
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer software and supercomputer technologies

Educational course

«Introduction to deep learning

using the Intel® neon™ Framework»

Convolutional neural networks.

Deep residual networks

Valentina Kustikova,
Phd, lecturer, department of Computer software

and supercomputer technologies

Supported by Intel

2

Content

 The “convolution” operation

 The structure of a convolutional layer

 Input and output data of convolutional neural networks

 Backpropagation algorithm for convolutional neural networks

 Computing the number of network parameters. Estimating the

amount of memory required to store a convolutional network

 Example of a convolutional neural network for predicting a person's

sex from a photo

 Principles of constructing convolutional neural networks

 The problem of model degradation. Deep residual networks

 Example of a residual neural network for predicting a person's sex

from a photo

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

THE “CONVOLUTION” OPERATION.

THE STRUCTURE

OF A CONVOLUTIONAL LAYER
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

3

4

Convolutional neural networks

 Convolutional neural networks are the kind of neural networks

that, at least on one of their layers, use the "convolution" operation

as a transform

 Convolution is an operation applied to two real-valued functions

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

5

The “convolution” operation (1)

 Computer works with discrete data, and measurements are

performed at a certain interval, therefore discrete convolution is

considered:

𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡 =

𝑎=−∞

∞

𝑥 𝑎 𝑤 𝑡 − 𝑎 ,

where 𝑥 ∙ is an input, 𝑤 ∙ is a convolution kernel, output is a

feature map

* Digital Convolution -- E186 Handout

[http://fourier.eng.hmc.edu/e161/lectures/convolution/index.html]

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

http://fourier.eng.hmc.edu/e161/lectures/convolution/index.html

6

The “convolution” operation (2)

 In machine learning problems, the input is a multidimensional

array of data (tensor), and the kernel is a multidimensional array of

parameters

 If we have a two-dimensional image 𝐼 as input and a kernel 𝐾, then

the convolution operation is described as follows:

𝑠 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =

𝑚

𝑛

𝐼 𝑚, 𝑛 𝐾 𝑖 − 𝑚, 𝑗 − 𝑛

* A technical report on convolution arithmetic

in the context of deep learning [https://github.com/vdumoulin/conv_arithmetic]

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

https://github.com/vdumoulin/conv_arithmetic

7

The structure of a convolutional layer (1)

 The structure of a convolutional layer involves the following

transforms:

– Creating a set of linear activations by performing one or more

parallel convolutions

– Detection involves the application of a nonlinear activation

function to all linear activations

– Pooling to modify the output for transmission to the next layer of

the network

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

8

The structure of a convolutional layer (2)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Input layer

Convolution

Nonlinear activation function

Pooling

Next layer

Convolutional layer

9

Pooling (1)

 The idea of pooling is to replace the network output by the

summary statistics in the output neighborhood

 Examples:

– max pooling,

– average pooling,

– 𝐿2- norm in a rectangular neighborhood,

– weighted average based on the distance from the center

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

10

Pooling (2)

 Regardless of the pooling choice, it helps to make the

representation to be invariant with respect to the offset of the

inputs

 If the object moves slightly in the image, then the output values of

the pooling stage will remain practically unchanged

 For example, in the face detection problem, there is enough

information that on the left and right side of the face there is one

eye

 An example of applying max pooling (differences only at the

boundaries)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

0.1 1 0.2 0.1

1 1 1 0.2

0.3 0.1 1 0.2

0.3 1 1 1

11

Pooling (3)

 The pooling operation generalizes responses in a certain

neighborhood, therefore at this stage it is possible to use a

smaller number of neurons

 It is implemented by combining neighborhoods with a step (stride),

greater than one. Example of bypass (stride = 2):

 The computing efficiency of the network increases because the

input size of the next layer is smaller (about a stride-fold) than the

input size of the previous convolutional layer

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

…

INPUT AND OUTPUT DATA

OF CONVOLUTIONAL NEURAL

NETWORKS
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

12

13

One-dimensional input data

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Single-channel data Multi-channel data

