
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer software and supercomputer technologies

Educational course

«Introduction to deep learning

using the Intel® neon™ Framework»

Unsupervised learning:

autoencoders, restricted Boltzmann

machines, deconvolutional networks

Valentina Kustikova,
Phd, lecturer, department of Computer software

and supercomputer technologies

Supported by Intel

2

Content

 The problem statement

 Autoencoders

 Restricted Boltzmann machine

 Deep Boltzmann machine

 Deep belief network

 Deconvolutional neural network

 Example of unsupervised learning application for pre-training the

parameters of deep models to predict a person's sex from a photo

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

THE PROBLEM STATEMENT

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
3

4

The problem

 The dataset ImageNET: 14 197 122

 The dataset PASCAL Visual Object Challenge 2012 (semantic

segmentation): ~10 000

 The dataset IMDB-WIKI: 460 723 + 62 328

 …

 How to reduce the amount of labeled data for constructing

efficient deep neural network models?

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

http://image-net.org/
http://host.robots.ox.ac.uk/pascal/VOC
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki

5

The solution

 Pre-train the network weights

– Construct a “good” initial approximation of the parameters for

further training the network using the labeled training dataset

– Do not use labeled data during pre-training

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

AUTOENCODERS

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
6

7

Autoencoder (1)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

ℎ = 𝑓 𝑥𝑥 ∈ 𝑅𝑛 𝑦 = 𝑔 ℎ
Encoder Decoder

8

Autoencoder (2)

 Autoencoder is a neural network that attempts to approximate the

output signal to the input one, i.e. to find the best approximation of

the identity transform

 The network is divided into two principal parts:

– Encoder ℎ = 𝑓(𝑥) to compress input data representation

– Decoder 𝑦 = 𝑔 ℎ to restore input data based on the

compressed representation

 Autoencoder can be considered as a feed-forward network, so for

training it is possible to use the backpropagation algorithm, based

on the gradient optimization methods

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

9

Simple autoencoder

 The simplest autoencoder consists of two fully-connected layers

 The layers are described by the transforms as follows:

ℎ = 𝑓 𝑥 = 𝑠𝑓 𝑊ℎ ∙ 𝑥 + 𝑏ℎ , 𝑦 = 𝑔 ℎ = 𝑠𝑔 𝑊𝑦 ∙ ℎ + 𝑏𝑦 ,

where 𝑠𝑓(∙) is an activation function (sigmoid, hyperbolic tangent,

ReLU)

 Training the autoencoder is a problem of minimizing the functional

𝐽 𝜃 with respect to the set of parameters 𝜃 = 𝑊ℎ,𝑊𝑦 , 𝑏ℎ, 𝑏𝑦 :

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 → min
𝜃

 Cost function 𝐿 𝑥, 𝑔 𝑓 𝑥 is a square function or multinomial

cross-entropy

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

10

Autoencoders and principal component analysis (1)

 If 𝐿 𝑥, 𝑔 𝑓 𝑥 is square function then the minimized functional is

as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝑥 − 𝑔 𝑓 𝑥
2

 If 𝑓 and 𝑔 are linear functions then the functional is as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝑥 − 𝑉𝑊𝑥 2 ,

where𝑊 is a matrix of direct transform (corresponds to the

encoder), 𝑉 is a matrix of inverse transform (corresponds to the

decoder)

 The optimal solution of the minimization problem corresponds to

the solution of linear PCA problem (the projection of the input data

onto a lower-dimensional subspace)
Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

11

Autoencoders and principal component analysis (2)

 If 𝑓 and 𝑔 are non-linear functions then the optimal solution of the

minimization problem corresponds to the solution of non-linear

PCA problem

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

12

Regularized autoencoders

 The regularization parameters are introduced – the penalty function

 Square penalty for the hidden layer parameters:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆

𝑖,𝑗

𝑤𝑖𝑗
2 → min

𝜃
, 𝑊 = 𝑤𝑖𝑗

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

13

Sparse autoencoders (1)

 Sparse autoencoders is a kind of regularized autoencoders

 In the simplest case, the sparsity penalty is a 𝐿1-norm of the signal

on the hidden layer, and the minimized functional is as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆

𝑖

ℎ𝑖 → min
𝜃

 In general case, the functional is calculated as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + Ω 𝑓 𝑥 → min
𝜃

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

14

Sparse autoencoders (2)

 Let us consider a sparse autoencoder as an approximation of a

generative model with latent variables, in which the maximum

likelihood method can be used to train parameters

 Suppose that there is a model in which 𝑥 is a set of the visible

variables (the input signal), ℎ is a set of the hidden variables

 Autoencoder cost function:

𝐿 𝑥, 𝑔 𝑓 𝑥 = − log 𝑝 𝑥 ℎ

 Then the likelihood function for the generative model is represented

as follows:

log 𝑝 𝑥 = log

ℎ

𝑝 ℎ, 𝑥

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

15

Sparse autoencoders (3)

 The autoencoder approximates this sum by a point estimate 𝑝 ℎ, 𝑥
for only the most probable ℎ

 Therefore, for each chosen ℎ, the logarithm of the joint distribution

is maximized:

log 𝑝 ℎ, 𝑥 = log 𝑝 ℎ + log 𝑝 𝑥 ℎ

 If each variable of the hidden layer belongs to the Laplace

distribution 𝑝 ℎ𝑖 =
𝜆

2
𝑒−𝜆 ℎ𝑖 , then the penalty function proportional

to the absolute value:

− log 𝑝 ℎ =

𝑖

𝜆 ℎ𝑖 − log
𝜆

2
= Ω ℎ + 𝑐𝑜𝑛𝑠𝑡,

 The penalty represents a 𝐿1-norm

 Choosing another distribution leads to a different kind of penalty

function

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

16

Sparse autoencoders (4)

 Sparse autoencoders are usually used to learn features for solving

a problem (for example, classification tasks)

 Such autoencoders reflect the statistical properties of the training

dataset

 As a result, we can construct a model that has learned the useful

properties of a dataset

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

17

Denoising autoencoders (1)

 The goal of denoising autoencoders is to provide noise reduction

of the distorted data, i.e. to restore original input based on the

distorted version

 Denoising autoencoders minimize the cost function 𝐿 𝑥, 𝑔 𝑓 𝑥 ,

where 𝑥 is a distorted version of the input signal 𝑥

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

18

Denoising autoencoders (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Input

𝑥

Noisy input

 𝑥

ℎ = 𝑓 𝑥 𝑥 = 𝑔(𝑓 𝑥)

Coding Decoding

19

Denoising autoencoders (3)

 The minimized functional is as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝔼 𝑥~𝐶 𝑥|𝑥 𝐿 𝑥, 𝑔 𝑓 𝑥 → min
𝜃
,

where 𝔼 𝑥~𝐶 𝑥|𝑥 . is a mean value of all noisy signals 𝑥, obtained

from the input signal 𝑥 in accordance with some random process

𝐶 𝑥|𝑥

 Possible distortions:

– Additive isotropic Gaussian noise

– Noise of the form “salt and pepper” for gray images (randomly

appearing black and white pixels)

– Masking noise, i.e. setting of randomly selected inputs to zero

(independently for each training sample)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

20

Denoising autoencoders (4)

 The red crosses are training samples

 The gray circle corresponds to a set of the distorted input 𝑥

 The black line is a manifold that approximates the training set

 If the autoencoder is trained to minimize the square error, then

𝑔 𝑓 𝑥 allows us to estimate

𝔼 𝑥~𝐶 𝑥|𝑥 𝐿 𝑥, 𝑔 𝑓 𝑥

 In this case, each vector

𝑔 𝑓 𝑥 − 𝑥 points in the

direction of the nearest point

on the manifold

* Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. – 2016. –

[http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

http://www.deeplearningbook.org/

21

Application of denoising autoencoders. Example

 The goal is to construct a network that, on a noisy image, restores

the original image without noise (the noise generation law is

known)

 A training data set is a set of images without noise. 𝑥 is an image of

the training set, and 𝑥 is a noisy image

 Training is identifying the network parameters, which provide the

best restoration of the image based on its noisy copy

 Testing assumes restoring the original image based on the input

noisy image

* OpenDeep. Tutorial: Your First Model (DAE) [http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-

model].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Original images Noisy images Restored images

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

22

Contractive autoencoder

 Contractive autoencoder is a kind of regularized autoencoders

for which the minimized functional is as follows:

𝐽 𝜃 =

𝑥∈𝐷𝑛

𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝜆 𝐽𝑓 𝑥 𝐹

2
→ min

𝜃
,

where 𝐽𝑓 𝑥 is a Jacobian of the vector function 𝑓(𝑥), 𝐽𝑓 𝑥 𝐹

2
is a

Frobenius norm of the Jacobian 𝐽𝑓 𝑥 :

