number of input training sequences, 

𝜏𝑛 is a number of elements in the sequence with number 𝑛, 

𝑦𝑛
𝑡

is an actual output (label) at the time 𝑡 considering the 

sequence with number 𝑛, 

 𝑦𝑛
𝑡

is a network output at the time 𝑡 when the sequence with 

number 𝑛 is the input, 

𝑑  𝑦𝑛
𝑡
, 𝑦𝑛

𝑡
– a measure of the similarity of label and network 

output (Euclidean distance or cross-entropy)

Nizhny Novgorod, 2018 Recurrent neural networks
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Backpropagation through time (1)

 A recurrent neural network can be deployed in time, thereby 

presenting it as a feed-forward network

 To train network parameters, you can apply the backpropagation 

through time method

Nizhny Novgorod, 2018 Recurrent neural networks
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Backpropagation through time (2)

 Feed forward (from left to right over a network deployed in time)

– The hidden states and outputs of the deployed network are 

calculated, as well as the gradients of the activation functions.

– The complexity of computations is proportional to the length of 

the input sequence 𝑂 𝜏

– Parallelization of calculations can not be performed, because 

each subsequent internal state of the system depends on the 

previous one

 Calculating the value of the cost function and the derivatives 

of this function

 Backward (from right to left along the network deployed in time). 

The calculation of the error and updating of the network weights

Nizhny Novgorod, 2018 Recurrent neural networks
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Transforms at a recurrent layer

 Calculations in most typical recurrent networks can be 

decomposed into three blocks of parameters and their 

corresponding transforms:

– Converting input to the hidden state

– Converting previous hidden state

to the next hidden state

– Converting hidden state to output

 Depending on how complex (deep) the transforms are, there are 

several types of recurrent networks

Nizhny Novgorod, 2018 Recurrent neural networks
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Types of recurrent neural networks (1)

 A conventional recurrent neural network

ℎ 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 ,  𝑦 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

𝑥 𝑡

 𝑦 𝑡

ℎ 𝑡−1
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Types of recurrent neural networks (2)

 Deep transition recurrent neural network (DT-RNN)

ℎ 𝑡 = 𝑓 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏

= 𝜑𝐿 𝑈𝐿
𝑇𝜑𝐿−1 𝑈𝐿−1

𝑇 𝜑𝐿−2 …𝜑1 𝑈𝑥 𝑡 + 𝑊ℎ 𝑡−1 + 𝑏 ,

where 𝐿 is a number of network layers 

between input and hidden layers

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

ℎ 𝑡−1

𝑥 𝑡

 𝑦 𝑡
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Types of recurrent neural networks (3)

 Deep output recurrent neural network (DO-RNN)

 𝑦 𝑡 = 𝑔 𝑉ℎ 𝑡 + 𝑐 = 𝜓𝐿 𝑉𝐿
𝑇𝜓𝐿−1 𝑉𝐿−1

𝑇 𝜓𝐿−2 …𝜓1 𝑉ℎ 𝑡 + 𝑐 ,

where 𝐿 is a number of network layers between a hidden and 

output layers

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ 𝑡

𝑥 𝑡

 𝑦 𝑡
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Stack of recurrent layers

 Constructing a stack of ordinary recurrent networks is another way 

to construct deep recursive networks

ℎ𝑙
𝑡

= 𝑓𝑙 𝑊𝑙
𝑇ℎ𝑙

𝑡−1
+ 𝑈𝑙

𝑇ℎ𝑙−1
𝑡

,

where ℎ𝑙
𝑡

is a hidden state of the system 

at the layer 𝑙 at the time 𝑡

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ1
𝑡

ℎ1
𝑡−1

𝑥 𝑡

 𝑦 𝑡

ℎ2
𝑡

ℎ2
𝑡−1
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The problem statement

 Until now, recurrent neural networks have been trained through 

their deployment over time and applying a modified 

backpropagation algorithm

 If there are enough long input sequences, the network 

“forgets” the information about samples during the training

 In some cases, it is necessary for the network to “remember” 

information about samples at the start of the sequence

Nizhny Novgorod, 2018 Recurrent neural networks
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The problem statement. Examples of computer 

vision problems (1)

 Human action recognition

– The task is to determine what type of movement the person is 

making on the video sequence (sitting, standing, walking, 

running, jumping, etc.)

– For different types of movements, the initial actions can be 

identical, therefore for decision-making it is necessary to know 

the full sequence of actions

* Recognition of human actions. Action database 

[http://www.nada.kth.se/cvap/actions].