Audio

• A discrete signal obtained with

some time step

• Convolution is calculated

along the time axis

Skeleton animation data

• At each time, the person's

pose is described by angles

formed at points

corresponding to the joints of

the skeleton

• Each data channel that is fed

to the input of the

convolutional network is an

angle around one axis of one

joint

14

Two-dimensional input data

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Single-channel data Multi-channel data

Preprocessed audio

• Signal after applying a

discrete Fourier transform

• A two-dimensional matrix in

which the rows correspond to

different frequencies, the

columns correspond to

different points in time

Color image

• Image in RGB (or BGR)

format

• The convolution kernel moves

in the horizontal and vertical

directions simultaneously,

thus ensuring invariance with

respect to the shift operation

15

Three-dimensional input data

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Single-channel data Multi-channel data

Spatial data

• A typical example is CT scan

Color video

• Sequence of color images

16

Output data (1)

 Convolutional neural networks allow to generate high-dimensional

output data

 As a rule, an output is a tensor obtained at the output of a standard

convolutional (or fully-connected) network layer

 For example, the model can generate a three-dimensional tensor

with the elements 𝑆𝑖,𝑗,𝑘, corresponding to the probability of the pixel

𝑖, 𝑗 belonging to the class 𝑘. The model allows to mark out each

pixel and select objects in the image, i.e. to solve the semantic

segmentation problem

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

17

Output data (2)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

* The PASCAL Visual Object Classes Homepage [http://host.robots.ox.ac.uk/pascal/VOC]

Origin image Layout Semantic segmentation

http://host.robots.ox.ac.uk/pascal/VOC/

18

Output data (3)

 The output shape of the convolutional network depends on the

particular application that is being solved

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

BACKPROPAGATION ALGORITHM

FOR CONVOLUTIONAL NEURAL

NETWORKS
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

19

20

Backpropagation algorithm for convolutional neural

networks. Assumptions and notations

 Let us consider a convolutional network containing only one

convolutional layer

 Assume that we have one-dimensional input data

 We denote as 𝐸 𝑤 the cost function

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑛

𝑢𝑘 , 1 ≤ 𝑘 ≤ 𝑚

…

… …

Input

layer

Convolution Activation

function

𝜑

Pooling

𝑝

𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑑

𝑣𝑗 , 1 ≤ 𝑗 ≤ 𝑛 − 𝑑 + 1 𝑠𝑗

21

Feed forward. Computing derivatives (1)

 The result of applying convolution to the input signal is as follows:

𝑣𝑗 =

𝑖=1

𝑑

𝑥𝑗+𝑖−1𝑤𝑖 = 𝑤
𝑇𝑥𝑗:𝑗+𝑑−1

 Then the derivative of the convolution with respect to the weight

coefficients of the kernel is calculated as follows:
𝜕𝑣𝑗

𝜕𝑤𝑖
= 𝑥𝑗+𝑖−1, ∀𝑖 = 1, 𝑑

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

22

Feed forward. Computing derivatives (2)

 The derivative of the cost function related to the kernel weights is

as follows:

𝜕𝐸 𝑤

𝜕𝑤𝑖
=
𝜕𝐸

𝜕𝑣

𝜕𝑣

𝜕𝑤𝑖
=

𝑗=1

𝑛−𝑑+1
𝜕𝐸

𝜕𝑣𝑗

𝜕𝑣𝑗

𝜕𝑤𝑖
=

𝑗=1

𝑛−𝑑+1
𝜕𝐸

𝜕𝑣𝑗
𝑥𝑗+𝑖−1 =

= 𝛿 𝑐𝑜𝑛𝑣 ∗ 𝑥 𝑖 = 𝑥 ∗ 𝛿 𝑐𝑜𝑛𝑣 𝑖 ,

𝛿 𝑐𝑜𝑛𝑣 =
𝜕𝐸

𝜕𝑣𝑗 𝑗=1,𝑛−𝑑+1
,
𝜕𝐸

𝜕𝑤
= 𝑥 ∗ 𝛿 𝑐𝑜𝑛𝑣

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

23

Feed forward. Computing derivatives (3)

