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THE PROBLEM STATEMENT
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The problem

 The dataset ImageNET: 14 197 122

 The dataset PASCAL Visual Object Challenge 2012 (semantic 

segmentation): ~10 000

 The dataset IMDB-WIKI: 460 723 + 62 328

 …

 How to reduce the amount of labeled data for constructing 

efficient deep neural network models?

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

http://image-net.org/
http://host.robots.ox.ac.uk/pascal/VOC
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki
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The solution

 Pre-train the network weights

– Construct a “good” initial approximation of the parameters for 

further training the network using the labeled training dataset

– Do not use labeled data during pre-training

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Autoencoder (1)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

ℎ = 𝑓 𝑥𝑥 ∈ 𝑅𝑛 𝑦 = 𝑔 ℎ
Encoder Decoder



8

Autoencoder (2)

 Autoencoder is a neural network that attempts to approximate the 

output signal to the input one, i.e. to find the best approximation of 

the identity transform

 The network is divided into two principal parts:

– Encoder ℎ = 𝑓(𝑥) to compress input data representation

– Decoder 𝑦 = 𝑔 ℎ to restore input data based on the 

compressed representation

 Autoencoder can be considered as a feed-forward network, so for 

training it is possible to use the backpropagation algorithm, based 

on the gradient optimization methods

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Simple autoencoder

 The simplest autoencoder consists of two fully-connected layers

 The layers are described by the transforms as follows:

ℎ = 𝑓 𝑥 = 𝑠𝑓 𝑊ℎ ∙ 𝑥 + 𝑏ℎ , 𝑦 = 𝑔 ℎ = 𝑠𝑔 𝑊𝑦 ∙ ℎ + 𝑏𝑦 ,

where 𝑠𝑓(∙) is an activation function (sigmoid, hyperbolic tangent, 

ReLU)

 Training the autoencoder is a problem of minimizing the functional

𝐽 𝜃 with respect to the set of parameters 𝜃 = 𝑊ℎ,𝑊𝑦 , 𝑏ℎ, 𝑏𝑦 : 

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 → min
𝜃

 Cost function 𝐿 𝑥, 𝑔 𝑓 𝑥 is a square function or multinomial 

cross-entropy

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Autoencoders and principal component analysis (1)

 If 𝐿 𝑥, 𝑔 𝑓 𝑥 is square function then the minimized functional is 

as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝑥 − 𝑔 𝑓 𝑥
2

 If 𝑓 and 𝑔 are linear functions then the functional is as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝑥 − 𝑉𝑊𝑥 2 ,

where𝑊 is a matrix of direct transform (corresponds to the 

encoder), 𝑉 is a matrix of inverse transform (corresponds to the 

decoder)

 The optimal solution of the minimization problem corresponds to 

the solution of linear PCA problem (the projection of the input data 

onto a lower-dimensional subspace)
Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Autoencoders and principal component analysis (2)

 If 𝑓 and 𝑔 are non-linear functions then the optimal solution of the 

minimization problem corresponds to the solution of non-linear 

PCA problem

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Regularized autoencoders

 The regularization parameters are introduced – the penalty function

 Square penalty for the hidden layer parameters:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆 

𝑖,𝑗

𝑤𝑖𝑗
2 → min

𝜃
, 𝑊 = 𝑤𝑖𝑗

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Sparse autoencoders (1)

 Sparse autoencoders is a kind of regularized autoencoders

 In the simplest case, the sparsity penalty is a 𝐿1-norm of the signal 

on the hidden layer, and the minimized functional is as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆 

𝑖

ℎ𝑖 → min
𝜃

 In general case, the functional is calculated as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + Ω 𝑓 𝑥 → min
𝜃

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Sparse autoencoders (2)

 Let us consider a sparse autoencoder as an approximation of a 

generative model with latent variables, in which the maximum 

likelihood method can be used to train parameters

 Suppose that there is a model in which 𝑥 is a set of the visible 

variables (the input signal), ℎ is a set of the hidden variables

 Autoencoder cost function:

𝐿 𝑥, 𝑔 𝑓 𝑥 = − log 𝑝 𝑥 ℎ

 Then the likelihood function for the generative model is represented 

as follows:

log 𝑝 𝑥 = log 

ℎ

𝑝 ℎ, 𝑥

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Sparse autoencoders (3)

 The autoencoder approximates this sum by a point estimate 𝑝 ℎ, 𝑥
for only the most probable ℎ

 Therefore, for each chosen ℎ, the logarithm of the joint distribution 

is maximized:

log 𝑝 ℎ, 𝑥 = log 𝑝 ℎ + log 𝑝 𝑥 ℎ

 If each variable of the hidden layer belongs to the Laplace 

distribution 𝑝 ℎ𝑖 =
𝜆

2
𝑒−𝜆 ℎ𝑖 , then the penalty function proportional 

to the absolute value:

− log 𝑝 ℎ = 

𝑖

𝜆 ℎ𝑖 − log
𝜆

2
= Ω ℎ + 𝑐𝑜𝑛𝑠𝑡,

 The penalty represents a 𝐿1-norm

 Choosing another distribution leads to a different kind of penalty 

function

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Sparse autoencoders (4)

 Sparse autoencoders are usually used to learn features for solving 

a problem (for example, classification tasks)

 Such autoencoders reflect the statistical properties of the training 

dataset

 As a result, we can construct a model that has learned the useful 

properties of a dataset

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Denoising autoencoders (1)

 The goal of denoising autoencoders is to provide noise reduction

of the distorted data, i.e. to restore original input based on the 

distorted version

 Denoising autoencoders minimize the cost function 𝐿 𝑥, 𝑔 𝑓  𝑥 , 

where  𝑥 is a distorted version of the input signal 𝑥

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Denoising autoencoders (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Input

𝑥

Noisy input

 𝑥

ℎ = 𝑓  𝑥  𝑥 = 𝑔(𝑓  𝑥 )

Coding Decoding
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Denoising autoencoders (3)

 The minimized functional is as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝔼  𝑥~𝐶  𝑥|𝑥 𝐿 𝑥, 𝑔 𝑓  𝑥 → min
𝜃
,

where 𝔼  𝑥~𝐶  𝑥|𝑥 . is a mean value of all noisy signals  𝑥, obtained 

from the input signal 𝑥 in accordance with some random process 

𝐶  𝑥|𝑥

 Possible distortions:

– Additive isotropic Gaussian noise

– Noise of the form “salt and pepper” for gray images (randomly 

appearing black and white pixels)

– Masking noise, i.e. setting of randomly selected inputs to zero 

(independently for each training sample)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Denoising autoencoders (4)

 The red crosses are training samples

 The gray circle corresponds to a set of the distorted input 𝑥

 The black line is a manifold that approximates the training set

 If the autoencoder is trained to minimize the square error, then 

𝑔 𝑓  𝑥 allows us to estimate

𝔼  𝑥~𝐶  𝑥|𝑥 𝐿 𝑥, 𝑔 𝑓  𝑥

 In this case, each vector

𝑔 𝑓  𝑥 −  𝑥 points in the 

direction of the nearest point

on the manifold

* Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. – 2016. –

[http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

http://www.deeplearningbook.org/
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Application of denoising autoencoders. Example

 The goal is to construct a network that, on a noisy image, restores 

the original image without noise (the noise generation law is 

known)

 A training data set is a set of images without noise. 𝑥 is an image of 

the training set, and  𝑥 is a noisy image

 Training is identifying the network parameters, which provide the 

best restoration of the image based on its noisy copy

 Testing assumes restoring the original image based on the input 

noisy image

* OpenDeep. Tutorial: Your First Model (DAE) [http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-

model].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Original images Noisy images Restored images

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model
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Contractive autoencoder

 Contractive autoencoder is a kind of regularized autoencoders 

for which the minimized functional is as follows:

𝐽 𝜃 =  

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆 𝐽𝑓 𝑥 𝐹

2
→ min

𝜃
,

where 𝐽𝑓 𝑥 is a Jacobian of the vector function 𝑓(𝑥), 𝐽𝑓 𝑥 𝐹

2
is a 

Frobenius norm of the Jacobian 𝐽𝑓 𝑥 :

𝐽𝑓 𝑥 =

𝜕𝑓1
𝜕𝑥1

𝑥 …
𝜕𝑓1
𝜕𝑥𝑛

𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝑥 …
𝜕𝑓𝑛
𝜕𝑥𝑛

𝑥

, 𝐽𝑓 𝑥 𝐹

2
= 

𝑖𝑗

𝜕𝑓𝑗

𝜕𝑥𝑖
𝑥

2

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Stack of autoencoders

 For multi-layered networks it is possible to construct a stack of 

autoencoders

 Each autoencoder is trained sequentially, which allows you to 

gradually reduce the dimension of the feature space and adjust the 

parameters of the encoding layers

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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RESTRICTED BOLTZMANN 

MACHINE

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Restricted Boltzmann machine

 Restricted Boltzmann machine is a probabilistic model of an 

autoencoder

 The Boltzmann machine is a stochastic model, the components of 

which are stochastic neurons

 A stochastic neuron can be in two probability states, which can 

be formally assigned the values +1 (on) and −1 (off), or +1 and 0
respectively

 The Boltzmann machine is characterized by the presence of 

symmetric synaptic connections

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
25

…

… 𝒉 is a set of hidden 

neurons

𝒙 is a set of visible 

neurons
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Notation

 𝑥 = 𝑥𝑖 0≤𝑖≤𝑁 are visible neurons, ℎ = ℎ𝑗 0≤𝑗≤𝐾
are hidden neurons

 𝑤𝑖𝑗 is a synaptic connection between neurons 𝑖 and 𝑗

– 𝑤𝑖𝑗 = 𝑤𝑗𝑖 is a matrix symmetry condition

– 𝑤𝑖𝑖 = 0 means the absence of neuron connection with itself

 The shift use is achieved by adding fictitious elements between a 

node with a constant signal +1 and a neuron

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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The goal of training (1)

 By analogy with thermodynamics, the energy of restricted 

Boltzmann machine is described by one of two equations:

– If the states of the neurons correspond to +1 and −1, then the 

equation is as follows

𝐸 𝑥, ℎ = −
1

2
 

𝑖=0

𝑁

 
𝑗=0
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖

– If the states correspond to +1 and 0, then the equation is as 

follows

𝐸 𝑥, ℎ = − 

𝑖=0

𝑁

 
𝑗=0
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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The goal of training (2)

 The neural network simulates the joint probability density function:

𝑝 𝑥, ℎ =
𝑒−𝐸 𝑥,ℎ

𝑍
, 𝑍 =  

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

𝑒−𝐸 𝑥
𝑟 ,ℎ 𝑡 ,

where 𝑍 is a normalizing factor,

𝐿 is an image number of the vector 𝑥,

𝑆 is an image number of the vector ℎ,

𝑝 𝑥, ℎ is the Gibbs distribution

 The task of the training network is to maximize the function:

𝑝 𝑥 =  

𝑡=0

𝑆−1

𝑝 𝑥, ℎ 𝑡 =
1

𝑍
 

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
→ max

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Conditional probabilities in the case of binary states 

of the input vector (1)

 The probability that for a given input vector 𝑥 one of the hidden 

states is activated (ℎ𝑘 = 1) is as follows:

𝐸1 = 𝐸 𝑥, ℎ𝑘 = 1 = − 

𝑖=0

𝑁

 
𝑗=0
𝑗≠𝑖
𝑗≠𝑘

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 − 
𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖 ,

𝐸0 = 𝐸 𝑥, ℎ𝑘 = 0 = − 

𝑖=0

𝑁

 
𝑗=0
𝑗≠𝑖
𝑗≠𝑘

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 , 𝐸1 − 𝐸0 = − 
𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖

𝑝 ℎ𝑘 = 1 𝑥 =
𝑒−𝐸1

𝑒−𝐸1 + 𝑒−𝐸0
=

1

1 + 𝑒
−  𝑖=0

𝑖≠𝑘

𝑁 𝑤𝑘𝑖𝑥𝑖
= 𝑠𝑖𝑔𝑚  

𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖 ,

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Conditional probabilities in the case of binary states 

of the input vector (2)

 Since all the neurons of the hidden layer are independent, the 

conditional probability can be expressed as follows:

𝑝 ℎ 𝑥 = 

𝑗=0

𝐾

𝑝 ℎ𝑗 𝑥

 By analogy, we can derive a formula for calculating 𝑝 𝑥 ℎ :

𝑝 𝑥𝑘 = 1 ℎ = 𝑠𝑖𝑔𝑚  
𝑗=0
𝑗≠𝑘

𝐾

𝑤𝑗𝑘ℎ𝑗 ,

𝑝 𝑥 ℎ = 

𝑖=0

𝑁

𝑝 𝑥𝑖 ℎ

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Conditional probabilities in the case of real states 

of the input vector

 The energy function has a modified form, and 𝑝 𝑥𝑘 ℎ is modeled 

by the normal distribution:

𝐸 𝑥, ℎ = −
1

𝜎
 

𝑖=1

𝑁

 
𝑗=1
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 − 

𝑗=1

𝐾

𝑏𝑗ℎ𝑗 +
1

2𝜎2
 

𝑖=1

𝑁

𝑥𝑖 − 𝑐𝑖
2 ,

𝑝 𝑥𝑘 ℎ = 𝑁 𝜎 

𝑗=1

𝐾

𝑤𝑗𝑖ℎ𝑗 + 𝑐𝑘 , 𝜎
2 ,

where 𝑏𝑗 , 𝑐𝑖 are shifts, 𝜎 is a standard deviation

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Calculation of the probability distribution function 

derivatives

 The goal of training:

𝑝 𝑥 =  

𝑡=0

𝑆−1

𝑝 𝑥, ℎ 𝑡 =
1

𝑍
 

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
→ max

 The energy function derivatives by parameters:
𝜕𝐸 𝑥, ℎ

𝜕𝑤𝑗𝑖
= −ℎ𝑗𝑥𝑖

 The derivative of the exponential 𝑒−𝐸 𝑥,ℎ and the normalizing factor 

𝑍:

𝜕𝑒−𝐸 𝑥,ℎ

𝜕𝑤𝑗𝑖
= 𝑒−𝐸 𝑥,ℎ

𝜕 −𝐸 𝑥, ℎ

𝜕𝑤𝑗𝑖
= ℎ𝑗𝑥𝑖𝑒

−𝐸 𝑥,ℎ

𝜕𝑍

𝜕𝑤𝑗𝑖
= 

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1
𝜕𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡

𝜕𝑤𝑗𝑖
= 

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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𝑑 𝑓 𝑥 ∙ 𝑔 𝑥

𝑑𝑥
=

𝑑 𝑓 𝑥

𝑑𝑥
∙ 𝑔 𝑥 +

𝑓 𝑥 ∙
𝑑 𝑔 𝑥

𝑑𝑥

The derivative of the probability density function

 The derivative of the probability density function 𝑝 𝑥 is as follows:

𝜕𝑝 𝑥

𝜕𝑤𝑗𝑖
= −

1

𝑍2
𝜕𝑍

𝜕𝑤𝑗𝑖
 

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
+
1

𝑍
 

𝑡=0

𝑆−1
𝜕𝑒−𝐸 𝑥,ℎ

𝑡

𝜕𝑤𝑗𝑖

= −
1

𝑍2
 

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡  

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡

+
1

𝑍
 

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖𝑒

−𝐸 𝑥,ℎ 𝑡

= −
1

𝑍
𝑝 𝑥  

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡 + 

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖 𝑝 𝑥, ℎ

𝑡
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The maximization of the logarithm of the probability 

distribution function

 Maximization of the probability is equivalent to maximizing the 

logarithm of the probability:

𝑝 𝑥 → max ⟹ ln𝑝 𝑥 → max
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The derivative of the logarithm with respect to the 

parameters of the system

 The derivative of the logarithm of the probability function with 

respect to the parameters of the system:
𝜕 ln 𝑝 𝑥

𝜕𝑤𝑗𝑖
=
1

𝑝 𝑥

𝜕𝑝 𝑥

𝜕𝑤𝑗𝑖

= −
1

𝑍
 

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡 + 

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖
𝑝 𝑥, ℎ 𝑡

𝑝 𝑥

= − 

𝑟=0

𝐿−1

 

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑝 𝑥 𝑟 , ℎ 𝑡 +  

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖 𝑝 ℎ

𝑡 |𝑥
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The Boltzmann learning rule

 The rule of updating the network weights during training:

∆𝑤𝑗𝑖 = 𝜂
𝜕 ln 𝑝 𝑥 𝑘

𝜕𝑤𝑗𝑖
= 𝜂 𝑀 𝑥𝑖

𝑘
ℎ𝑗 −𝑀 𝑥𝑖ℎ𝑗 ,

where 𝑀 . is a mean value of the discrete variable, 𝜂 is a learning 

rate (a parameter of the method)

 This rule is called the Boltzmann learning rule
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Training algorithm (1)

 The algorithm of training the Boltzmann machine was proposed by 

J. Hinton in 2002, and it is based on the Gibbs sampling

procedure

 The training algorithm is called the contrastive divergence 

algorithm (CD-k)

 The algorithm describes the calculation scheme during the training 

parameters of the Boltzmann machine
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Training algorithm (2)

1. Assumed the visible neuron state 𝑥 equals the network 

input 𝑥0 = 𝑥 0

2. Compute the probabilities if hidden layer states ℎ0 in accordance 

with the distribution 𝑝 ℎ 𝑥 = 𝑥0

3. Loop by 𝑡 consisting of 𝑘 iterations. Collect statistics:

1. Compute the probabilities of visible layer states 𝑥𝑡 in 

accordance with distribution 𝑝 𝑥 ℎ𝑡−1

2. Compute the probabilities of hidden layer states ℎ𝑡 in 

accordance with distribution 𝑝 ℎ 𝑥 = 𝑥𝑡

4. Update the network weights and go to the next input
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Training algorithm (3)
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Interpretation of a restricted Boltzmann machine 

by an example (1)

 Visible neurons = movies

 Hidden neurons = film groups (fantasy, Oscar winners)

 A person chooses from 6 movies those that he likes => the input 

elements (binary values) are activated

 For each film, it is decided to belong to a certain film group => 

some hidden elements (binary states) are activated

 6 visible elements send messages to hidden variables

 The activation energy of the hidden element is the weighted sum of 

messages coming from the input elements
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Interpretation of a restricted Boltzmann machine 

by an example (2)
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SF/fantasy Oscar winners
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Interpretation of a restricted Boltzmann machine 

by an example (3)

 Bottom-up:

– RBM attempts to explain a person's preferences in terms of 

hidden variables, i.e. what kind of movies do people prefer?

– However, if a person chooses Harry Potter, Avatar, and LOTR 3 

films, this does not mean that a hidden element that 

corresponds to the SF/fantasy group will be activated

– This means that the probability of activation of this hidden 

element will be increased due to the high activation energy
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Interpretation of a restricted Boltzmann machine 

by an example (4)

 Top-bottom:

– If you know that some people prefer SF/fantasy, then you can 

ask RBM which films belong to the specified group and which 

films a person might like

– In this case, the hidden variables send messages to visible ones 

=> the status of the visible variables is updated

– However, it can not be guaranteed that Harry Potter, Avatar, 

and LOTR 3 films will always be recommended to a person. 

