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Goals

 The goal is to study deep models for solving problem of semantic 

segmentation (real-life images, medical images, on-road images)
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SEMANTIC SEGMENTATION 

PROBLEM STATEMENT

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning



5

Problem statement (1)

 The problem of semantic segmentation is to match each image 

pixel with the class of objects to which this pixel belongs (different 

colors correspond to the different classes)

* The PASCAL Visual Object Classes Homepage [http://host.robots.ox.ac.uk/pascal/VOC].
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Original image Groundtruth Segmentation result

http://host.robots.ox.ac.uk/pascal/VOC/
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Problem statement (2)

 The original image is represented by a set of pixel intensities                

𝐼 = 𝐼𝑖𝑗
𝑘

0≤𝑖<𝑤
0≤𝑗<ℎ
0≤𝑘<3

, where 𝑤 and ℎ are image width and height, 𝑘 is a 

number of color channels of the image

 The set of object classes 𝐶 = 0, 1, … ,𝑁 − 1 is defined, 0 

corresponds to the background, the set of class identifiers uniquely 

corresponds to the set of class names

 It is required to find a mapping 

𝜑 𝐼𝑖𝑗 = 𝑐
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Public datasets (1)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Dataset
Number of images 

in train dataset

Number of images 

in test dataset

Number

of classes

Semantic segmentation of real-life images

PASCAL VOC 2012
[http://host.robots.ox.ac.uk/pascal/VO

C/voc2012]

9 963 1 447 20

ADE20K
[http://groups.csail.mit.edu/vision/data

sets/ADE20K]

20 210 2 000 150

MS COCO’15
[http://mscoco.org]

80 000 40 000 80

…

http://host.robots.ox.ac.uk/pascal/VOC/voc2012
http://groups.csail.mit.edu/vision/datasets/ADE20K
http://mscoco.org/
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Public datasets (2)
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Dataset
Number of images 

in train dataset

Number of images 

in test dataset

Number

of classes

Semantic segmentation of on-road images

CamVid
[http://mi.eng.cam.ac.uk/research/proj

ects/VideoRec/CamVid]

468 233 11

Cityscapes
[https://www.cityscapes-dataset.com]

2 975 500 19

KITTI
[http://www.cvlibs.net/datasets/kitti]

200 200 4

Semantic segmentation of indoor scenes

Sun-RGBD
[http://rgbd.cs.princeton.edu]

10 355 2 860 37

NYUDv2
[http://cs.nyu.edu/~silberman/datasets

/nyu_depth_v2.html]

795 645 40

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid
https://www.cityscapes-dataset.com/
http://www.cvlibs.net/datasets/kitti
http://rgbd.cs.princeton.edu/
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Public datasets (3)

 MS COCO’15 is the largest dataset of real-life images for semantic 

segmentation

 Cityscapes dataset contains images captured in 50 cities from a 

DVR on a car moving in urban in various weather conditions

 KITTI benchmark is the dataset and the toolkit for measuring the 

quality of analyzing on-road scenes (object detection, semantic 

segmentation, object tracking, lane detection, etc.)

 Sun-RGBD benchmark contains images of indoor scenes (home, 

office) for solving the tasks of image classification (2 categories), 

semantic segmentation, 3D reconstruction, high-level scene 

understanding

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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PASCAL VOC 2012

 PASCAL VOC 2012 is the most popular dataset

 20 classes of real-life objects: airplane, bicycle, bird, boat, bottle, 

bus, car, cat, chair, cow, dining table, dog, horse, motorbike, 

person, potted plant, sheep, sofa, train, tv/monitor

* The PASCAL Visual Object Classes Homepage [http://host.robots.ox.ac.uk/pascal/VOC].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Original image Groundtruth
(different colors correspond to different 

object classes, also object 

boundaries are represented)

http://host.robots.ox.ac.uk/pascal/VOC/
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MS COCO’15

 MS COCO’15 is the largest public dataset of real-life images 

(similar to PASCAL VOC) by the number of object classes

(80 categories) and the number of images; each category contains 

a significant number of images (approximately equal number of 

objects for each class)

* Lin T.Y., et al. Microsoft COCO: Common objects in context // Lecture Notes in Computer Science. –