Nizhny Novgorod, 2018 Recurrent neural networks
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The problem statement. Examples of computer 

vision problems (2)

 Semantic segmentation of videos

– The goal is to determine the class of the object to which each 

pixel of the scene belongs

– A video is a set of related frames

– During semantic segmentation of the current frame, you can use 

the information obtained during the segmentation of previous 

frames

Nizhny Novgorod, 2018 Recurrent neural networks
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The problem statement. Examples of computer 

vision problems (3)

 Image captioning

– This task is at the junction of computer vision and natural 

language processing

– The goal of the task is to construct 

a coherent sentence describing 

the contents of the image

– At each stage of the description construction,

an attempt is made to reconstruct the next

word in the sentence based on the context

of the image

* Mao J., Xu W., Yang Y., Wang J., Huang Z., Yuille A.L. Deep Captioning with Multimodal Recurrent 

Neural Networks (m-RNN) // ICLR. – 2015. – [https://arxiv.org/pdf/1412.6632.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks
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The idea of a long short-term memory unit (1)

 The general structure of a long short-term memory unit (LSTM) 

assumes the presence of neurons having a connection on 

themselves

 The data is input to the neuron and the processed data is output

 The recurrent connection with its input has a weight equal to 1

 If there is no new input data, the value of the neuron is overwritten 

and remains unchanged

Nizhny Novgorod, 2018 Recurrent neural networks
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The idea of a long short-term memory unit (2)

 Three gates are used to control this structure, which determine the 

passage of the signal: the input gate, the forget gate and the 

output gate

Nizhny Novgorod, 2018 Recurrent neural networks
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The idea of a long short-term memory unit (3)

 If the input gate is open (set to 1), the input signal is written to the 

hidden neuron, the value is recorded and stored in the neuron due 

to the recurrent feedback

 If the input valve is closed (set to 0), the values ​​entering the 

neuron input do not affect its content

 If you want to get the value stored in the cell, you need to open the 

output gate (set to 1)

 If the value contained in the cell is required to be “forgotten”, it is 

necessary to close the forget gate. Further, the value will be erased 

from the neuron, and the neuron will be ready to store the new 

input value

Nizhny Novgorod, 2018 Recurrent neural networks
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The scheme of a long short-term memory unit

 𝑐 is the memory cell,  𝑐 is the new memory cell content

 𝑡ℎ is the activation function hyperbolic tangent

* Chung J., Gulcehre C., Cho K.H., Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on 

Sequence Modeling. – 2014. – [https://arxiv.org/pdf/1412.3555.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks

𝑐𝑥  𝑦

Input gate

Forget gate

Output gate

+  𝑐 + 𝑡ℎ

https://arxiv.org/pdf/1412.3555.pdf
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Long short-term memory network (1)

 Let us consider the implementation of long short-term memory 

network (LSTM)

 LSTMs have their own repeating unit, deployed in time

* Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. – 1997. – P.1735-1780. –

[http://www.bioinf.jku.at/publications/older/2604.pdf].

** Greff K., Srivastava R.K., Koutnık J., Steunebrink B.R., Schmidhuber J. LSTM: A Search Space Odyssey // 

Transactions on Neural Networks and Learning Systems. – 2017. – [https://arxiv.org/pdf/1503.04069.pdf].

*** Understanding LSTM Networks [http://colah.github.io/posts/2015-08-Understanding-LSTMs].

Nizhny Novgorod, 2018 Recurrent neural networks

http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1503.04069.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Long short-term memory network (2)

 The main component of the LSTM-unit is its state 𝐶𝑡, which is 

transmitted in time

 A unit is capable of adding or removing information from a state, 

carefully regulated by structures called gates

 A gate is a way of conveying information. It consists of a sigmoidal 

layer and an operation of element-wise multiplication

Nizhny Novgorod, 2018 Recurrent neural networks
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Long short-term memory network (3)

 Step 1: make a decision which elements from the state must be 

“forgotten”

– To go through the forget gate layer. The forget gate layer is the 

sigmoid layer of the network

– Determine the weights with which the state elements are 

skipped

– A value of 0 means that the element is not skipped, 1 – the 

element is skipped completely

Nizhny Novgorod, 2018 Recurrent neural networks
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Long short-term memory network (4)

 Step 2: determine which new information should be stored in the 

unit state

– The sigmoidal layer is the input gate layer. It decides which 

values to update

– A layer with an activation function corresponding to a hyperbolic 

tangent constructs a vector of new candidates that are added to 

the current state

Nizhny Novgorod, 2018 Recurrent neural networks
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Long short-term memory network (5)