𝐽𝑓 𝑥 =

𝜕𝑓1
𝜕𝑥1

𝑥 …
𝜕𝑓1
𝜕𝑥𝑛

𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝑥 …
𝜕𝑓𝑛
𝜕𝑥𝑛

𝑥

, 𝐽𝑓 𝑥 𝐹

2
=

𝑖𝑗

𝜕𝑓𝑗

𝜕𝑥𝑖
𝑥

2

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

23

Stack of autoencoders

 For multi-layered networks it is possible to construct a stack of

autoencoders

 Each autoencoder is trained sequentially, which allows you to

gradually reduce the dimension of the feature space and adjust the

parameters of the encoding layers

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
23

Encoder

Decoder

ℎ1 ℎ2

… Managed
layer

ℎ𝑙−2 ℎ𝑙−1
Encoder

Decoder

Encoder

Decoder

RESTRICTED BOLTZMANN

MACHINE

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
24

25

Restricted Boltzmann machine

 Restricted Boltzmann machine is a probabilistic model of an

autoencoder

 The Boltzmann machine is a stochastic model, the components of

which are stochastic neurons

 A stochastic neuron can be in two probability states, which can

be formally assigned the values +1 (on) and −1 (off), or +1 and 0
respectively

 The Boltzmann machine is characterized by the presence of

symmetric synaptic connections

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
25

…

… 𝒉 is a set of hidden

neurons

𝒙 is a set of visible

neurons

26

Notation

 𝑥 = 𝑥𝑖 0≤𝑖≤𝑁 are visible neurons, ℎ = ℎ𝑗 0≤𝑗≤𝐾
are hidden neurons

 𝑤𝑖𝑗 is a synaptic connection between neurons 𝑖 and 𝑗

– 𝑤𝑖𝑗 = 𝑤𝑗𝑖 is a matrix symmetry condition

– 𝑤𝑖𝑖 = 0 means the absence of neuron connection with itself

 The shift use is achieved by adding fictitious elements between a

node with a constant signal +1 and a neuron

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

27

The goal of training (1)

 By analogy with thermodynamics, the energy of restricted

Boltzmann machine is described by one of two equations:

– If the states of the neurons correspond to +1 and −1, then the

equation is as follows

𝐸 𝑥, ℎ = −
1

2

𝑖=0

𝑁

𝑗=0
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖

– If the states correspond to +1 and 0, then the equation is as

follows

𝐸 𝑥, ℎ = −

𝑖=0

𝑁

𝑗=0
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

28

The goal of training (2)

 The neural network simulates the joint probability density function:

𝑝 𝑥, ℎ =
𝑒−𝐸 𝑥,ℎ

𝑍
, 𝑍 =

𝑟=0

𝐿−1

𝑡=0

𝑆−1

𝑒−𝐸 𝑥
𝑟 ,ℎ 𝑡 ,

where 𝑍 is a normalizing factor,

𝐿 is an image number of the vector 𝑥,

𝑆 is an image number of the vector ℎ,

𝑝 𝑥, ℎ is the Gibbs distribution

 The task of the training network is to maximize the function:

𝑝 𝑥 =

𝑡=0

𝑆−1

𝑝 𝑥, ℎ 𝑡 =
1

𝑍

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
→ max

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

29

Conditional probabilities in the case of binary states

of the input vector (1)

 The probability that for a given input vector 𝑥 one of the hidden

states is activated (ℎ𝑘 = 1) is as follows:

𝐸1 = 𝐸 𝑥, ℎ𝑘 = 1 = −

𝑖=0

𝑁

𝑗=0
𝑗≠𝑖
𝑗≠𝑘

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 −
𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖 ,

𝐸0 = 𝐸 𝑥, ℎ𝑘 = 0 = −

𝑖=0

𝑁

𝑗=0
𝑗≠𝑖
𝑗≠𝑘

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 , 𝐸1 − 𝐸0 = −
𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖

𝑝 ℎ𝑘 = 1 𝑥 =
𝑒−𝐸1

𝑒−𝐸1 + 𝑒−𝐸0
=

1

1 + 𝑒
− 𝑖=0

𝑖≠𝑘

𝑁 𝑤𝑘𝑖𝑥𝑖
= 𝑠𝑖𝑔𝑚

𝑖=0
𝑖≠𝑘

𝑁

𝑤𝑘𝑖𝑥𝑖 ,

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

30

Conditional probabilities in the case of binary states

of the input vector (2)

 Since all the neurons of the hidden layer are independent, the

conditional probability can be expressed as follows:

𝑝 ℎ 𝑥 =

𝑗=0

𝐾

𝑝 ℎ𝑗 𝑥

 By analogy, we can derive a formula for calculating 𝑝 𝑥 ℎ :

𝑝 𝑥𝑘 = 1 ℎ = 𝑠𝑖𝑔𝑚
𝑗=0
𝑗≠𝑘

𝐾

𝑤𝑗𝑘ℎ𝑗 ,

𝑝 𝑥 ℎ =

𝑖=0

𝑁

𝑝 𝑥𝑖 ℎ

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

31

Conditional probabilities in the case of real states

of the input vector

 The energy function has a modified form, and 𝑝 𝑥𝑘 ℎ is modeled

by the normal distribution:

𝐸 𝑥, ℎ = −
1

𝜎

𝑖=1

𝑁

𝑗=1
𝑗≠𝑖

𝐾

𝑤𝑗𝑖ℎ𝑗𝑥𝑖 −

𝑗=1

𝐾

𝑏𝑗ℎ𝑗 +
1

2𝜎2

𝑖=1

𝑁

𝑥𝑖 − 𝑐𝑖
2 ,

𝑝 𝑥𝑘 ℎ = 𝑁 𝜎

𝑗=1

𝐾

𝑤𝑗𝑖ℎ𝑗 + 𝑐𝑘 , 𝜎
2 ,

where 𝑏𝑗 , 𝑐𝑖 are shifts, 𝜎 is a standard deviation

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

32

Calculation of the probability distribution function

derivatives

 The goal of training:

𝑝 𝑥 =

𝑡=0

𝑆−1

𝑝 𝑥, ℎ 𝑡 =
1

𝑍

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
→ max

 The energy function derivatives by parameters:
𝜕𝐸 𝑥, ℎ

𝜕𝑤𝑗𝑖
= −ℎ𝑗𝑥𝑖

 The derivative of the exponential 𝑒−𝐸 𝑥,ℎ and the normalizing factor

𝑍:

𝜕𝑒−𝐸 𝑥,ℎ

𝜕𝑤𝑗𝑖
= 𝑒−𝐸 𝑥,ℎ

𝜕 −𝐸 𝑥, ℎ

𝜕𝑤𝑗𝑖
= ℎ𝑗𝑥𝑖𝑒

−𝐸 𝑥,ℎ

𝜕𝑍

𝜕𝑤𝑗𝑖
=

𝑟=0

𝐿−1

𝑡=0

𝑆−1
𝜕𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡

𝜕𝑤𝑗𝑖
=

𝑟=0

𝐿−1

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

33

𝑑 𝑓 𝑥 ∙ 𝑔 𝑥

𝑑𝑥
=

𝑑 𝑓 𝑥

𝑑𝑥
∙ 𝑔 𝑥 +

𝑓 𝑥 ∙
𝑑 𝑔 𝑥

𝑑𝑥

The derivative of the probability density function

 The derivative of the probability density function 𝑝 𝑥 is as follows:

𝜕𝑝 𝑥

𝜕𝑤𝑗𝑖
= −

1

𝑍2
𝜕𝑍

𝜕𝑤𝑗𝑖

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡
+
1

𝑍

𝑡=0

𝑆−1
𝜕𝑒−𝐸 𝑥,ℎ

𝑡

𝜕𝑤𝑗𝑖

= −
1

𝑍2

𝑟=0

𝐿−1

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡

𝑡=0

𝑆−1

𝑒−𝐸 𝑥,ℎ
𝑡

+
1

𝑍

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖𝑒

−𝐸 𝑥,ℎ 𝑡

= −
1

𝑍
𝑝 𝑥

𝑟=0

𝐿−1

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡 +

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖 𝑝 𝑥, ℎ

𝑡

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

34

The maximization of the logarithm of the probability

distribution function

 Maximization of the probability is equivalent to maximizing the

logarithm of the probability:

𝑝 𝑥 → max ⟹ ln𝑝 𝑥 → max

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

35

The derivative of the logarithm with respect to the

parameters of the system

 The derivative of the logarithm of the probability function with

respect to the parameters of the system:
𝜕 ln 𝑝 𝑥

𝜕𝑤𝑗𝑖
=
1

𝑝 𝑥

𝜕𝑝 𝑥

𝜕𝑤𝑗𝑖

= −
1

𝑍

𝑟=0

𝐿−1

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑒−𝐸 𝑥

𝑟 ,ℎ 𝑡 +

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖
𝑝 𝑥, ℎ 𝑡

𝑝 𝑥

= −

𝑟=0

𝐿−1

𝑡=0

𝑆−1

ℎ𝑗
𝑟
𝑥𝑖
𝑡
𝑝 𝑥 𝑟 , ℎ 𝑡 +

𝑡=0

𝑆−1

ℎ𝑗
𝑡
𝑥𝑖 𝑝 ℎ

𝑡 |𝑥

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

36

The Boltzmann learning rule

 The rule of updating the network weights during training:

∆𝑤𝑗𝑖 = 𝜂
𝜕 ln 𝑝 𝑥 𝑘

𝜕𝑤𝑗𝑖
= 𝜂 𝑀 𝑥𝑖

𝑘
ℎ𝑗 −𝑀 𝑥𝑖ℎ𝑗 ,

where 𝑀 . is a mean value of the discrete variable, 𝜂 is a learning

rate (a parameter of the method)