Only a subset of them can be recommended
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DEEP BOLTZMANN MACHINES

AND DEEP BELIEF NETWORKS
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 By analogy with the stack of autoencoders, it is possible to 

construct a stack of restricted Boltzmann machines

 If the states of the neurons of each 

hidden layer depend on the previous 

and the next ones (symmetric

connections), then this model is called

the deep Boltzmann machine (DBM)

Deep Boltzmann machine

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Training a deep Boltzmann machine (1)

 The parameters of this model can be trained by analogy with a 

single-layer Boltzmann machine

 It is necessary to determine the joint distribution function through 

the energy of the system 𝐸 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃 , and express the 

probability of visible neurons 𝑝 𝑥; 𝜃 :

𝐸 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃 = − 

𝑖=1

𝑙

ℎ𝑖−1
𝑇
𝑊𝑖ℎ𝑖 ,

𝑝 𝑥; 𝜃 =
1

𝑍
 

ℎ1,ℎ2,…ℎ𝑙

𝑒−𝐸 𝑥,ℎ
1,ℎ2,…,ℎ𝑙; 𝜃 ,

where 𝑥 = ℎ0 is a vector of visible neurons, ℎ𝑖 is a vector of hidden 

neurons, 𝜃 = 𝑊1, … ,𝑊𝑙 is a set of parameters
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Training a deep Boltzmann machine (2)

 Next, we need to obtain formulas for calculating conditional 

probabilities 𝑝 𝑥 ℎ 1 , 𝑝 ℎ𝑘 ℎ𝑘−1 , 𝑝 ℎ𝑘 ℎ𝑘−1, ℎ𝑘+1 and the 

derivatives of the probability distribution function with respect to 

each parameter 

 The procedure of training weights goes the slower, the further 

hidden neurons are located from the layer of visible neurons
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 In 2006, J. Hinton proposed an approach that allows quick 

initialization of the model parameters

 This approach involves “greedy”

layer-by-layer network training

 Training is performed on the assumption 

that each layer of neurons does not

depend on the next one

 After the stack of restricted Boltzmann

machines is trained, the system can be

viewed as a single “probabilistic model”

called the deep belief network (DBN)

Deep belief network

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

…

…

…

…

…

ℎ1

ℎ2

ℎ𝑙−1

ℎ𝑙

𝑥

RBM



49

The difference between a deep Boltzmann machine 

and a deep belief network
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Sigmoid belief network

 Sigmoid belief network consisting of 𝑙 layers models the function 

of joint distribution 𝑝 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃

 The joint probability distribution function can be expressed as a 

product of conditional probabilities:

𝑝 𝑥, ℎ1, … , ℎ𝑙; 𝜃 = 𝑝 𝑥 ℎ1; 𝜃  

𝑘=1

𝑙−2

𝑝 ℎ𝑘 ℎ𝑘+1; 𝜃 𝑝 ℎ𝑙−1, ℎ𝑙; 𝜃
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Conditional probability distribution functions

for a sigmoid belief network

 Since the neurons on the layer are independent, and the activation 

function on each layer is a sigmoid, the distribution functions of the 

conditional probability are calculated as follows:

𝑝 ℎ𝑘 = 

𝑖

𝑝 ℎ𝑖
𝑘 ,

𝑞 ℎ𝑘 ℎ𝑘−1; 𝜃 = 𝑝 ℎ𝑘 ℎ𝑘−1; 𝜃 = 

𝑗

𝑝 ℎ𝑗
𝑘 ℎ𝑘−1; 𝜃

= 

𝑗

𝑠𝑖𝑔𝑚 𝑊𝑗.
𝑘ℎ𝑘−1 ,

𝑝 ℎ𝑘−1 ℎ𝑘; 𝜃 = 

𝑗

𝑝 ℎ𝑗
𝑘−1 ℎ𝑘; 𝜃 = 

𝑗

𝑠𝑖𝑔𝑚 𝑊∙𝑗
𝑘𝑇ℎ𝑘
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Greedy layer-by-layer training of a sigmoid belief 

network (1)

1. Construct a restricted Boltzmann machine based on the input 

layer 𝑥 and the first layer of hidden neurons ℎ1, training the 

parameters of the first layer𝑊1
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Greedy layer-by-layer training of a sigmoid belief 

network (2)

