
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Modern methods and technologies

of deep learning in computer vision»

Practice №4

Solving the problem of video analytics, including detection,

recognition and tracking of objects in the video

Supported by Intel

Vasiliev E.P.

Nizhny Novgorod

2020

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

2.4 Samples of solved video analytics tasks using the Intel Distribution of OpenVINO Toolkit 3

3 Problem statement of counting vehicles on video ... 4

4 Algorithm for counting vehicles of different classes on video.. 4

5 Developing the application for counting vehicles of different classes on video 4

5.1 File structure .. 4

5.2 Counting vehicles of different classes on video .. 5

5.3 Displaying of vehicle counting results .. 5

5.4 Implementing sample .. 6

5.4.1 Parsing command line options .. 6

5.4.2 Implementing main function ... 7

6 Executing developed sample ... 8

7 Additional tasks ... 8

8 Literature ... 9

8.1 Books ... 9

8.2 Further reading .. 9

8.3 References ... 9

3

1 Introduction
In this practice, we consider the widespread problem of video analytics, namely, the problem of counting

vehicles of different classes on video. We develop a solution based on the vehicle detection using deep

learning models and their tracking in the video. Pre-trained deep models from the Open Model Zoo

repository are used [4].

2 Guidelines

2.1 Goals and tasks
The goal of this practice is to study the problem of counting vehicles of different classes on video and

develop an application to solve it using the Intel Distribution of OpenVINO Toolkit. To achieve this goal,

it is required to solve the following tasks:

 Study the problem statement of counting vehicles of different classes on video and the algorithm

for solving this problem.

 Develop an application based on the Inference Engine for counting vehicles. The counting result

should be displayed on the original video.

 Execute and verify the developed sample.

2.2 Practice structure
First, a brief description of the problem of counting vehicles of different classes on video is provided. The

algorithm for solving this task is described. Further, the application of counting vehicles based on the

object detection and tracking by matching is developed step-by-step.

2.3 Recommended study sequence
The recommended practice sequence is as follows:

 Explore samples of solving different video analytics tasks using the Intel Distribution of

OpenVINO Toolkit.

 Setup software environment for the Intel Distribution of OpenVINO Toolkit.

 Study the problem statement of counting vehicles of different classes on video and the algorithm

for solving this problem.

 Develop an application based on the Inference Engine for object tracking. The tracking result

should be displayed on the original video.

Note that the environment setup is described in detail in the first practice; so this step is omitted in this

tutorial.

2.4 Samples of solved video analytics tasks using the Intel Distribution of

OpenVINO Toolkit
Intel Distribution of OpenVINO Toolkit includes a large set of samples for solving video analytics tasks.

Each sample contains detailed comments, includes a description of the implemented approach, input and

output data, deep models available for this sample [3]. Below are some examples of available

applications.

1. Action recognition Python demo [5]. This is the demo application for action recognition

algorithm, which classifies actions that are being performed on input video.

2. Crossroad camera demo [6]. This demo provides an inference pipeline for persons’ detection,

recognition and reidentification. The demo uses person detection network followed by the person

attributes recognition and person reidentification retail networks applied on top of the detection

results.

3. Security Barrier Camera С++ Demo [7]. This demo showcases vehicle and license plate detection

network followed by the vehicle attributes recognition and license plate recognition networks

applied on top of the detection results.

4

4. Smart Classroom C++ Demo [8]. The demo shows an example of joint usage of several neural

networks to detect student actions (sitting, standing, raising hand, turned around) and recognize

people by faces in the classroom environment.

The number of problems to be solved using the Intel Distribution of OpenVINO Toolkit is increasing due

to new demo applications.

3 Problem statement of counting vehicles on video
In this practice, the problem of counting vehicles of different classes on the video from the crossroad

camera is considered. The input is a sequence of video frames. It is required to count the number of

vehicles of each category (“car”, “bus”, “motorbike” and others) that have already been observed in the

video by the current moment.

4 Algorithm for counting vehicles of different classes on video
The base algorithm for counting vehicles of different classes on video based on the object detection and

tracking consists of the several steps performed processing the next received frame.

1. Object detection. To detect objects, any deep model capable of detecting vehicles of different

classes (“car”, “bus”, “train”, and “motorbike”) can be used. It is required to filter out objects that

do not belong to the set of vehicle classes. Filtering can be performed at the detection stage or at

the stage of calculating statistics. It is also necessary to remember that the detection algorithm for

the same object on different frames can predict a different class. In our solution, the class of the

object is the class predicted at the last processed frame. For vehicle detection, the SSD300 model

and InferenceEngineDetector class can be used.

2. Object tracking. You can use tracking-by-matching implementation of the tracker from the

practice “Tracking objects on video using deep neural networks”.

3. Calculating statistics for vehicles of different classes, which were observed from the beginning of

the video to the current frame. To calculate statistics, it is required to create counters for each

class of vehicles and to iterate over all the tracks, increasing the counters of the corresponding

vehicle class.

4. Displaying frame with detected vehicles and their tracks, displaying the collected statistic

information on the screen.

5 Developing the application for counting vehicles of different

classes on video

5.1 File structure
For this practice, please, create two files: videoanalytics.py is a file containing the

Videoanalytics class to calculate and display video analytics, and videoanalytics_sample.py

is file containing the testing code. It is assumed that the modules ie_detector.py and

matching_tracker.py, containing implementations of object detection and tracking algorithms, have

already been developed during previous practices.