 The derivatives of the activation function and the pooling function

depend on the form of the functions

 Any differentiable real-valued function can be chosen as a polling

function

 𝑖=1
𝑞
𝑥𝑖
𝑞
,

𝜕𝑝

𝜕𝑥𝑖
=
1

𝑞
, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

max
𝑖=1,𝑞
𝑥𝑖 ,

𝜕𝑝

𝜕𝑥𝑖
=
1, 𝑥𝑖 = max

𝑖=1,𝑞
𝑥𝑖

0, иначе
, 𝑚𝑎𝑥 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

𝑥 𝑝 =

𝑖=1

𝑞

𝑥𝑖
𝑝

1
𝑝

,
𝜕𝑝

𝜕𝑥𝑖
=

𝑖=1

𝑞

𝑥𝑖
𝑝

1
𝑝
−1

𝑥𝑖
𝑝−1, 𝐿𝑝 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

𝑝: ℝ𝑞 → ℝ, ∃
𝜕𝑝

𝜕𝑥𝑖
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

24

Feed forward. Computing derivatives (4)

 The derivative of the cost function is calculated as follows:

𝜕𝐸 𝑤

𝜕𝑤𝑖
=

𝑗=1

𝑛−𝑑+1
𝜕𝐸

𝜕𝑢𝑘

𝜕𝑝

𝜕𝑠𝑗

𝜕𝜑

𝜕𝑣𝑗
𝑥𝑗+𝑖−1 = 𝑥 ∗ 𝛿

𝑐𝑜𝑛𝑣 𝑥𝑖 ,

𝛿𝑗,𝑘
𝑐𝑜𝑛𝑣
=
𝜕𝐸

𝜕𝑢𝑘

𝜕𝑝

𝜕𝑠𝑗

𝜕𝜑

𝜕𝑣𝑗
= 𝛿𝑘
𝑝𝑜𝑜𝑙 𝜕𝑝

𝜕𝑠𝑗

𝜕𝜑

𝜕𝑣𝑗
, 𝛿𝑘

𝑝𝑜𝑜𝑙
=
𝜕𝐸

𝜕𝑢𝑘

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

25

Backward. Weight update

 The type of the pooling function determines in which direction the

error propagates

 In the case of max pooling, it is obvious that the gradient of the cost

function on the last layer goes towards the neuron 𝑠𝑗, at the output

of which the maximum value

 In the general case, the gradient propagates in accordance with

the value 𝛿𝑘
𝑝𝑜𝑜𝑙
, 1 ≤ 𝑘 ≤ 𝑚

 This value is transmitted in the reverse direction and the gradient

values on the convolutional layer are determined in accordance

with the formula for calculating 𝛿𝑗,𝑘
𝑐𝑜𝑛𝑣
, 1 ≤ 𝑗 ≤ 𝑛 − 𝑑 + 1

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

COMPUTING THE NUMBER

OF NETWORK PARAMETERS

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks
26

27

Why determine the number of network parameters?

 It allows to estimate the parameter space dimension in which the

task of minimizing the cost function will be solved

 It allows to estimate the amount of memory required for training /

testing a neural network

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

28

Computing the number of convolutional network

parameters (1.1)

 Assumed that the network input is a single-channel image of the

resolution 𝑤 × ℎ

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

𝑤

ℎ

29

Computing the number of convolutional network

parameters (1.2)

 The network contains 𝑁 convolutional layers (triples consisting of

convolution, activation function and pooling)

 On each layer the feature map is convolved with filter whose kernel

size is 𝑤𝑐𝑖 × ℎ𝑐𝑖, where 1 ≤ 𝑖 ≤ 𝑁 is a layer number

 The image is bypassed by the filter with the stride 𝑠𝑐𝑖

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

𝑤

ℎ

𝑤𝑐𝑖

ℎ𝑐𝑖

𝑠𝑐𝑖

30

Computing the number of convolutional network

parameters (1.3)