2. Construct a restricted Boltzmann machine based on the hidden 

layers ℎ1 и ℎ2 and training the second layer parameters𝑊2. The 

weight matrix𝑊1 is fixed, and the vector values ℎ1 are sampled 

from the distribution 𝑞 ℎ1 𝑥;𝑊1 obtained at the previous step
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Greedy layer-by-layer training of a sigmoid belief 

network (3)

3. Construct restricted Boltzmann machines based on the following 

pair of hidden layers ℎ𝑘 and ℎ𝑘+1, and train the corresponding 

parameters𝑊𝑘+1. The weight matrix𝑊𝑘 is fixed, ℎ𝑘 are sampled 

from the distribution 𝑞 ℎ𝑘 ℎ𝑘−1; 𝜃

Note: at the end of the greedy layer-by-layer training of a deep belief 

network, it is possible to fine-tune the parameters, for example, using 

the “wake-sleep” algorithm*

* Hinton G.E., Dayan P., Frey B. J., Neal R.M. The wake-sleep algorithm for unsupervised neural networks // 

Science. – 1995. – Vol. 268, pp. 1558–1161.
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DECONVOLUTIONAL NEURAL 

NETWORKS
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Deconvolutional neural networks (1)

 Deconvolutional neural networks proposed as a convolutional 

version of sparse autoencoders

 Deconvolutional neural networks are used for visualization of 

feature maps in convolutional networks

 Later, the idea of deconvolutional neural networks was widely used 

to solve the problem of semantic segmentation

 In the simplest case, these networks consist of two blocks:

– Convolutional layer is a sequence of convolution, activation 

function and pooling

– Deconvolutional layer is a sequence of reverse transforms 

(unpooling, activation function and deconvolution)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Deconvolutional neural networks (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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 As an activation function, let us consider the ReLU function

 As a pooling operation, let us consider the max pooling
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Reverse transforms (1)

 Unpooling is a reverse transform to pooling

– The appeal is realized by storing the indices of the element of 

the feature map in which the maximum value

– When deployed, the maximum value is placed in the 

corresponding cell, and the surrounding values are reset to zero
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Reverse transforms (2)

 Reverse non-linear activation

– The inverse function of ReLU is a ReLU function

– The authors of the method argue the choice of such an inverse 

transformation in that the convolution is applied to the positive 

part during feed forward of the network, so, during the 

backward, the deconvolution should also be applied to the 

positive part

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks



60

Reverse transforms (3)

 Deconvolution

– Deconvolution involves the use of the same filters as in the 

computation of a convolution

– The only difference is that the filter kernels are transposed

– An output image close to the original one
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Training the deconvolutional neural network (1)

 The task of training the deconvolutional network is to obtain a 

feature map before the deconvolution operation, applying a set of 

filters to which we can obtain an output as close as possible to the 

input image

 Assumed that 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑠 is an input image,

 𝑦 =  𝑦1,  𝑦2, … ,  𝑦𝑠 is an output image, where 𝑠 is a number of 

channels

 The goal of training is to restore the feature map

𝑧 = 𝑧1, 𝑧2, … , 𝑧𝐾 , which provides the best approximation to the 

input image. The network output is calculated by applying 

convolutional filters to the feature map 𝑧
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Training the deconvolutional neural network (2)

 The network output is calculated by applying convolutions to the 

feature map 𝑧:

 𝑦𝑘 = 

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘

 The cost function is the Euclidean norm

𝐿 𝑦,  𝑦 = 

𝑘

 

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘 − 𝑦𝑘
2

2

,

 The minimized functional is as follows:

𝐽 𝜃 =
𝜆

2
 

𝑦∈𝐼

 

𝑘

 

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘 − 𝑦𝑘
2

2

+ 

𝑦∈𝐼

 

𝑖

𝑧𝑖
𝑝 → min

𝑧,𝜃
,

where 𝜃 = 𝑓𝑖,𝑘 is a set of parameters, 𝐼 is a set of input images
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Training the deconvolutional neural network (3)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Training the deconvolutional neural network (4)