 Step 3: update unit status

– It is necessary to remove information from the state vector for 

which it was decided that it can be “forgotten” and add new 

information

Nizhny Novgorod, 2018 Recurrent neural networks
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Long short-term memory network (6)

 Step 4: make a decision what to use as the output

– The output is based on the unit state and represents its filtered 

version

– Make a decision which parts of the state must be removed by 

introducing a sigmoidal layer

– Next, the unit state elements are normalized to the interval 

[−1, 1] using the hyperbolic tangent function and multiplied by 

the output of the sigmoidal layer

Nizhny Novgorod, 2018 Recurrent neural networks
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Note

 The above implementation of the LSTM-unit is not the only possible 

one, there are many modifications

* Understanding LSTM Networks [http://colah.github.io/posts/2015-08-Understanding-LSTMs].

Nizhny Novgorod, 2018 Recurrent neural networks
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Gated recurrent unit (1)

 An alternative to a long short-term memory unit is the gated 

recurrent unit (GRU)

 The scheme of gated recurrent Unit (GRU) construction:

 ℎ is an activation,  ℎ is an activation candidate
* Chung J., Gulcehre C., Cho K.H., Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on 

Sequence Modeling. – 2014. – [https://arxiv.org/pdf/1412.3555.pdf].

Nizhny Novgorod, 2018 Recurrent neural networks

ℎ𝑥  𝑦

Reset gate

Update gate

 ℎ

https://arxiv.org/pdf/1412.3555.pdf
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Gated recurrent unit (2)

 Gated recurrent unit contains one gate less than long short-term 

memory unit

 The update gate determines the amount of information received 

from the previous state

 The reset gate works by analogy with the forget gate in long short-

term memory unit

Nizhny Novgorod, 2018 Recurrent neural networks
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Gated recurrent unit. Implementation

Nizhny Novgorod, 2018 Recurrent neural networks

 ℎ𝑡−1, ℎ𝑡 are hidden neuron states, 𝑥𝑡 is an input

 𝑟𝑡 implements reset gate, 𝑧𝑡 implements update gate

* Visualization of RNN units. Diagram of RNN unrolling, LSTM and GRU 

[https://kvitajakub.github.io/2016/04/14/rnn-diagrams].

https://kvitajakub.github.io/2016/04/14/rnn-diagrams
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Example of the recurrent neural network

 Let us continue considering the problem of predicting a person’s 

sex from a photo

 This example demonstrates the use of recurrent networks for non-

classical input data, which explicitly does not represent a sequence 

of elements of the same type

 The structure of the recurrent block being developed is described 

in the following paper:

– Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M., 

Courville A. ReSeg: A Recurrent Neural Network-based Model for Semantic 

Segmentation // In CVPR Deep Vision Workshop, 2016. – 2016. –

[https://arxiv.org/abs/1511.07053]

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/abs/1511.07053
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Max pooling: 3×3, 2

Recurrent neural network (1)

Nizhny Novgorod, 2018 Recurrent neural networks

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Convolutional layer

32: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Batch normalization

Reduction of the image scale 

by 2 times as a result of pooling
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Recurrent neural network (2)

Nizhny Novgorod, 2018 Recurrent neural networks

Max pooling: 3×3, 2

Convolutional layer

64: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Reduction of the image scale 

by 4 times as a result of pooling
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Recurrent neural network (3)

Nizhny Novgorod, 2018 Recurrent neural networks

Max pooling: 3×3, 2

Convolutional layer

128: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Reduction of the image scale 

by 8 times as a result of pooling
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Recurrent neural network (4)

Nizhny Novgorod, 2018 Recurrent neural networks

Convolutional layer

256: 3 × 3, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

The shape of the feature map at 

the input of the convolutional layer 

and at the output one differs only in 

the third dimension
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Recurrent neural network (5)

Nizhny Novgorod, 2018 Recurrent neural networks

Recurrent layer

256,
ℎ𝑒𝑖𝑔ℎ𝑡

8
,
𝑤𝑖𝑑𝑡ℎ

8
, 256, 2,2 , BiRNN

Recurrent layer

512,
ℎ𝑒𝑖𝑔ℎ𝑡

16
,
𝑤𝑖𝑑𝑡ℎ

16
, 512, 2,2 , BiRNN

Batch normalization Two recurrent blocks
Activation function: hyperbolic tangent

Batch normalization
Activation function: hyperbolic tangent
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Recurrent neural network (6)

