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Deterministic model of a neuron (1)
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Deterministic model of a neuron (2)

 The neuron model consists of three main components:

– Synapses are input signals, each of which is characterized by 

its own weight

– Summator is a component that adds input signals multiplied by 

synaptic weights

– Activation function is a component that limits the amplitude of 

the output signal. Output of a neuron, as a rule, belongs the 

interval [0,1] or [−1,1]
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Deterministic model of a neuron (3)

 Mathematical model of a neuron:

𝑢𝑘 =  

𝑗=1

𝑛

𝑤𝑘,𝑗𝑥𝑗 , 𝑦𝑘 = 𝜑 𝑢𝑘 + 𝑏𝑘 (1)

 Assuming 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘, the pair of equations can be written as 

follows:

𝑣𝑘 =  

𝑗=0

𝑛

𝑤𝑘,𝑗𝑥𝑗 , 𝑦𝑘 = 𝜑 𝑣𝑘 , (2)

where 𝑥0 = 1 is a new synapse, 𝑤𝑘,0 = 𝑏𝑘 is its weight

 Models (1) и (2) are equivalent neuron models
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Activation functions (1)

 Threshold function (a) describes an all-or-nothing principle. 

Applies to tasks that require a binary response

 Piecewise-linear function (b) can be considered as an 

approximation of a nonlinear amplifier

Nizhny Novgorod, 2018 Fully-connected neural networks
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Activation functions (2)

 Sigmoid functions (c). Examples of such functions are the logistic 

function and the hyperbolic tangent

 Rectified Linear Unit (ReLU, d)
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General structure of a multilayer fully-connected 

neural network (1)

 A multilayer fully-connected neural network contains neurons that 

are distributed across layers
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General structure of a multilayer fully-connected 

neural network (2)

 In the simplest case, the network has input and output layers, and 

the network is a single layer neural network
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General structure of a multilayer fully-connected 

neural network (3)

 If the signal passes from the neurons of the input layer to the 

output neurons, then such a network is a feedforward network
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General structure of a multilayer fully-connected 

neural network (4)

 A network can contain many hidden layers. In this case the network 

is called a multilayer network

 If all nodes of the layer are connected to the nodes of the next 

layer, then the layer is called fully-connected

 If this condition is met for all layers of the network, the network is 

called fully-connected neural network (FCNN)
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Training problem of a multilayer fully-connected 

neural network

 A training purpose is to adjust network weights

 A training task is a task of minimizing a cost function (an error 

function) reflecting the difference in the expected signal received at 

the network output and the actual signal corresponding to the 

current input, over the complete training set

Nizhny Novgorod, 2018 Fully-connected neural networks
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Quadratic cost function for a single layer neural 

network (1)

 Consider a single layer neural network containing 𝑁 input and 𝑀
output neurons

 Train set 𝑋, 𝑌

– 𝐿 is a number of samples in the set,

– 𝑋 is a set of input signals (dimension equals 𝑁),

– 𝑌 is a set of actual output signals (dimension equals 𝑀)

Nizhny Novgorod, 2018 Fully-connected neural networks
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Quadratic cost function for a single layer neural 

network (2)

 The quadratic cost function:

𝐸 =
1

2
 

𝑘=1

𝐿

𝑦𝑘 − 𝑢𝑘 2
=

1

2
 

𝑘=1

𝐿

 

𝑗=1

𝑀

𝑦𝑗
𝑘 − 𝑢𝑗

𝑘 2

=
1

2
 

𝑘=1

𝐿

 

𝑗=1

𝑀

𝑦𝑗
𝑘 − 𝜑  

𝑖=0

𝑁

𝑤𝑗𝑖𝑥𝑖
𝑘

2

,

where 𝑦𝑘 = 𝑦𝑗
𝑘

𝑗=1,𝑀
∈ 𝑌 is a train set, 𝑢𝑘 = 𝑢𝑗

𝑘

𝑗=1,𝑀
is a 

network output for the input 𝑥𝑘 = 𝑥𝑖
𝑘

𝑖=1,𝑁
∈ 𝑋

 Also, the normalization of the indicated metric is introduced by the 

number of training samples 𝐿
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Quadratic cost function for a single layer neural 

network (3)