 The number of network parameters is described as follows:

𝑖=1

𝑁

𝑤𝑐𝑖 ∙ ℎ𝑐𝑖

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

31

Computing the number of convolutional network

parameters (2)

 In general case, a convolution can be calculated with several

kernels of the same size on each layer

 Assuming that the layer with number 𝑖 contains 𝑘𝑖 convolutions,

the total number of parameters is as follows:

𝑖=1

𝑁

𝑘𝑖 ∙ 𝑤𝑐𝑖 ∙ ℎ𝑐𝑖

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

32

The amount of memory required to store

a convolutional neural network (1)

 The input network layer contains 𝑤 × ℎ pixels

 Appling 𝑘1 convolutions to the input layer leads to the feature map

of the shape which is computed as follows

𝑘1 ×
𝑤 −𝑤𝑐1
𝑠𝑐1

+ 1 ×
ℎ − ℎ𝑐1
𝑠𝑐1

+ 1

 Appling activation function to each element of this feature map

allows to obtain the feature map with the same shape

𝑘1 ×
𝑤 −𝑤𝑐1
𝑠𝑐1

+ 1 ×
ℎ − ℎ𝑐1
𝑠𝑐1

+ 1

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

33

The amount of memory required to store

a convolutional neural network (2)

 Let us introduce the notation:

𝑤1 =
𝑤 −𝑤𝑐1
𝑠𝑐1

+ 1, ℎ1 =
ℎ − ℎ𝑐1
𝑠𝑐1

+ 1

 Assumed the pooling operation is applied to each channel of the

feature map (output of activation function)

 Assumed the shape of neighborhood is 𝑤𝑝1 × ℎ𝑝1, and the stride

is 𝑠𝑝1

 The shape of the feature map after pooling is calculated as follows:

𝑘1 ×
𝑤1 −𝑤𝑝1
𝑠𝑝1

+ 1 ×
ℎ1 − ℎ𝑝1
𝑠𝑝1

+ 1

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

34

The amount of memory required to store

a convolutional neural network (3)

 The amount of memory required for storing the convolutional layer

is described as follows:

2𝑘1𝑤1ℎ1 + 𝑘1
𝑤1 −𝑤𝑝1
𝑠𝑝1

+ 1
ℎ1 − ℎ𝑝1
𝑠𝑝1

+ 1 ∙ 𝑠𝑖𝑧𝑒𝑜𝑓 𝑡𝑦𝑝𝑒

 If we have 𝑁 convolutional layers, arranged in the same way, then

to store the network the following amount of memory is required:

𝑤 ∙ ℎ +

𝑖=1

𝑁

2𝑘𝑖𝑤𝑖ℎ𝑖 + 𝑘𝑖
𝑤𝑖 −𝑤𝑝𝑖
𝑠𝑝𝑖

+ 1
ℎ𝑖 − ℎ𝑝𝑖
𝑠𝑝𝑖

+ 1

∙ 𝑠𝑖𝑧𝑒𝑜𝑓 𝑡𝑦𝑝𝑒 ,

𝑤𝑖 =
𝑤𝑖−1 −𝑤𝑐𝑖
𝑠𝑐𝑖

+ 1, ℎ𝑖 =
ℎ𝑖−1 − ℎ𝑐𝑖
𝑠𝑐𝑖

+ 1, 𝑤0 = 𝑤, ℎ0 = ℎ

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

35

The amount of memory required to store

a convolutional neural network (4)

 Described sample is a special case of a convolutional network and

it represents the general steps to estimate the amount of memory

required for storing this network

– The network input might be a signal different in structure from

the considered one (multidimensional signal)