 This rule is called the Boltzmann learning rule

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

37

Training algorithm (1)

 The algorithm of training the Boltzmann machine was proposed by

J. Hinton in 2002, and it is based on the Gibbs sampling

procedure

 The training algorithm is called the contrastive divergence

algorithm (CD-k)

 The algorithm describes the calculation scheme during the training

parameters of the Boltzmann machine

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

38

Training algorithm (2)

1. Assumed the visible neuron state 𝑥 equals the network

input 𝑥0 = 𝑥 0

2. Compute the probabilities if hidden layer states ℎ0 in accordance

with the distribution 𝑝 ℎ 𝑥 = 𝑥0

3. Loop by 𝑡 consisting of 𝑘 iterations. Collect statistics:

1. Compute the probabilities of visible layer states 𝑥𝑡 in

accordance with distribution 𝑝 𝑥 ℎ𝑡−1

2. Compute the probabilities of hidden layer states ℎ𝑡 in

accordance with distribution 𝑝 ℎ 𝑥 = 𝑥𝑡

4. Update the network weights and go to the next input

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

39

Training algorithm (3)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

𝑥0

ℎ0

𝑥1

ℎ1

...𝑝 ℎ 𝑥 = 𝑥0 𝑝 ℎ 𝑥 = 𝑥1𝑝 𝑥 ℎ = ℎ0

40

Interpretation of a restricted Boltzmann machine

by an example (1)

 Visible neurons = movies

 Hidden neurons = film groups (fantasy, Oscar winners)

 A person chooses from 6 movies those that he likes => the input

elements (binary values) are activated

 For each film, it is decided to belong to a certain film group =>

some hidden elements (binary states) are activated

 6 visible elements send messages to hidden variables

 The activation energy of the hidden element is the weighted sum of

messages coming from the input elements

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

41

Interpretation of a restricted Boltzmann machine

by an example (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

SF/fantasy Oscar winners

42

Interpretation of a restricted Boltzmann machine

by an example (3)

 Bottom-up:

– RBM attempts to explain a person's preferences in terms of

hidden variables, i.e. what kind of movies do people prefer?

– However, if a person chooses Harry Potter, Avatar, and LOTR 3

films, this does not mean that a hidden element that

corresponds to the SF/fantasy group will be activated

– This means that the probability of activation of this hidden

element will be increased due to the high activation energy

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

43

Interpretation of a restricted Boltzmann machine

by an example (4)

 Top-bottom:

– If you know that some people prefer SF/fantasy, then you can

ask RBM which films belong to the specified group and which

films a person might like

– In this case, the hidden variables send messages to visible ones

=> the status of the visible variables is updated

– However, it can not be guaranteed that Harry Potter, Avatar,

and LOTR 3 films will always be recommended to a person.

Only a subset of them can be recommended

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

DEEP BOLTZMANN MACHINES

AND DEEP BELIEF NETWORKS

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
44

45

 By analogy with the stack of autoencoders, it is possible to

construct a stack of restricted Boltzmann machines

 If the states of the neurons of each

hidden layer depend on the previous

and the next ones (symmetric

connections), then this model is called

the deep Boltzmann machine (DBM)

Deep Boltzmann machine

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
45

…

…

…

…

…

ℎ1

ℎ2

ℎ𝑙−1

ℎ𝑙

𝑥

46

Training a deep Boltzmann machine (1)

 The parameters of this model can be trained by analogy with a

single-layer Boltzmann machine

 It is necessary to determine the joint distribution function through

the energy of the system 𝐸 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃 , and express the

probability of visible neurons 𝑝 𝑥; 𝜃 :

𝐸 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃 = −

𝑖=1

𝑙

ℎ𝑖−1
𝑇
𝑊𝑖ℎ𝑖 ,

𝑝 𝑥; 𝜃 =
1

𝑍

ℎ1,ℎ2,…ℎ𝑙

𝑒−𝐸 𝑥,ℎ
1,ℎ2,…,ℎ𝑙; 𝜃 ,

where 𝑥 = ℎ0 is a vector of visible neurons, ℎ𝑖 is a vector of hidden

neurons, 𝜃 = 𝑊1, … ,𝑊𝑙 is a set of parameters

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

47

Training a deep Boltzmann machine (2)