 What happens if we use two-layer network instead of a single 

layer?
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Quadratic cost function for a two-layer neural 

network (1)

 Let us consider a two-layer neural network:

 𝑤𝑠𝑖
1

, 𝑤𝑗𝑠
2

are synaptic weights

 The output signal of the hidden layer neuron is described as 

follows:

𝑣𝑠 = 𝜑 1  𝑖=0
𝑁 𝑤𝑠𝑖

1
𝑥𝑖 , 𝑠 = 0, 𝐾, where 𝐾 is a neuron number at 

the hidden layer

Nizhny Novgorod, 2018 Fully-connected neural networks
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Quadratic cost function for a two-layer neural 

network (2)

 Let us consider a two-layer neural network:

 Signal of the output neuron 𝑗:

𝑢𝑗 = 𝜑 2  

𝑠=0

𝐾

𝑤𝑗𝑠
2

𝑣𝑠 = 𝜑 2  

𝑠=0

𝐾

𝑤𝑗𝑠
2

𝜑 1  

𝑖=0

𝑁

𝑤𝑠𝑖
1

𝑥𝑖 , 𝑗 = 1,𝑀.
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Quadratic cost function for a two-layer neural 

network (3)

 Quadratic cost function for the training set:

𝐸 𝑤 =
1

2
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Optimization formulation of the training problem

with a quadratic cost function

 A general mathematical formulation of the training problem with a 

quadratic cost function:

min
𝑤

𝐸 𝑤 = min
𝑤

1

𝐿
 

𝑘=1

𝐿
1

2
 

𝑗=1

𝑀

𝑦𝑗
𝑘 − 𝑢𝑗

𝑘 2

 A quadratic cost function reflects the difference of the network 

output and the label

 A quadratic (Euclidean) cost function is applied when solving 

the regression problem
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Optimization formulation of the training problem

with a cross-entropy error function

 For the classification problem the cross-entropy is chosen as a 

cost  function. Let us consider the problem of training network:

min
𝑤

𝐸 𝑤 = min
𝑤

−
1

𝐿
 

𝑘=1

𝐿

 

𝑗=1

𝑀

𝑦𝑗
𝑘 ln 𝑢𝑗

𝑘

where 𝑦𝑗
𝑘 = 1 ↔ 𝑥𝑘 belongs the class 𝑗, otherwise 𝑦𝑗

𝑘 = 0

 Cross-entropy is a differentiable approximation of the cost function 

for the classification problem “0-1”

 As an activation function on the last layer, it is recommended to 

select softmax function:

𝜑 𝑢𝑗 =
𝑒𝑢𝑗

 𝑖=1
𝑀 𝑒𝑢𝑖

Nizhny Novgorod, 2018 Fully-connected neural networks
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Backpropagation algorithm (1)

 Backpropagation algorithm determines the strategy of changing 

network parameters 𝑤 during training using gradient optimization 

methods

 Gradient methods at each step refine the parameter values:

𝑤 𝑘 + 1 = 𝑤 𝑘 + 𝜂𝑝(𝑤)

– 𝜂, 0 < 𝜂 < 1 is a learning rate (the “speed” of the movement in 

the direction of the function minimum), 

– 𝑝(𝑤) is a direction in a multidimensional space of network 

parameters

 In the classical backpropagation algorithm, the direction of motion 

coincides with the direction of the antigradient 𝑝 𝑤 = −𝛻𝐸(𝑤)

Nizhny Novgorod, 2018 Fully-connected neural networks
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Backpropagation algorithm (2)

 Initialization of the network synaptic weights (randomly from 

some distribution)