Nizhny Novgorod, 2018 Recurrent neural networks

Average pooling: all, 1

Convolutional layer

2: 1 × 1, 1

Activation function

Rectified linear unit (Rectlin)

Batch normalization

Activation function

Softmax

Classifier
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The structure of recurrent block (1)

 Let 𝐻 × 𝑊 × 𝐶 is a shape of feature map which is an input of the 

recurrent block, 𝐻 is a height, 𝑊 is a width, 𝐶 is a number of 

channels

 We divide the feature map into 𝐼 × 𝐽 blocks, each block contains 

vectors consisting of 𝐶 elements

 We denote each block as 𝑝𝑖𝑗 ∈ ℝ𝐻𝑝×𝑊𝑝×𝐶

* Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M., Courville A.

ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation // In CVPR Deep 

Vision Workshop, 2016. – 2016. – [https://arxiv.org/abs/1511.07053].

Nizhny Novgorod, 2018 Recurrent neural networks

𝑊 = 6, 𝐽 = 2

https://arxiv.org/abs/1511.07053
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The structure of recurrent block (2)

 We implement two bidirectional recurrent networks by columns and 

rows of block matrices constructed on feature maps:

– The first bidirectional network consists of two recurrent layers:

• The first layer corresponds to traversing the blocks from the top to the 

bottom

• The second layer corresponds to traversing the blocks from the bottom to 

the top

– The second bidirectional network consists of two recurrent 

layers too:

• The first layer corresponds to block traversing from the left to the right

• The second layer corresponds to the blockade from the right to the left
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The structure of recurrent block (3)

 The scheme of the element dependence for the first bidirectional 

network is as follows:

 The feature map elements are calculating according to the 

equations:

𝑜𝑖,𝑗
↓ = 𝑓↓ 𝑧𝑖−1,𝑗

↓ , 𝑝𝑖𝑗 , 𝑖 = 1,… , 𝐼

𝑜𝑖,𝑗
↑ = 𝑓↑ 𝑧𝑖+1,𝑗

↑ , 𝑝𝑖𝑗 , 𝑖 = 𝐼, … , 1

Nizhny Novgorod, 2018 Recurrent neural networks
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The structure of recurrent block (4)

 The feature map at the output of the first recurrent layer is 

constructed by concatenating feature vectors counted by traversing 

the blocks from the top to the bottom and from the bottom to the 

top

𝑂↕ = 𝑜𝑖,𝑗
↓ , 𝑜𝑖,𝑗

↑

𝑖,𝑗
= 𝑜𝑖𝑗

↕ , 𝑜𝑖𝑗
↕ ∈ ℝ2𝑈 ,

where 𝑈 is a number of elements recurrent layer elements

 The second bidirectional network receives the feature map 𝑂↕, this 

network is constructed in the same way, but horizontal 

dependencies are established between the blocks

* Visin F., Ciccone M., Romero A., Kastner K., Cho K., Bengio Y., Matteucci M., Courville A. 

ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation // In CVPR Deep 

Vision Workshop, 2016. – 2016. – [https://arxiv.org/abs/1511.07053].
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Example of a recurrent neural network for predicting 

a person's sex from a photo (1)

Nizhny Novgorod, 2018 Recurrent neural networks

def generate_rnn1_cls_model(input_shape=(3, 128, 128)):

iC = input_shape[0]

iH = input_shape[1]

iW = input_shape[2]

class_count = 2

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

# convolutional encoder / feature extractor

# resolution 1

BatchNorm(),

Conv(fshape=(3, 3, 32), padding=2, strides=1, 

dilation=2, init=Kaiming(), bias=Constant(0), 

activation=Rectlin()),

...
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Example of a recurrent neural network for predicting 

a person's sex from a photo (2)
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BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

# resolution 1/2

Conv(fshape=(3, 3, 64), padding=2, strides=1, 

dilation=2, init=Kaiming(), bias=Constant(0), 

activation=Rectlin()),

BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

# resolution 1/4

Conv(fshape=(3, 3, 128), padding=2, strides=1, 

dilation=2, init=Kaiming(), bias=Constant(0), 

activation=Rectlin()),
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Example of a recurrent neural network for predicting 

a person's sex from a photo (3)
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BatchNorm(),