 The above optimization problem is solved using the ISTA iteration 

algorithm (Iterative Shrinkage-Thresholding Algorithm)*

* Beck A., Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 

[https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterati

ve_Shrinkage-

Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf].
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EXAMPLE OF UNSUPERVISED 

LEARNING APPLICATION

FOR PRE-TRAINING PARAMETERS
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Architecture of fully-connected neural network
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Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

64 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

2 hidden neurons

Activation function

Logistic

Affine(nout=64, init=Xavier(), 

bias=Constant(0),

activation=Tanh())
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Stack of autoencoders

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
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Example of weight pre-training using Intel® neon™ 

Framework (1)

 The first autoencoder

– Input data of encoder are images

– Output data of decoder are images

– Labeled data: <image, image>
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Example of weight pre-training using Intel® neon™ 

Framework (2) 

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

# the first autoencoder

def generate_mlp2b2_128_ae_stacked_step1_model(input_shape):

output_size=reduce(lambda p, x:p*int(x), input_shape, 1)

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Gaussian(scale=0.1), 

bias=Constant(0), activation=Tanh(), name='fc_1'),

Affine(nout=output_size, init=Gaussian(scale=0.1), 

bias=Constant(0), activation=Tanh(), name='fc_-1')

]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=SumSquared())

return (model, cost)
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Example of weight pre-training using Intel® neon™ 

Framework (3)

 The second autoencoder

– How to construct?
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Example of weight pre-training using Intel® neon™ 

Framework (4)

 The second autoencoder

– Input data is an encoder output of the previous autoencoder

– Let we save the pre-trained encoder layer of the previous 

autoencoder in the second autoencoder model

– Labeled data: <image, output of the previous autoencoder>

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

E
n
c
o
d
e
r

D
e
c
o
d
e
r

Fully-connected layer

64 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent



72

Example of weight pre-training using Intel® neon™ 

Framework (5) 
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# the second autoencoder

def generate_mlp2b2_128_ae_stacked_step2_model(input_shape):

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_1'),

Affine(nout=64, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_2'),

Affine(nout=128, init=Xavier(), 

bias=Constant(0),

activation=Tanh(), name='fc_-2') ]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=SumSquared())

return (model, cost)
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Example of weight pre-training using Intel® neon™ 

Framework (6) 
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# the final network

def generate_mlp2b2_128_ae_stacked_model():

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_1'),

Affine(nout=64, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_2'),

Affine(nout=2, init=Xavier(), bias=Constant(0),

activation=Logistic(shortcut=True), name='cls')

]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyBinary())

return (model, cost)
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Example of weight pre-training using Intel® neon™ 

Framework (7)

 Training the stack of autoencoders:

– Prepare training data for the first autoencoder (the training data 

consist of pairs <image, image>)

– Train the first autoencoder

– Remove the decoder from the model of the trained autoencoder

– Prepare the training data for the second autoencoder (the 

training data consists of pairs <image, output of the previous 

encoder>)

– Train the second autoencoder

– Remove the decoder from the model of the trained autoencoder

– Train the final network with pre-trained weights (use transfer 

learning)
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Example of weight pre-training using Intel® neon™ 

Framework (8)

 The complete sources that implement the above sequence of steps 

are described in the relevant practice
(Practice4_ae/main_train_stacked_autoencoder.py)
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Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)
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Summary results
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Network id Accuracy, % Training time, s

FCNN-1 71.2 932

FCNN-2 73.5 977

FCNN-3 77.7 1013

CNN-1 79.3 1582

CNN-2 83.5 2030

ResNet-18 (90 epochs) 81.3 15127

ResNet-50 (30 epochs) 80.9 11849

FCNN-2 (+pretraining, 

30 epochs)

78.9 2832
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Time distribution between pre-training network 

weights and training the complete network
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Conclusion

 Pre-training of network parameters takes a long time, comparable 

with the training time of the network

 The developed methods of random parameter initialization make it 

possible to obtain a good initial approximation to optimize the cost 

function

 At present, methods of pre-training parameters are rarely used in 

solving practical problems because of the effective random 

generators existence 
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