 Repeating the following steps for each sample of the training 

dataset

1. Feed forward:

1. Calculating output values for all neurons

2. Calculating derivatives of activation functions for each layer

2. Backward:

1. Calculating cost function value and its derivative

2. Refining synaptic weights

 Stopping criteria: the number of iterations (the number of 

passes along the entire training set), the cost function value

Nizhny Novgorod, 2018 Fully-connected neural networks
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Backpropagation algorithm for two-layer network (1)

 Let us calculate the derivatives and the cost function values on the 

example of a two-layer neural network

 The cost function is described as follows:

𝐸 𝑤 =
1

2
 

𝑗=1

𝑀

𝑦𝑗 − 𝜑 2  

𝑠=0

𝐾

𝑤𝑗𝑠
2

𝜑 1  

𝑖=0

𝑁

𝑤𝑠𝑖
1

𝑥𝑖

2
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𝑢𝑗

Backpropagation algorithm for two-layer network (2)

 The derivative of the cost function with respect to the parameters of 

the last network layer:

𝜕𝐸

𝜕𝑤𝑗𝑠
2

=

𝜕
1
2
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2
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𝑣𝑠

Backpropagation algorithm for two-layer network (2)

 The derivative of the cost function with respect to the parameters of 

the last network layer:
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𝑣𝑠

Backpropagation algorithm for two-layer network (2)

 The derivative of the cost function with respect to the parameters of 

the last network layer:
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Backpropagation algorithm for two-layer network (3)

 The derivative of the cost function with respect to the parameters of 

hidden layer:

𝜕𝐸

𝜕𝑤𝑠𝑖
1

=

𝜕
1
2

 𝑗=1
𝑀 𝑦𝑗 − 𝜑 2  𝑠=0

𝐾 𝑤𝑗𝑠
2

𝜑 1  𝑖=0
𝑁 𝒘𝒔𝒊

𝟏
𝑥𝑖

2

𝜕𝒘𝒔𝒊
𝟏

= − 

𝑗=1

𝑀

𝑦𝑗 − 𝑢𝑗

𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗

𝑑𝑔𝑗 𝑣𝑠

𝑑𝑣𝑠

𝑑𝜑 1 𝑓𝑠
𝑑𝑓𝑠

𝑥𝑖 =

= − 

𝑗=1

𝑀

𝑦𝑗 − 𝑢𝑗

𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
𝑤𝑗𝑠

2 𝑑𝜑 1 𝑓𝑠
𝑑𝑓𝑠

𝑥𝑖 = 𝛿𝑠
1

𝑥𝑖 ,

𝑓𝑠 =  

𝑖=0

𝑁

𝑤𝑠𝑖
1

𝑥𝑖 , 𝛿𝑠
1

=
𝜕𝐸 𝑤

𝜕𝑓𝑠

Nizhny Novgorod, 2018 Fully-connected neural networks



32

Backpropagation algorithm for two-layer network (3)

 The derivative of the cost function with respect to the parameters of 

hidden layer:

𝜕𝐸
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Backpropagation algorithm for two-layer network (3)

 The derivative of the cost function with respect to the parameters of 

hidden layer:

𝜕𝐸
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Backpropagation algorithm for two-layer network (3)

 The derivative of the cost function with respect to the parameters of 

hidden layer:
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𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
𝑤𝑗𝑠

2 𝑑𝜑 1 𝑓𝑠
𝑑𝑓𝑠

𝑥𝑖 = 𝛿𝑠
1

𝑥𝑖 ,

𝑓𝑠 =  

𝑖=0

𝑁

𝑤𝑠𝑖
1

𝑥𝑖 , 𝛿𝑠
1

=
𝜕𝐸 𝑤

𝜕𝑓𝑠
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Backpropagation algorithm for two-layer network (3)

 The derivative of the cost function with respect to the parameters of 

hidden layer:

𝜕𝐸

𝜕𝑤𝑠𝑖
1

=

𝜕
1
2

 𝑗=1
𝑀 𝑦𝑗 − 𝜑 2  𝑠=0

𝐾 𝑤𝑗𝑠
2

𝜑 1  𝑖=0
𝑁 𝒘𝒔𝒊

𝟏
𝑥𝑖

2

𝜕𝒘𝒔𝒊
𝟏

= − 

𝑗=1

𝑀

𝑦𝑗 − 𝑢𝑗

𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗

𝑑𝑔𝑗 𝑣𝑠

𝑑𝑣𝑠

𝑑𝜑 1 𝑓𝑠
𝑑𝑓𝑠

𝑥𝑖 =

= − 

𝑗=1

𝑀

𝑦𝑗 − 𝑢𝑗

𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
𝑤𝑗𝑠

2 𝑑𝜑 1 𝑓𝑠
𝑑𝑓𝑠

𝑥𝑖 = 𝛿𝑠
1

𝑥𝑖 ,

𝑓𝑠 =  

𝑖=0

𝑁

𝑤𝑠𝑖
1

𝑥𝑖 , 𝛿𝑠
1

=
𝜕𝐸 𝑤

𝜕𝑓𝑠
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Backpropagation algorithm for two-layer network (4)

 The derivative structures of the cost function with respect to the 

parameters of the output and hidden layer are identical:

𝜕𝐸

𝜕𝑤𝑗𝑠
2

= 𝛿𝑗
2

𝑣𝑠

𝜕𝐸

𝜕𝑤𝑠𝑖
1

= 𝛿𝑠
1

𝑥𝑖
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The error transferred 
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connection is established
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Backpropagation algorithm for two-layer network (5)
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𝑥𝑖

𝑤𝑠𝑖
1 𝑤𝑗𝑠

2 𝑢𝑗
𝑣𝑠

1. Feed forward:

• Computing 𝑣𝑠 and 𝑢𝑗

• Computing
𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
and

𝑑𝜑 1 𝑓𝑠

𝑑𝑓𝑠

2. Backward:

• Computing the cost function 𝐸 and its derivatives
𝜕𝐸

𝜕𝑤𝑗𝑠
2 ,

𝜕𝐸

𝜕𝑤𝑠𝑖
1

• Refining weights 𝑤 𝑘 + 1 = 𝑤 𝑘 − 𝜂𝛻𝐸(𝑤)
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Convergence of backpropagation algorithm (1)

 There is no convergence proof of backpropagation algorithm

 A reasonable stopping condition: the Euclidean norm of the 

gradient has reached sufficiently small values

 To satisfy this condition, a large number of backpropagation 

iterations is required

Nizhny Novgorod, 2018 Fully-connected neural networks



39

Convergence of backpropagation algorithm (2)

 Weaker stopping condition: during the full cycle of training samples 

presentation, the absolute value of the cost function change is 

rather small (in the range from 0.1 to 1%)

 This criteria does not guarantee the resulting network has good 

generalizing properties
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Sequential and batch modes of training (1)

 Training implies that samples of the training set is repeatedly fed to 

the network input

 One complete cycle of presenting the complete training set is 

called the epoch

– During training, several such cycles can be performed until the 

synaptic weights are stabilized, or the minimum value of the cost 

function is achieved

– In the implementation of epochs, it is advisable to change the 

order of the training samples, providing a stochastic search
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Sequential and batch modes of training (2)

 Implementation modes of backpropagation:

– Sequential (or stochastic) mode. In this mode weights are 

modified after each training sample
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𝑥𝑖

𝑤𝑠𝑖
1 𝑤𝑗𝑠

2 𝑢𝑗
𝑣𝑠
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Sequential and batch modes of training (3)

 Implementation modes of backpropagation:

– Batch mode. In this mode weights are modified after presenting 

all training samples of the epoch
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𝑥𝑖

𝑤𝑠𝑖
1 𝑤𝑗𝑠

2 𝑢𝑗
𝑣𝑠

…



43

Sequential and batch modes of training (4)