Pooling(fshape=(3, 3), padding=1,strides=2, op='max'),

# resolution 1/8

Conv(fshape=(3, 3, 256), padding=2, strides=1, 

dilation=2, init=Kaiming(), bias=Constant(0), 

activation=Rectlin()),

BatchNorm(),

# implemented recurrent block

SpatialRNN(input_shape=(256, iH // 8, iW // 8), 

block_shape=(256, 2, 2), RNN=BiRNN, 

RNN_params={'output_size': 256, 

'init': GlorotUniform(), 'activation': Tanh()}

), # outputs: (2 * 256, iH // 16, iW // 16, N)

# # resolution 1/16
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Example of a recurrent neural network for predicting 

a person's sex from a photo (4)
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BatchNorm(),

SpatialRNN(input_shape=(512, iH // 16, iW // 16), 

block_shape=(512, 2, 2), RNN=BiRNN, 

RNN_params={'output_size': 512, 

'init': GlorotUniform(), 'activation': Tanh()}

), # outputs: (2 * 512, iH // 32, iW // 32, N)

# # resolution 1/32

BatchNorm(),

Conv(fshape=(1, 1, class_count), padding=1, strides=1, 

dilation=1, init=Kaiming(), bias=Constant(0), 

activation=Rectlin()),

Pooling(fshape='all', padding=0, strides=1, op='avg'),

Activation(Softmax())    ]
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Example of a recurrent neural network for predicting 

a person's sex from a photo (5)
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model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyMulti())

return (model, cost)
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Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)

Nizhny Novgorod, 2018 Recurrent neural networks



64

Experiments
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Network id Training 

parameters

Accuracy, % Training time, s

RNN batch_size = 128 

epoch_count = 90

backend = gpu

GradientDescentMomen

tum(0.01, 

momentum_coef=0.9, 

wdecay=0.0005) 

81.9 29571
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Summary results
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Network id Accuracy, % Training time, s

FCNN-1 71.2 932

FCNN-2 73.5 977

FCNN-3 77.7 1013

CNN-1 79.3 1582

CNN-2 83.5 2030

ResNet-18 (90 epochs) 81.3 15127

ResNet-50 (30 epochs) 80.9 11849

TL-1 85.6 119975

TL-2 85.3 119989

TL-3 86.3 39282

RNN 81.9 29571
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Conclusion

 The complexity of constructing recurrent networks is quite high, 

especially in problems where there are no explicit sequences of 

input data

 The main application field of recurrent networks is natural language 

processing

 At present, recurrent networks are more often involved for solving 

problems of analysis and image processing

– Shi B., et al. An End-to-End Trainable Neural Network for Image-based 

Sequence Recognition and Its Application to Scene Text Recognition. – 2015. 

– [https://arxiv.org/abs/1507.05717]

– Visin F., et al. ReSeg: A Recurrent Neural Network-based Model for Semantic 

Segmentation // In CVPR Deep Vision Workshop, 2016. – 2016. –

[https://arxiv.org/abs/1511.07053]

– Cheang T.K., el al. Segmentation-free Vehicle License Plate Recognition using 

ConvNet-RNN. – 2017. – [https://arxiv.org/abs/1701.06439]

Nizhny Novgorod, 2018 Recurrent neural networks

https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1511.07053
https://arxiv.org/abs/1701.06439


67

Literature

 Haykin S. Neural Networks: A Comprehensive Foundation. –

Prentice Hall PTR Upper Saddle River, NJ, USA. – 1998.

 Osovsky S. Neural networks for information processing. – 2002.

 Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. 

– 2016. – [http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Recurrent neural networks

http://www.deeplearningbook.org/


68

Authors

 Kustikova Valentina Dmitrievna

Phd, lecturer, department of Computer software and 

supercomputer technologies, Institute of Information Technologies, 

Mathematics and Mechanics, Nizhny Novgorod State University

valentina.kustikova@itmm.unn.ru

 Zhiltsov Maxim Sergeevich

master of the 1st year training, Institute of Information Technology, 

Mathematics and Mechanics, Nizhny Novgorod State University

zhiltsov.max35@gmail.com

 Zolotykh Nikolai Yurievich

D.Sc., Prof., department of Algebra, geometry and discrete 

mathematics, Institute of Information Technologies, Mathematics 

and Mechanics, Nizhny Novgorod State University

nikolai.zolotykh@itmm.unn.ru

Nizhny Novgorod, 2018 Recurrent neural networks

mailto:valentina.kustikova@itmm.unn.ru
mailto:zhiltsov.max35@gmail.com
mailto:nikolai.zolotykh@gmail.com
mailto:valentina.kustikova@itmm.unn.ru