– Applying the convolution operation, the input feature map can

be supplemented by borders to preserve the shape of the output

feature map

– A convolutional network may contain fully-connected layers

– During training, a batch of images can be fed to the network

input in order to improve the efficiency of calculations and the

learning convergence

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

EXAMPLE OF A CONVOLUTIONAL

NEURAL NETWORK FOR PREDICTING

A PERSON'S SEX FROM A PHOTO

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks
36

37

Convolutional neural network

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Max pooling: 3×3, 2

Image

𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

Convolution

32: 3 × 3, 1

Activation function

Rectlin

Convolution

64: 3 × 3, 1

Activation function

Rectlin

Max pooling: 3×3, 2

Fully-connected layer

2 hidden neurons

Activation function

Logistic

38

Example of a convolutional network for predicting

a person’s sex from a photo

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

def generate_cnn_model():

layers = [

DataTransform(transform=Normalizer(divisor=128.0)),

Conv(fshape=(3, 3, 32), padding=2, strides=1,

dilation=2, init=Kaiming(), activation=Rectlin()),

Pooling(fshape=(3, 3), padding=1, strides=2, op='max'),

Conv(fshape=(3, 3, 64), padding=2, strides=1,

dilation=2, init=Kaiming(), activation=Rectlin()),

Pooling(fshape=(3, 3), padding=1, strides=2, op='max'),

Affine(nout=class_count, init=Xavier(),

activation=Logistic(shortcut=True))]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyBinary())

return (model, cost)

39

Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

40

Experiments

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Network

id

Network

structure

Learning

parameters

Accuracy,

%

Training

time, s

CNN-1 Conv((3,3,32),0,Rectlin),

Pooling((3,3),2,'max'),

Conv((3,3,64),0,Rectlin),

Pooling((3,3),2,'max'), Affine(2,0),

Logistic)

batch_size = 128

epoch_count = 30

backend = gpu

GradientDescentMo

mentum(0.01,

momentum_coef=

0.9, wdecay=0.0005)

79.3 1582

CNN-2 Conv((3,3,32),Explin),

Pooling((5,5),2,'max'),

Conv((3,3,32),Explin), BatchNorm,

Conv((1,1,64),Explin), BatchNorm,

Conv((3,3,64),Explin), BatchNorm,

Conv((1,1,128),Explin),

BatchNorm,

Conv((3,3,128),Explin),

BatchNorm,

Conv((3,3,2),Explin), BatchNorm,

Conv((1,1,2),0,Explin), BatchNorm,

Pooling('avg'), Affine(2,0,Logistic)

83.5 2030

41

Comparison of the fully-connected neural networks

and the convolutional neural networks

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Network

id

Network structure Accuracy,

%

Training

time, s

FCNN-1 Affine(128,0,Tanh), Affine(2,0,Logistic) 71.2 932

FCNN-2 Affine(128,0,Tanh), Affine(64,0,Tanh), Affine(2,0,Logistic) 73.5 977

FCNN-3 Affine(400,0,Rectlin), Affine(50,0,Logistic),

Affine(2,0,Logistic) 77.7 1013

CNN-1 Conv((3,3,32),0,Rectlin), Pooling((3,3),2,'max'),

Conv((3,3,64),0,Rectlin), Pooling((3,3),2,'max'), Affine(2,0),

Logistic)

79.3 1582

CNN-2 Conv((3,3,32),Explin), Pooling((5,5),2,'max'),

Conv((3,3,32),Explin), BatchNorm,

Conv((1,1,64),Explin), BatchNorm,

Conv((3,3,64),Explin), BatchNorm,

Conv((1,1,128),Explin), BatchNorm,

Conv((3,3,128),Explin), BatchNorm,

Conv((3,3,2),Explin), BatchNorm,

Conv((1,1,2),0,Explin), BatchNorm, Pooling('avg'),

Affine(2,0,Logistic)

83.5 2030

PRINCIPLES OF CONSTRUCTING

CONVOLUTIONAL NEURAL

NETWORKS
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

42

43

Principles of constructing convolutional neural

networks (1)