 Next, we need to obtain formulas for calculating conditional

probabilities 𝑝 𝑥 ℎ 1 , 𝑝 ℎ𝑘 ℎ𝑘−1 , 𝑝 ℎ𝑘 ℎ𝑘−1, ℎ𝑘+1 and the

derivatives of the probability distribution function with respect to

each parameter

 The procedure of training weights goes the slower, the further

hidden neurons are located from the layer of visible neurons

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

48

 In 2006, J. Hinton proposed an approach that allows quick

initialization of the model parameters

 This approach involves “greedy”

layer-by-layer network training

 Training is performed on the assumption

that each layer of neurons does not

depend on the next one

 After the stack of restricted Boltzmann

machines is trained, the system can be

viewed as a single “probabilistic model”

called the deep belief network (DBN)

Deep belief network

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

…

…

…

…

…

ℎ1

ℎ2

ℎ𝑙−1

ℎ𝑙

𝑥

RBM

49

The difference between a deep Boltzmann machine

and a deep belief network

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

…

…

…

…

…

ℎ1

ℎ2

ℎ𝑙−1

ℎ𝑙

𝑥 …

…

…

…

…

ℎ1

ℎ2

ℎ𝑙−1

ℎ𝑙

𝑥

RBM

Deep Boltzmann machine Deep belief network

50

Sigmoid belief network

 Sigmoid belief network consisting of 𝑙 layers models the function

of joint distribution 𝑝 𝑥, ℎ1, ℎ2, … , ℎ𝑙; 𝜃

 The joint probability distribution function can be expressed as a

product of conditional probabilities:

𝑝 𝑥, ℎ1, … , ℎ𝑙; 𝜃 = 𝑝 𝑥 ℎ1; 𝜃

𝑘=1

𝑙−2

𝑝 ℎ𝑘 ℎ𝑘+1; 𝜃 𝑝 ℎ𝑙−1, ℎ𝑙; 𝜃

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

51

Conditional probability distribution functions

for a sigmoid belief network

 Since the neurons on the layer are independent, and the activation

function on each layer is a sigmoid, the distribution functions of the

conditional probability are calculated as follows:

𝑝 ℎ𝑘 =

𝑖

𝑝 ℎ𝑖
𝑘 ,

𝑞 ℎ𝑘 ℎ𝑘−1; 𝜃 = 𝑝 ℎ𝑘 ℎ𝑘−1; 𝜃 =

𝑗

𝑝 ℎ𝑗
𝑘 ℎ𝑘−1; 𝜃

=

𝑗

𝑠𝑖𝑔𝑚 𝑊𝑗.
𝑘ℎ𝑘−1 ,

𝑝 ℎ𝑘−1 ℎ𝑘; 𝜃 =

𝑗

𝑝 ℎ𝑗
𝑘−1 ℎ𝑘; 𝜃 =

𝑗

𝑠𝑖𝑔𝑚 𝑊∙𝑗
𝑘𝑇ℎ𝑘

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

52

Greedy layer-by-layer training of a sigmoid belief

network (1)

1. Construct a restricted Boltzmann machine based on the input

layer 𝑥 and the first layer of hidden neurons ℎ1, training the

parameters of the first layer𝑊1

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

…

…ℎ1

𝑥

RBM

𝑊1

53

Greedy layer-by-layer training of a sigmoid belief

network (2)

2. Construct a restricted Boltzmann machine based on the hidden

layers ℎ1 и ℎ2 and training the second layer parameters𝑊2. The

weight matrix𝑊1 is fixed, and the vector values ℎ1 are sampled

from the distribution 𝑞 ℎ1 𝑥;𝑊1 obtained at the previous step

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

…

…

…

ℎ1

ℎ2

𝑥

RBM

𝑊2

𝑞 ℎ1 𝑥; 𝜃 𝑝 𝑥 ℎ1; 𝜃

54

Greedy layer-by-layer training of a sigmoid belief

network (3)

3. Construct restricted Boltzmann machines based on the following

pair of hidden layers ℎ𝑘 and ℎ𝑘+1, and train the corresponding

parameters𝑊𝑘+1. The weight matrix𝑊𝑘 is fixed, ℎ𝑘 are sampled

from the distribution 𝑞 ℎ𝑘 ℎ𝑘−1; 𝜃

Note: at the end of the greedy layer-by-layer training of a deep belief

network, it is possible to fine-tune the parameters, for example, using

the “wake-sleep” algorithm*

* Hinton G.E., Dayan P., Frey B. J., Neal R.M. The wake-sleep algorithm for unsupervised neural networks //

Science. – 1995. – Vol. 268, pp. 1558–1161.