Vol. 8693. – 2014. – P. 740-755. – [https://arxiv.org/pdf/1405.0312].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Cityscapes

 Images of on-road scenes from a DVR

 5 000 images with high quality annotation

 20 000 images with coarse annotation

 30 classes combined into 8 groups

* The Cityscapes Dataset Homepage [https://www.cityscapes-dataset.com/examples].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Zurich (Switzerland) Saarbrücken (Germany)

Example of high quality annotation Example of rough annotation

https://www.cityscapes-dataset.com/examples
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SUN RGB-D

 SUN RGB-D contains images and groundtruth of indoor scenes for 

solving several tasks (examples are represented below)

* Song S., Lichtenberg S.P., Xiao J. SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite 

[https://3dvision.princeton.edu/projects/2015/SUNrgbd/poster.pdf].
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Quality metrics

 Pixel accuracy

 Mean pixel accuracy over classes

 Intersection over Union (IoU) or Jaccard index

 Dice index или F1-score

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Pixel accuracy

 Pixel accuracy is calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
where 𝑇𝑃 + 𝑇𝑁 is a number of correctly classified pixels (true 

positives + true negatives),

and 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 is a total number of pixels

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Groundtruth

True False

True TP FN

False FP TN
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Mean pixel accuracy over classes

 Pixel accuracy shows the number of correctly classified pixels

 Pixel accuracy is not representative in the case of class imbalance

 Therefore, mean pixel accuracy is introduced. This metric 

calculates the pixel accuracy for each class separately and then 

calculates mean value over the number of classes

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Intersection over Union (1)

 Intersection over Union metric (IoU) or Jaccard index

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
where 𝑇𝑃 is a number of correctly classified pixels (true positives),

𝐹𝑃 is a number of pixels that the method has been classified as 

belonging to the class, but they do not belong (false positives),

𝐹𝑁 is a number of pixels that belong to the class, but the method 

has been classified them as not belonging to the class (false 

negatives)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Prediction

Groundtruth

True False

True TP FN
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Intersection over Union (2)

 Usually, the mean value of the IoU metric (mean IoU) for all 

classes on a complete dataset is calculated

 Mean IoU can be calculated as a weighted mean of values 

obtained for individual classes. Weights are assigned equal to the 

number of pixels of each class

 When calculating the IoU metric, the background class may not be 

taken into account

 Pixels on the object boundaries may not be taken into metric 

calculation or taken into the metric with a lower weight

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Dice index

 Dice index or F1-score is as follows:

𝐷𝐼𝐶𝐸 =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 Dice index differs from the Jaccard index by one coefficient

 Dice index and Jaccard index are related by the formulas:

𝐼𝑜𝑈 =
𝐷𝐼𝐶𝐸

2 − 𝐼𝑜𝑈
, 𝐷𝐼𝐶𝐸 =

2 ∙ 𝐼𝑜𝑈

1 + 𝐼𝑜𝑈
 It is not required to calculate both metrics, it is enough to calculate 

one of them

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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The problem of using deep models for semantic 

segmentation (1)

 Solving the problem of semantic segmentation, the model output 

should be a three-dimensional tensor, tensor elements correspond 

to the confidence of each pixel belonging to a certain class

 How to provide at the output a tensor whose spatial 

dimensions coincide with the resolution of the original image?

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Number 

of classes

Image

height

Image

width
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The problem of using deep models for semantic 

segmentation (2)

 Methods of obtaining an output tensor, whose spatial dimension 

coincides with the resolution of the original image:

– Interpolation

– Encoder-decoder architecture

– Probabilistic graph methods, in particular, conditional random 

fields (CRF)

 Interpolation is the most simple way, but it does not allow to obtain 

high segmentation quality, especially for small objects and at the 

object boundaries

 Two other methods are more perspective in terms of semantic 

segmentation quality

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Deep models (1)

 FCNs, SegNet, U-Net (2015)

– Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic 

Segmentation. – 2015. – [https://arxiv.org/pdf/1411.4038.pdf], 

[https://ieeexplore.ieee.org/document/7298965].

– Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional 

Encoder-Decoder Architecture for Image Segmentation. – 2015. –

[https://arxiv.org/pdf/1511.00561.pdf], 

[https://ieeexplore.ieee.org/document/7803544].

– Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for 

biomedical image segmentation. – 2015. –

[https://arxiv.org/pdf/1505.04597.pdf], 

[https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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https://arxiv.org/pdf/1505.04597.pdf
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
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Deep models (2)

 PSPNet (2016)

– Zhao H., Shi J., Qi X., Wang X., Jia J. Pyramid scene parsing network. –

2016. – [https://arxiv.org/pdf/1612.01105.pdf], 

[https://ieeexplore.ieee.org/document/8100143].

 ICNet (2017)

– Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic 

Segmentation on High-Resolution Images. – 2017. –

[https://arxiv.org/pdf/1704.08545.pdf], 

[https://link.springer.com/chapter/10.1007/978-3-030-01219-9_25].
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Deep models (3)

 DeepLab-v1,*-v2, *-v3, *v3+ (2014-2018)

– Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. Semantic 

Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. 

– 2014. – [https://arxiv.org/pdf/1412.7062.pdf].

– Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: 

Semantic Image Segmentation with Deep Convolutional Nets, Atrous

Convolution, and Fully Connected CRFs. – 2017. –

[https://arxiv.org/pdf/1606.00915.pdf], 

[https://ieeexplore.ieee.org/document/7913730].

– Chen L.-C., Papandreou G., Schroff F., Adam H. Rethinking Atrous

Convolution for Semantic Image Segmentation. – 2017. –

[https://arxiv.org/pdf/1706.05587.pdf].

– Chen L.-C., Zhu Y., Papandreou G., Schoff F., Adam H. Encoder-Decoder with 

Atrous Separable Convolution for Semantic Image Segmentation. – 2018. –

[https://arxiv.org/pdf/1802.02611.pdf].
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FCN (1)

 FCNs (Fully Convolutional Networks) are models whose goal is to 

adapt classification convolutional networks (AlexNet, VGG, 

GoogLeNet) to solve the problem of semantic segmentation

– Classification models receive a fixed-resolution image as input

– Classification models return confidences of belonging the image 

of available object classes

– We replace fully connected layers with convolutional ones to 

apply the model to images of arbitrary resolution

– Therefore, we applied a sliding window to obtain a confidence 

vector for each pixel

* Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic Segmentation. – 2015. –

[https://arxiv.org/pdf/1411.4038.pdf], [https://ieeexplore.ieee.org/document/7298965].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1411.4038.pdf
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* Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic Segmentation. – 2015. –

[https://arxiv.org/pdf/1411.4038.pdf], [https://ieeexplore.ieee.org/document/7298965].

FCN (2)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Replacing fully connected layers

with fully convolutional ones 

(another interpretation of features)

cat9
6

2
5
6

3
8
4

3
8
4

2
5
6

4
0
9
6

4
0
9
6

1
0
0
0

Confidence

vector

Heatmap

9
6

2
5
6

3
8
4

3
8
4

2
5
6

4
0
9
6

4
0
9
6

1
0
0
0

Choosing the most 

probable class index

https://arxiv.org/pdf/1411.4038.pdf
https://ieeexplore.ieee.org/document/7298965
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FCN (3)

 Fully connected layers are converted to fully convolutional ones 

using one-dimensional convolutions (the kernel size is 1x1). The 

layers remain the same

 The input image may be of arbitrary resolution

 A three-dimensional tensor is the output of the deep model, the 

number of channels correspond to the number of object classes, 

and the spatial dimensions correspond to the number of possible 

positions of sliding window on the original image

 Choosing a class with the maximum confidence for each position 

allows to construct a heatmap of the image, which is a result of 

semantic segmentation, but it has lower resolution

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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FCN (4)

 Increasing the resolution of feature maps, including the output 

heatmap, is implemented using deconvolutions (backwards or 

transposed convolutions)

 To improve the quality of the final heatmap, it is proposed to use 

feature maps obtained on the intermediate layers of the model, 

i.e. low-level features

 Authors of the FCN model* used AlexNet, VGG, GoogLeNet as 

basic models

 VGG-16 allowed to achieve the best results, so FCN, based on 

VGG-16, is further considered

* Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic Segmentation. – 2015. –

[https://arxiv.org/pdf/1411.4038.pdf], [https://ieeexplore.ieee.org/document/7298965].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1411.4038.pdf
https://ieeexplore.ieee.org/document/7298965
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FCN (5)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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* Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic Segmentation. – 2015. –