 The cost function for the complete training set normalized by the 

number of training samples is described as follows:

𝐸 𝑤 =
1

𝐿
 

𝑘=1

𝐿
1

2
 

𝑗=1

𝑀

𝑦𝑗
𝑘 − 𝑢𝑗

𝑘 2

 The weight changes are also carried out over the complete data 

set. For a two-layered fully connected neural network, the formulas 

can be written as follows:

∆𝑤𝑗𝑠
2

= −
𝜂

𝐿
 

𝑘=1

𝐿

𝑦𝑗
𝑘 − 𝑢𝑗

𝑘  
𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
𝑥𝑘

 𝑣𝑠
𝑥𝑘

,

∆𝑤𝑠𝑖
1

= −
𝜂

𝐿
 

𝑘=1

𝐿

 

𝑗=1

𝑀

𝑦𝑗 − 𝑢𝑗  
𝑑𝜑 2 𝑔𝑗

𝑑𝑔𝑗
𝑥𝑘

 
𝑑𝑔𝑗 𝑣𝑠

𝑑𝑣𝑠 𝑥𝑘

 
𝑑𝜑 1 𝑓𝑠

𝑑𝑓𝑠
𝑥𝑘

𝑥𝑖
𝑘
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Sequential and batch modes of training (5)

 Sequential mode

– Slow

 Batch mode

– Fast and stable

– Can “get stuck” in local minima
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Sequential and batch modes of training (6)

 As a compromise one can use mini-batches

– The training set is divided into mini-batches

– A feed forward is performed for the complete set of samples 

from the mini-batch

– The backward and weight correction is carried out after 

processing the mini-batch
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Heuristic recommendations for improving 

performance of the backpropagation

 Informativeness maximization

– Presence of cardinally different training samples (not only 

visually perceived differences in appearance, but also 

differences in the cost function values)

 Activation function

– A fully-connected neural network trains faster if the activation 

function is antisymmetric 𝜑(−𝑥) = −𝜑(𝑥)

 Input normalization

– All inputs should be preliminarily normalized throughout 

the training set
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Conclusion

 The neuron model is introduced

 The general scheme of construction of fully-connected neural 

networks is considered

 A mathematical formulation of the training problem for the weights 

of a fully-connected network is introduced

 A general scheme of the back propagation method for training 

network parameters is considered

 Further, an example of using deep fully-connected networks to 

solve the computer vision problem with the Intel® neon™ 

Framework is considered

Nizhny Novgorod, 2018 Fully-connected neural networks



48

Literature

 Haykin S. Neural Networks: A Comprehensive Foundation. –

Prentice Hall PTR Upper Saddle River, NJ, USA. – 1998.

 Osovsky S. Neural networks for information processing. – 2002.

 Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. 

– 2016. – [http://www.deeplearningbook.org].

Nizhny Novgorod, 2018 Fully-connected neural networks

http://www.deeplearningbook.org/


49

Authors

 Kustikova Valentina Dmitrievna

Phd, lecturer, department of Computer software and 

supercomputer technologies, Institute of Information Technologies, 

Mathematics and Mechanics, Nizhny Novgorod State University

valentina.kustikova@itmm.unn.ru

 Zhiltsov Maxim Sergeevich

master of the 1st year training, Institute of Information Technology, 

Mathematics and Mechanics, Nizhny Novgorod State University

zhiltsov.max35@gmail.com

 Zolotykh Nikolai Yurievich

Dr., Prof., department of Algebra, geometry and discrete 

mathematics, Institute of Information Technologies, Mathematics 

and Mechanics, Nizhny Novgorod State University

nikolai.zolotykh@itmm.unn.ru

Nizhny Novgorod, 2018 Fully-connected neural networks

mailto:valentina.kustikova@itmm.unn.ru
mailto:zhiltsov.max35@gmail.com
mailto:nikolai.zolotykh@gmail.com
mailto:valentina.kustikova@itmm.unn.ru