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

DECONVOLUTIONAL NEURAL

NETWORKS

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
55

56

Deconvolutional neural networks (1)

 Deconvolutional neural networks proposed as a convolutional

version of sparse autoencoders

 Deconvolutional neural networks are used for visualization of

feature maps in convolutional networks

 Later, the idea of deconvolutional neural networks was widely used

to solve the problem of semantic segmentation

 In the simplest case, these networks consist of two blocks:

– Convolutional layer is a sequence of convolution, activation

function and pooling

– Deconvolutional layer is a sequence of reverse transforms

(unpooling, activation function and deconvolution)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks
56

57

Deconvolutional neural networks (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

C
o

n
v
o

lu
ti
o

n

N
o

n
-l

in
e

a
r

a
c
ti
v
a

ti
o

n

P
o

o
lin

g

N
o

n
-l

in
e

a
r

a
c
ti
v
a

ti
o

n

U
n

p
o

o
lin

g

D
e
c
o
n
v
o
lu

ti
o
n

Convolutional layer Deconvolutional layer

 As an activation function, let us consider the ReLU function

 As a pooling operation, let us consider the max pooling

58

Reverse transforms (1)

 Unpooling is a reverse transform to pooling

– The appeal is realized by storing the indices of the element of

the feature map in which the maximum value

– When deployed, the maximum value is placed in the

corresponding cell, and the surrounding values are reset to zero

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

59

Reverse transforms (2)

 Reverse non-linear activation

– The inverse function of ReLU is a ReLU function

– The authors of the method argue the choice of such an inverse

transformation in that the convolution is applied to the positive

part during feed forward of the network, so, during the

backward, the deconvolution should also be applied to the

positive part

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

60

Reverse transforms (3)

 Deconvolution

– Deconvolution involves the use of the same filters as in the

computation of a convolution

– The only difference is that the filter kernels are transposed

– An output image close to the original one

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

61

Training the deconvolutional neural network (1)

 The task of training the deconvolutional network is to obtain a

feature map before the deconvolution operation, applying a set of

filters to which we can obtain an output as close as possible to the

input image

 Assumed that 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑠 is an input image,

 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑠 is an output image, where 𝑠 is a number of

channels

 The goal of training is to restore the feature map

𝑧 = 𝑧1, 𝑧2, … , 𝑧𝐾 , which provides the best approximation to the

input image. The network output is calculated by applying

convolutional filters to the feature map 𝑧

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

62

Training the deconvolutional neural network (2)

 The network output is calculated by applying convolutions to the

feature map 𝑧:

 𝑦𝑘 =

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘

 The cost function is the Euclidean norm

𝐿 𝑦, 𝑦 =

𝑘

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘 − 𝑦𝑘
2

2

,

 The minimized functional is as follows:

𝐽 𝜃 =
𝜆

2

𝑦∈𝐼

𝑘

𝑖

𝑧𝑖 , 𝑓𝑖,𝑘 − 𝑦𝑘
2

2

+

𝑦∈𝐼

𝑖

𝑧𝑖
𝑝 → min

𝑧,𝜃
,

where 𝜃 = 𝑓𝑖,𝑘 is a set of parameters, 𝐼 is a set of input images

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

63

Training the deconvolutional neural network (3)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

∗

 𝑦1 𝑦2 𝑦𝑠…

𝑧1 𝑧2 𝑧𝐾…

𝑓1,1 𝑓2,1 𝑓𝐾,1…

…

∗ ∗

Feature maps

𝑓1,2 𝑓2,2 𝑓𝐾,2 Filters

Restored input image

. 𝑝

Regularization

parameter

64

Training the deconvolutional neural network (4)

 The above optimization problem is solved using the ISTA iteration

algorithm (Iterative Shrinkage-Thresholding Algorithm)*

* Beck A., Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

[https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterati

ve_Shrinkage-

Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

EXAMPLE OF UNSUPERVISED

LEARNING APPLICATION

FOR PRE-TRAINING PARAMETERS
Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

65

66

Architecture of fully-connected neural network

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

64 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

2 hidden neurons

Activation function

Logistic

Affine(nout=64, init=Xavier(),

bias=Constant(0),

activation=Tanh())

67

Stack of autoencoders

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

64 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

E
n
c
o
d
e
r D

e
c
o
d
e
r

68

Example of weight pre-training using Intel® neon™

Framework (1)

 The first autoencoder

– Input data of encoder are images

– Output data of decoder are images

– Labeled data: <image, image>

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 hidden neurons

Activation function

Hyperbolic tangent

E
n
c
o
d
e
r

D
e
c
o
d
e
r

69

Example of weight pre-training using Intel® neon™

Framework (2)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

the first autoencoder

def generate_mlp2b2_128_ae_stacked_step1_model(input_shape):

output_size=reduce(lambda p, x:p*int(x), input_shape, 1)

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Gaussian(scale=0.1),

bias=Constant(0), activation=Tanh(), name='fc_1'),

Affine(nout=output_size, init=Gaussian(scale=0.1),

bias=Constant(0), activation=Tanh(), name='fc_-1')

]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=SumSquared())

return (model, cost)

70

Example of weight pre-training using Intel® neon™

Framework (3)

 The second autoencoder

– How to construct?