[https://arxiv.org/pdf/1411.4038.pdf], [https://ieeexplore.ieee.org/document/7298965].
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FCN (6)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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pool4
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Σ
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* Long J., Shelhamer E., Darrel T. Fully Convolutional Networks for Semantic Segmentation. – 2015. –

[https://arxiv.org/pdf/1411.4038.pdf], [https://ieeexplore.ieee.org/document/7298965].

https://arxiv.org/pdf/1411.4038.pdf
https://ieeexplore.ieee.org/document/7298965
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FCN (7)

 Replacing the fully connected layers with the fully convolutional 

ones in VGG-16:

– FC 4096 → Conv 4096, 1x1

– FC 4096 → Conv 4096, 1x1

– FC 1000 → Conv 1000, 1x1

 After replacing we can process images of arbitrary resolution

𝑤 × ℎ, and construct the final heatmap of the shape 
𝑤

32
×

ℎ

32
× 1000

 The spatial dimension of the output is increased by applying 

upsampling with stride 32. The coarse segmentation is constructed 

(FCN-32s model)

 More accurate segmentation results are obtained when using 

features from the intermediate layers (models FCN-16s, FCN-8s)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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SegNet (1)

 SegNet is a deep model for semantic segmentation based on the 

encoder-decoder architecture

 The goal is to create an efficient deep model for semantic 

segmentation of on-road and indoor images

* Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for 

Image Segmentation. – 2015. – [https://arxiv.org/pdf/1511.00561.pdf], 

[https://ieeexplore.ieee.org/document/7803544].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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pooling
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https://arxiv.org/pdf/1511.00561.pdf
https://ieeexplore.ieee.org/document/7803544
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SegNet (2)

 The encoder contains the convolutional part of the VGG-16 

network

 The decoder is constructed in a mirror-wise manner to the encoder:

– Each convolutional layer in the encoder corresponds to the 

convolutional layer in the decoder in the reverse order

– Each pooling operation corresponds to the upsampling

operation. The indices of the max pooling on each layer of the 

encoder are stored and used in the decoder for the upsampling

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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U-Net (1)

 The authors of U-Net propose the model and learning strategy 

based on the increasing the size of the dataset by image 

transformation (data augmentation) for more efficient use of the 

small set of annotated samples

 U-Net shows high segmentation quality for neuronal structures in 

electron microscopic stacks

* Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networks for biomedical image segmentation. 

– 2015. – [https://arxiv.org/pdf/1505.04597.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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U-Net (2)

 The U-Net model consists of two parts:

– Contracting path is a convolutional network represented by

a sequence of blocks which contain two 3x3 convolutions (no 

padding), followed by ReLU activation function and max pooling 

with the kernel 2x2 and stride 2

– Expansive path is a convolutional network represented by

a sequence of blocks which contain upsampling, upper 

convolution (2x2 convolution reducing the number of channels 

by half), concatenation with the corresponding feature map from 

the contracting path, two 3x3 convolutions, followed by ReLU 

activation function

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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* Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networks for biomedical image segmentation. –

2015. – [https://arxiv.org/pdf/1505.04597.pdf].

U-Net (3)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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PSPNet (1)

 PSPNet (Pyramid Scene Parsing) is a model that constructs a 

pyramid of feature maps of different scales

 PSPNet was the best model at ImageNet Scene Parsing Challenge 

2016, PASCAL VOC 2012 and Cityscapes in 2016

* Zhao H., Shi J., Qi X., Wang X., Jia J. Pyramid scene parsing network. – 2016. –

[https://arxiv.org/pdf/1612.01105.pdf], [https://ieeexplore.ieee.org/document/8100143].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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PSPNet (2)

 Feature map

– To extract features, the convolutional part with dilated 

convolutions of the ResNet model is used

 Pyramid Pooling Module

– Pooling (POOL)

• Red map: the result of global pooling for each channel of the feature map 

(the “coarsest” level)

• Orange map: the result of pooling by regions obtained when dividing the 

feature map into 2x2 blocks

• Blue map: the result of pooling by regions obtained when dividing the 

feature map into 3x3 blocks

• Green map: the result of pooling for each channel by regions obtained 

when dividing the feature map into 6x6 blocks

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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PSPNet (3)