 Perform preprocessing of input data

– Subtraction of mean image obtained over all images of the

training set

– Centering images

 Avoid “bottlenecks” in the network representation, especially

on the first layers

– It makes sense to avoid extreme information compression

– The shape of representation is an approximate estimation of the

content

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

44

Principles of constructing convolutional neural

networks (2)

 Replace convolutions of large dimension with a stack of

convolutions of lower dimension

– A convolution with a filter 5×5 can be replaced by two

convolutions with 3×3 filters

– We create a network with a smaller number of parameters, but

with the same input shape and output depth

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Convolution 5×5

Convolution 3×3

Convolution 3×3

45

Principles of constructing convolutional neural

networks (3.1)

 Spatial aggregation should be performed on feature maps of

lower dimensionality to reduce computational complexity

– Implemented through pooling or the inception-modules

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

pooling

convolution

35×35×320

17×17×320

17×17×640

46

Principles of constructing convolutional neural

networks (3.1)

 Spatial aggregation should be performed on feature maps of

lower dimensionality to reduce computational complexity

– Implemented through pooling or the inception-modules

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

pooling

convolution

35×35×320

17×17×320

17×17×640

Loss of

information

about the initial

representation

47

Principles of constructing convolutional neural

networks (3.1)

 Spatial aggregation should be performed on feature maps of

lower dimensionality to reduce computational complexity

– Implemented through pooling or the inception-modules

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

pooling

convolution

35×35×320

17×17×320

17×17×640

convolution

35×35×320

35×35×640

17×17×640

pooling
Loss of

information

about the initial

representation

48

Principles of constructing convolutional neural

networks (3.1)

 Spatial aggregation should be performed on feature maps of

lower dimensionality to reduce computational complexity

– Implemented through pooling or the inception-modules

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

pooling

convolution

35×35×320

17×17×320

17×17×640

convolution

35×35×320

35×35×640

17×17×640

pooling
Growth of the

computational

complexity

Loss of

information

about the initial

representation

49

Principles of constructing convolutional neural

networks (3.2)

 Spatial aggregation should be performed on feature maps of

lower dimensionality to reduce computational complexity

– Implemented through pooling or the inception-modules

* Szegedy C., Vanhoucke V., Ioffe S., Shlens J. Rethinking the Inception Architecture for Computer Vision

– [https://arxiv.org/pdf/1512.00567v3.pdf].

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

https://arxiv.org/pdf/1512.00567v3.pdf

50

Principles of constructing convolutional neural

networks (4)

 Balance the depth and width of the network

– Increasing the width and depth of the network can help to create

networks of higher performance

– Optimum network performance can be achieved by balancing

the number of filters on each convolutional layer and the

network depth

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

THE PROBLEM OF MODEL

DEGRADATION. DEEP RESIDUAL

NETWORKS
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

51

52

The problem of model degradation

 The problem of model degradation:

– With the increase of the network depth, the accuracy is

saturated and then rapidly begins to decrease (degrade)

 The problem is not a consequence of an overfitting

 Increasing the number of layers leads to a greater training error

 The accuracy degradation indicates that not all deep models are

equally easily optimized

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

53

Deep residual networks (1)

 Instead of assuming that a sequence of network layers directly

approximates the base mapping, it is assumed that these layers

approximate the residual mapping

 Let us introduce

– 𝐻 𝑥 is a base mapping

– 𝐹 𝑥 = 𝐻 𝑥 − 𝑥 is a residual mapping

– The base mapping can be represented as an element-by-

element addition of feature maps 𝐹 𝑥 + 𝑥

 It is assumed that the residual mapping is easier to optimize than

the base mapping. In the extreme case, if the identity transform is

optimal, then it is simpler to reduce the remainder to zero than to

approximate the identical mapping by a set of nonlinear layers

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

54

Deep residual networks (2)