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

71

Example of weight pre-training using Intel® neon™

Framework (4)

 The second autoencoder

– Input data is an encoder output of the previous autoencoder

– Let we save the pre-trained encoder layer of the previous

autoencoder in the second autoencoder model

– Labeled data: <image, output of the previous autoencoder>

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

E
n
c
o
d
e
r

D
e
c
o
d
e
r

Fully-connected layer

64 hidden neurons

Activation function

Hyperbolic tangent

Fully-connected layer

128 hidden neurons

Activation function

Hyperbolic tangent

72

Example of weight pre-training using Intel® neon™

Framework (5)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

the second autoencoder

def generate_mlp2b2_128_ae_stacked_step2_model(input_shape):

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_1'),

Affine(nout=64, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_2'),

Affine(nout=128, init=Xavier(),

bias=Constant(0),

activation=Tanh(), name='fc_-2')]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=SumSquared())

return (model, cost)

73

Example of weight pre-training using Intel® neon™

Framework (6)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

the final network

def generate_mlp2b2_128_ae_stacked_model():

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Affine(nout=128, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_1'),

Affine(nout=64, init=Xavier(), bias=Constant(0),

activation=Tanh(), name='fc_2'),

Affine(nout=2, init=Xavier(), bias=Constant(0),

activation=Logistic(shortcut=True), name='cls')

]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyBinary())

return (model, cost)

74

Example of weight pre-training using Intel® neon™

Framework (7)

 Training the stack of autoencoders:

– Prepare training data for the first autoencoder (the training data

consist of pairs <image, image>)

– Train the first autoencoder

– Remove the decoder from the model of the trained autoencoder

– Prepare the training data for the second autoencoder (the

training data consists of pairs <image, output of the previous

encoder>)

– Train the second autoencoder

– Remove the decoder from the model of the trained autoencoder

– Train the final network with pre-trained weights (use transfer

learning)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

75

Example of weight pre-training using Intel® neon™

Framework (8)

 The complete sources that implement the above sequence of steps

are described in the relevant practice
(Practice4_ae/main_train_stacked_autoencoder.py)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

76

Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

77

Summary results

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

Network id Accuracy, % Training time, s

FCNN-1 71.2 932

FCNN-2 73.5 977

FCNN-3 77.7 1013

CNN-1 79.3 1582

CNN-2 83.5 2030

ResNet-18 (90 epochs) 81.3 15127

ResNet-50 (30 epochs) 80.9 11849

FCNN-2 (+pretraining,

30 epochs)

78.9 2832

78

Time distribution between pre-training network

weights and training the complete network

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

0

951 964

977

917

0 500 1000 1500 2000 2500 3000

FCNN-2

FCNN-2
(+pretraining)

Time for each stage of the training network, s

Pretraining the layer #1 Pretraining the layer #2 Training the complete network

79

Conclusion

 Pre-training of network parameters takes a long time, comparable

with the training time of the network

 The developed methods of random parameter initialization make it

possible to obtain a good initial approximation to optimize the cost

function

 At present, methods of pre-training parameters are rarely used in

solving practical problems because of the effective random

generators existence

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

80

Literature

 Haykin S. Neural Networks: A Comprehensive Foundation. –

Prentice Hall PTR Upper Saddle River, NJ, USA. – 1998.

 Osovsky S. Neural networks for information processing. – 2002.

 Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press.

– 2016. – [http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

http://www.deeplearningbook.org/

81

Authors

 Kustikova Valentina Dmitrievna

Phd, lecturer, department of Computer software and

supercomputer technologies, Institute of Information Technologies,

Mathematics and Mechanics, Nizhny Novgorod State University

valentina.kustikova@itmm.unn.ru

 Zhiltsov Maxim Sergeevich

master of the 1st year training, Institute of Information Technology,

Mathematics and Mechanics, Nizhny Novgorod State University

zhiltsov.max35@gmail.com

 Zolotykh Nikolai Yurievich

D.Sc., Prof., department of Algebra, geometry and discrete

mathematics, Institute of Information Technologies, Mathematics

and Mechanics, Nizhny Novgorod State University

nikolai.zolotykh@itmm.unn.ru

Nizhny Novgorod, 2018 Unsupervised learning: autoencoders, restricted Boltzmann machines, deconvolutional networks

mailto:valentina.kustikova@itmm.unn.ru
mailto:zhiltsov.max35@gmail.com
mailto:nikolai.zolotykh@gmail.com
mailto:valentina.kustikova@itmm.unn.ru