– Intermediate convolutions (set of CONV layers)

• Convolutions with 1x1 kernels to reduce the number of channels, i.e. 

reducing the representation of the context to 
1

𝑁
from the original one, 

where 𝑁 is the number of pyramid levels

• In the presented example 𝑁 = 4, if the number of channels of the input 

feature map is 2048, then the number of channels at the output of each 

pyramid level is 512

– Upsampling (UPSAMPLE)

• Upsampling supposes using of bilinear interpolation to increase the 

dimension of feature maps to the original one

– Concatenation of feature maps (CONCAT)

• Concatenation of the original feature map with the feature maps obtained 

after upsampling

 Segmentation result

– Final convolution (CONV)
Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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PSPNet (4)

 Learning features:

– The auxiliary loss function from the intermediate layer of the 

model is introduced

– The auxiliary loss function helps to optimize training, while the 

main loss function is fully responsible for solving semantic 

segmentation problem

– To balance the contribution of the auxiliary loss, a weight 

coefficient is introduced

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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ICNet (1)

 ICNet (Image Cascade Network) is a model for semantic 

segmentation in real time (on a single GPU), which is based on the 

a cascade of feature maps constructed for different scales of the 

original image

 The model input is a pyramid of image scales

 For each image in the pyramid, feature map using convolutional 

networks is provided:

– The larger image in the pyramid, the simpler its convolution 

model is used

– Constructing a feature map on each subsequent scale, features 

from smaller scales are used

* Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution 

Images. – 2017. – [https://arxiv.org/pdf/1704.08545.pdf], [https://link.springer.com/chapter/10.1007/978-3-

030-01219-9_25].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1704.08545.pdf
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* Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution 

Images. – 2017. – [https://arxiv.org/pdf/1704.08545.pdf], [https://link.springer.com/chapter/10.1007/978-3-

030-01219-9_25].

ICNet (2)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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ICNet (3)

 The convolutional network on each layer reduces the spatial 

dimensions of the feature map, or does not change them

 Concatenation of feature maps from adjacent scales is provided 

using Cascade Feature Fusion (CFF) module

 CFF module allows to restore and improve the result of 

segmentation with less computational cost

 Further, we will consider the structure of the CFF module and the 

scheme of its working during training and testing the model

* Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution 

Images. – 2017. – [https://arxiv.org/pdf/1704.08545.pdf], [https://link.springer.com/chapter/10.1007/978-3-

030-01219-9_25].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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ICNet (4)

 CFF module has three inputs:

– The feature map 𝐹1 of the size 𝐶1 ×𝑊1 × 𝐻1 (it is used during 

training and testing)

– The feature map 𝐹2 of the size 𝐶2 ×𝑊2 × 𝐻2 (it is used during 

training and testing). Spatial size of 𝐹2 in two times larger than 

spatial size of 𝐹1
– Image annotation 𝐿 of the size 1 ×𝑊2 × 𝐻2 (it is used during 

training)

 Combining the feature maps 𝐹1 and 𝐹2, the combined feature map 

𝐹2
′ is constructed, which is taking into account at the next (larger) 

scale

* Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution 

Images. – 2017. – [https://arxiv.org/pdf/1704.08545.pdf], [https://link.springer.com/chapter/10.1007/978-3-

030-01219-9_25].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1704.08545.pdf
https://link.springer.com/chapter/10.1007/978-3-030-01219-9_25
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ICNet (5)

 Cascade Feature Fusion:

* Zhao H., Qi X., Shen X., Shi J., Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution 

Images. – 2017. – [https://arxiv.org/pdf/1704.08545.pdf], [https://link.springer.com/chapter/10.1007/978-3-

030-01219-9_25].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v1 (1)

 DeepLab-v1 is one of the well-known methods of semantic 

segmentation, based on the construction of a deep convolutional 

model to obtain a coarse map of segments and the subsequent 

using of conditional random fields (CRF) to refine the results

* Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. Semantic Image Segmentation with Deep 

Convolutional Nets and Fully Connected CRFs. – 2014. – [https://arxiv.org/pdf/1412.7062.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Deep 

convolutional 

network

Conditional 

Random 

Fields

Bilinear

interpolation

https://arxiv.org/pdf/1412.7062.pdf


50

DeepLab-v1 (2)