 The mapping 𝐹 𝑥 + 𝑥 can be represented as a feed-forward

network with shortcut connections

 For the represented example

𝑦 = 𝐹 𝑥,𝑊𝑖 + 𝑥 =
𝑊2𝜑 𝑊1𝑥 + 𝑥, where

𝜑(∙) is the activation function

ReLU

 𝐹 𝑥,𝑊𝑖 and 𝑥 can have

different dimension. To fix this

difference it is sufficient to perform

the projection of the input feature

vector 𝑦 = 𝐹 𝑥,𝑊𝑖 +𝑊𝑠𝑥

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Weighted layer

Weighted layer

𝑥

𝑥 (identity

mapping)

𝐹 𝑥

𝐹 𝑥 + 𝑥 +

ReLU

ReLU

EXAMPLE OF A RESIDUAL

NETWORK FOR PREDICTING

A PERSON'S SEX FROM A PHOTO
Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

55

56

The residual neural network ResNet-18 (1)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Max pooling: 3×3, 2

Convolutional layer

64: 7 × 7, 2

Convolutional layer

64: 3 × 3, 1

Convolutional layer

64: 3 × 3, 1

Convolutional layer

64: 3 × 3, 1

Convolutional layer

64: 3 × 3, 1

Convolutional layer

128: 3 × 3, 1

Convolutional layer

128: 3 × 3, 1

Convolutional layer

128: 3 × 3, 1

Convolutional layer

128: 3 × 3, 1

57

The residual neural network ResNet-18 (2)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Convolutional layer

256: 3 × 3, 1

Convolutional layer

256: 3 × 3, 1

Convolutional layer

256: 3 × 3, 1

Convolutional layer

256: 3 × 3, 1

Convolutional layer

512: 3 × 3, 1

Convolutional layer

512: 3 × 3, 1

Convolutional layer

512: 3 × 3, 1

Convolutional layer

512: 3 × 3, 1

58

The residual neural network ResNet-18 (3)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Fully-connected layer

2 hidden neurons

Activation function

Softmax

Average pooling: 7×7, 1

 Notes:

– The normalization BatchNorm and the activation function ReLU

follow after each convolutional layer

– ResNet-34, ResNet-50, ResNet-101 are constructed in the

same way

59

Example of a residual network for predicting

a person's sex from a photo (1)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

def generate_resnet18_model():

layers = make_resnet_base([2, 2, 2, 2], block='basic')

layers.append(BatchNorm())

layers.append(Activation(Rectlin()))

layers.append(Pooling('all', op='avg'))

layers.append(Affine(2, init=Kaiming(local=False),

activation=Softmax()))

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyMulti())

return (model, cost)

60

Example of a residual network for predicting

a person's sex from a photo (2)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

def make_resnet_base(stage_depths, block='basic',

base_channels=64):

from math import log2

def conv_params(fsize, nfm, stride=1, relu=True,

batch_norm=True):

return dict(

fshape=(fsize, fsize, nfm),

strides=stride,

padding=fsize // 2,

activation=(Rectlin() if relu else None),

init=Kaiming(local=True),

batch_norm=batch_norm)

...

61

Example of a residual network for predicting

a person's sex from a photo (3)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

def module_basic(nfm, first=False, stride=1):

building block for ResNet-18

mainpath = [] if first else [BatchNorm(),

Activation(Rectlin())]

mainpath.append(Conv(**conv_params(3, nfm,

stride=stride)))

mainpath.append(Conv(**conv_params(3, nfm,

relu=False, batch_norm=False)))

sidepath = Conv(**conv_params(1, nfm, stride=stride,

relu=False, batch_norm=False))

if (first or (stride != 1)) else SkipNode()

return MergeSum([sidepath, mainpath])

...

62

Example of a residual network for predicting

a person's sex from a photo (4)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

def module_bottleneck(nfm, first=False, stride=1):

building block for ResNet-50, -101, -152

mainpath = [] if first else [BatchNorm(),

Activation(Rectlin())]

mainpath.append(Conv(**conv_params(1, nfm,

stride=stride)))

mainpath.append(Conv(**conv_params(3, nfm)))

mainpath.append(Conv(**conv_params(1, nfm * 4,

relu=False, batch_norm=False)))

sidepath = Conv(**conv_params(1, nfm * 4,

stride=stride, relu=False, batch_norm=False))

if (first or (stride != 1)) else SkipNode()

return MergeSum([sidepath, mainpath])

63

Example of a residual network for predicting

a person's sex from a photo (5)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

blocks = {'basic': module_basic, 'bottleneck':

module_bottleneck}

18: [2, 2, 2, 2], output = 512, block = 'basic‘

34: [3, 4, 6, 3], output = 512, block = 'basic'

50: [3, 4, 6, 3], output = 2048, block = 'bottleneck'

stage_depths_populated = []

for stage, depth in enumerate(stage_depths):

stage_depths_populated.extend([stage] * depth)

nfms is a list of channel counts in blocks

nfms = [2**(stage + int(log2(base_channels))) for stage

in stage_depths_populated]

strides = [1 if cur == prev else 2 for cur, prev

in zip(nfms[1:], nfms[:-1])]

module = blocks[block]

64

Example of a residual network for predicting

a person's sex from a photo (6)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Now construct the network

layers = [

Conv(**conv_params(7, base_channels, 2)),

Pooling(fshape=(3, 3), padding=1, strides=2,

op='max')

]

layers.append(module(nfms[0], first=True))

for nfm, stride in zip(nfms[1:], strides):

layers.append(module(nfm, stride=stride))

return layers

65

Infrastructure

 CPU: Intel® Xeon® CPU E5-2660 0 @ 2.20GHz

 GPU: Tesla K40s 11Gb

 OS: Ubuntu 16.04.4 LTS

 Frameworks:

– Intel® neon™ Framework 2.6.0

– CUDA 8.0

– Python 3.5.2

– Intel® Math Kernel Library 2017 (Intel® MKL)

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

66

Comparison of the fully-connected neural networks,

the convolutional and residual neural networks

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

Network id Accuracy, % Training time, s

FCNN-1 71.2 932

FCNN-2 73.5 977

FCNN-3 77.7 1013

CNN-1 79.3 1582

CNN-2 83.5 2030

ResNet-18 (90 epochs) 81.3 15127

ResNet-50 (30 epochs) 80.9 11849

67

Conclusion

 The use of convolutional networks makes it possible to improve the

accuracy of solving the problem

 The construction of residual neural networks does not allow us to

obtain a significant gain relative to the fully-connected models for

the problem of person’s sex classification

 The effectiveness of the residual network application in solving

other practical problems should be checked experimentally

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

68

Literature

 Haykin S. Neural Networks: A Comprehensive Foundation. –

Prentice Hall PTR Upper Saddle River, NJ, USA. – 1998.

 Osovsky S. Neural networks for information processing. – 2002.

 Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press.

– 2016. – [http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

http://www.deeplearningbook.org/

69

Authors

 Kustikova Valentina Dmitrievna

Phd, lecturer, department of Computer software and

supercomputer technologies, Institute of Information Technologies,

Mathematics and Mechanics, Nizhny Novgorod State University

valentina.kustikova@itmm.unn.ru

 Zhiltsov Maxim Sergeevich

master of the 1st year training, Institute of Information Technology,

Mathematics and Mechanics, Nizhny Novgorod State University

zhiltsov.max35@gmail.com

 Zolotykh Nikolai Yurievich

D.Sc., Prof., department of Algebra, geometry and discrete

mathematics, Institute of Information Technologies, Mathematics

and Mechanics, Nizhny Novgorod State University

nikolai.zolotykh@itmm.unn.ru

Nizhny Novgorod, 2018 Convolutional neural networks. Deep residual networks

mailto:valentina.kustikova@itmm.unn.ru
mailto:zhiltsov.max35@gmail.com
mailto:nikolai.zolotykh@gmail.com
mailto:valentina.kustikova@itmm.unn.ru