 The convolutional network is based on VGG-16, trained for image 

classification on ImageNet

 The main differences:

– The fully connected layers are converted into the fully 

convolutional ones, therefore, the network input is an image of 

arbitrary resolution

– The network input spatial size is 513x513 pixels

– The network output is a vector of the size 21, which corresponds 

to the number of classes in PASCAL VOC including background 

(instead of 1 000)

– For the last two pooling layers, the down-sampling is removed 

and the convolutional layers following the pooling layers are 

modified (the last 3 convolutions and the first fully connected 

layer)
Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v1 (3)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v1 (4)

 Feature extraction with the hole (‘atrous’) algorithm:

– The kernel size of convolutions do not change

– Kernels are superimposed on the feature map with holes 

– Atrous rate of the kernel for three convolutional layers is 2, for 

the first fully convolutional layer is 4

 Illustration of the hole algorithm (atrous rate is 2): 

* Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. Semantic Image Segmentation with Deep 

Convolutional Nets and Fully Connected CRFs. – 2014. – [https://arxiv.org/pdf/1412.7062.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Input stride

Output stride

https://arxiv.org/pdf/1412.7062.pdf
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DeepLab-v2 (1)

 DeepLab-v2 is a modification of DeepLab-v1 designed to improve 

the model performance

 It solves the problem of different object scales during segmentation 

of objects belonging to the same classes

 The classical approach for solving this problem is image scaling 

and aggregating of feature maps at different scales

 To implement this approach, Atrous Spatial Pyramid Pooling

(ASPP) is introduced

 ASPP combines the results of applying convolutions with holes of 

different sizes to the feature map

* Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: Semantic Image Segmentation 

with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. – 2017. –

[https://arxiv.org/pdf/1606.00915.pdf], [https://ieeexplore.ieee.org/document/7913730].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1606.00915.pdf
https://ieeexplore.ieee.org/document/7913730
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DeepLab-v2 (2)

 The structure of ASPP

(FC6, FC7, FC8 – fully convolutional layers):

* Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: Semantic Image Segmentation 

with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. – 2017. –

[https://arxiv.org/pdf/1606.00915.pdf], [https://ieeexplore.ieee.org/document/7913730].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3 (1)

 DeepLab-v3 is an improvement of the DeepLab-v2 model

 To solve the problem of different object scales, special modules 

based on convolutions with holes are proposed

 These modules are organized in cascade or parallel manner to 

capture context from different scales using different atrous rate

 The module organized in parallel manner is an extension of the 

atrous spatial pyramid pooling

* Chen L.-C., Papandreou G., Schroff F., Adam H. Rethinking Atrous Convolution for Semantic Image 

Segmentation. – 2017. – [https://arxiv.org/pdf/1706.05587.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3 (2)

 The cascade module:

– The model is a sequence of residual blocks

– The standard convolutions in the last residual blocks are 

replaced with convolutions with holes, to keep the original 

spatial size of the feature maps at the following layers

* Chen L.-C., Papandreou G., Schroff F., Adam H. Rethinking Atrous Convolution for Semantic Image 

Segmentation. – 2017. – [https://arxiv.org/pdf/1706.05587.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3 (3)

 The parallel module:

– The image-level features (Image Pooling block) supplement

the atrous spatial pyramid pooling

* Chen L.-C., Papandreou G., Schroff F., Adam H. Rethinking Atrous Convolution for Semantic Image 

Segmentation. – 2017. – [https://arxiv.org/pdf/1706.05587.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3 (4)

 ASPP:

– To extract image-level features, the following transformations 

are performed:

• Calculation of the global average pooling for the last model feature map

• 1x1 convolution, 256 channels

• Batch normalization

• Bilinear interpolation of the feature map to provide the same spatial size 

of all feature maps

– Feature maps from all branches of the pyramid are 

concatenated, 1x1 convolutions (256 channels), batch 

normalization and final 1x1 convolution are applied

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3+ (1)

 DeepLab-v3+ is a modification of the DeepLab-v3 model, aimed at 

the improving quality of object boundaries segmentation

 The model is based on the encoder-decoder architecture:

– The encoder consists of the basic part of the DeepLab-v3 model 

(all transformations to the final one-dimensional convolution)

– The decoder consists of convolutions and upsamplings applied 

to the image-level feature map and the output of the spatial 

pyramid pooling

* Chen L.-C., Zhu Y., Papandreou G., Schoff F., Adam H. Encoder-Decoder with Atrous Separable 

Convolution for Semantic Image Segmentation. – 2018. – [https://arxiv.org/pdf/1802.02611.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1802.02611.pdf
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* Chen L.-C., Zhu Y., Papandreou G., Schoff F., Adam H. Encoder-Decoder with Atrous Separable 

Convolution for Semantic Image Segmentation. – 2018. – [https://arxiv.org/pdf/1802.02611.pdf].

DeepLab-v3+ (2)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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DeepLab-v3+ (3)

 To implement the encoder, DeepLab-v3, ResNet-101 or Xception is 

used (the corresponding experimental results are given in the 

paper*)

 To optimize calculations, convolutions with 3x3 kernels are 

converted to the standard depthwise separable convolutions:

– Each convolution is represented by a depthwise and pointwise

convolutions

– The depthwise convolution involves splitting the feature map 

into channels, applying 3x3 convolution of the depth 1 to each 

channel, and concatenating the channels

– The pointwise convolution is a convolution of the shape 

1x1x<channels_number>

* Chen L.-C., Zhu Y., Papandreou G., Schoff F., Adam H. Encoder-Decoder with Atrous Separable 

Convolution for Semantic Image Segmentation. – 2018. – [https://arxiv.org/pdf/1802.02611.pdf].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://arxiv.org/pdf/1802.02611.pdf
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Comparison of deep models for semantic 

segmentation (1)

 The problem is semantic segmentation of on-road images

 The test dataset is Cityscapes [https://www.cityscapes-

dataset.com]

 Quality metric is mean Intersection over Union (mean IoU)

 Comparison* “quality-performance” is qualitative, since the given 

experiments collected from the original papers and obtained on 

different test infrastructures

 Results of semantic segmentation for another datasets are 

available by link**

* Real-Time Semantic Segmentation on Cityscapes test [https://paperswithcode.com/sota/real-time-

semantic-segmentation-on-cityscapes].

** Semantic Segmentation [https://paperswithcode.com/task/semantic-segmentation/latest].

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

https://www.cityscapes-dataset.com/
https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes
https://paperswithcode.com/task/semantic-segmentation/latest
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Comparison of deep models for semantic 

segmentation (2)

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning

Model Year Mean IoU, % FPS Time, ms

DeepLab 2014 63.1 0.25 4000

SegNet 2015 57.0 16.7 60

CRF-RNN 2015 62.5 1.4 700

Dilation10 2015 67.1 0.25 4000

ENet 2016 58.3 76.9 13

FCN 2016 65.3 2 500

FRRN 2016 71.8 2.1 469

ICNet 2017 70.6 30.3 33

PSPNet 2017 81.2 0.78 1288

ENet + Lovász-Softmax 2018 63.1 76.9 13

LEDNet 2019 70.6 71 14

ESNet 2019 70.7 63 16

FasterSeg 2019 71.5 163.9 6.1

* Real-Time Semantic Segmentation on Cityscapes test [https://paperswithcode.com/sota/real-time-

semantic-segmentation-on-cityscapes].

https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes
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Comparison of deep models for semantic 

segmentation (3)

 Mean IoU for the selected models:

 For 2017-2019 years, the quality varies from ~70 to ~81%, and 

the best model is the slowest one
Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Comparison of deep models for semantic 

segmentation (4)

 An effective model is a compromise between quality and 

performance

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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Conclusion

 Models for semantic segmentation are not limited to those 

discussed in the lecture

 The main problem constructing segmentation models is to obtain 

an output whose spatial resolution is equal to the input image 

spatial resolution

 The considered models solve this problem in different ways. As a 

rule, the decision greatly affects the performance

 The optimal model is a compromise between quality and 

complexity

– Quality is determined by the requirements for solving a practical 

problem

– Complexity is determined by the available computational 

resources and inference time requirements

Nizhny Novgorod, 2020 Semantic segmentation of images using deep learning
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