A class that calculates video analytics is Videoanalytics. This class provides several methods.

 init is a class constructor. It loads a list of vehicle classes to be counted, and the names of

these classes to display on the screen.

 count_objects_per_classes is a method that counts vehicles of each class.

 draw_videoanalytics is a method for displaying the vehicle counting results on the video.

The constructor implementation is trivial, so it is proposed to develop it by yourself. The implementation

of other methods will be described below.

5

5.2 Counting vehicles of different classes on video
Consider the implementation of the count_objects_per_classes method for counting the number

of vehicles of each class. This method iterates over all tracks obtained as a result of tracking, and counts

the number of objects of each class.

def count_objects_per_classes(self, tracker):

 results = {}

 for tracklet in tracker._tracks:

 # Get object class from tracklet

 classid = tracklet[-1].class_id

 # Add +1 to counter for object

 if classid in results and classid in self.classIds:

 results[classid] += 1

 else:

 results[classid] = 1

 return results

5.3 Displaying of vehicle counting results
The draw_videoanalytics method displays the results of counting vehicles. It consists of three

parts.

1. Displaying detected objects of vehicle classes. It is required to iterate over all tracks.

1.1. Searching for the last bounding box corresponding to the object location in the track.

1.2. If the object class is in the list of vehicle classes and the object is found in the current frame,

then displaying the bounding box.

2. Displaying the tracks of vehicles. It is supposed to iterate over all tracks.

2.1. Searching for the last bounding box corresponding to the object location in the track.

2.2. If the object class is in the list of vehicle classes and the object is found in the current frame,

then iterate over all bounding box in the track, calculate their centers and draw line between

neighbor frame centers.

3. Displaying statistics.

3.1. Count the number of vehicles of each class using the count_objects_per_classes

method.

3.2. For each vehicle class, create a line to display the following information: “Class

<class_name>: <number_of_objects>”.

3.3. Displaying lines with counting information in the upper left corner of the frame.

def draw_videoanalytics(self, frame, tracker):

 (h, w) = frame.shape[:2]

 # Draw detections of chosen classes

 for tracklet in tracker._tracks:

 # Get object class from tracklet

 classid = tracklet[-1].class_id

 if classid in self.classIds:

 # Draw bbox of the last detection

 x_left = int(tracklet[-1].x_left * w)

 y_bottom = int(tracklet[-1].y_bottom * h)

 x_right = int(tracklet[-1].x_right * w)

 y_top = int(tracklet[-1].y_top * h)

 cv2.rectangle(frame, (x_left, y_bottom), (x_right, y_top),

 (0, 255, 0), 2)

 # Draw tracklets of chosen classes

 for track in tracker._tracks:

 # Get object class from tracklet

 classid = track[-1].class_id

6

 if classid in self.classIds:

 # Draw one tracklet from segments

 for i in range(len(track)-1):

 x1 = int((track[i].x_left+track[i].x_right)*w)// 2

 y1 = int((track[i].y_bottom+track[i].y_top)*h)// 2

 x2 = int((track[i+1].x_left+track[i+1].x_right)*w)// 2

 y2 = int((track[i+1].y_bottom+track[i+1].y_top)*h)// 2

 cv2.line(img=frame, pt1=(x1,y1), pt2=(x2,y2),

 color=(0, 255, 0), thickness=3)

 # Draw statistics

 counts = self.count_objects_per_classes(tracker)

 for i, elem in enumerate(counts):

 if self.classes:

 id = int(elem)

 text = 'Class {}: {} objects'.format(

 self.classes[id], counts[elem])

 else:

 text = 'Class {}: {} objects'.format(elem, counts[elem])

 text_pos = (0, i * 30 + 30)

 cv2.putText(frame, text, text_pos,

 cv2.FONT_HERSHEY_COMPLEX, 1.0, (0, 255, 255), 2)

 return frame

5.4 Implementing sample

5.4.1 Parsing command line options

In this practice, the following command line arguments will be required:

 Path to the input video (required).

 Path to the model weights file (required).

 Path to the model configuration file (required).

 Path to the dynamic library with custom layers (it is required to infer the SSD-based models on

CPU) (optional).

 Path to the file containing list of detected object classes (required).

 Identifiers of vehicle classes (required). This is a list of several numbers separated by a space (for

example “2 6 7 14 19”).

The implementation of the command line parser using the argparse package is represented below.

def build_argparser():

 parser = argparse.ArgumentParser()

 parser.add_argument('-m', '--model', help='Path to an .xml \

 file with a trained model.', required=True, type=str)

 parser.add_argument('-w', '--weights', help='Path to an .bin file \

 with a trained weights.', required=True, type=str)

 parser.add_argument('-i', '--input', help='Path to \

 input video', required=True, type=str)

 parser.add_argument('-l', '--cpu_extension', help='MKLDNN \

 (CPU)-targeted custom layers. Absolute path to a shared library \

 with the kernels implementation', type=str, default=None)

 parser.add_argument('-d', '--device', help='Specify the target \

 device to infer on; CPU, GPU, FPGA or MYRIAD is acceptable. \

 Sample will look for a suitable plugin for device specified \

 (CPU by default)', default='CPU', type=str)

 parser.add_argument('-c', '--classes', help='File containing classes \

 names', type=str, default=None)

 parser.add_argument('-c_d', '--classes_detected', help='List of \

7

 classes to do videoanalysis', type=int, nargs='+',

 default='2 6 7 14 19')

 return parser

5.4.2 Implementing main function

The main function is very similar to the main function from the object tracking practice, with a small

difference in that the draw_videoanalytics method is used here to display the results of video

analytics.

In the file video_sample.py create a function main that implements the following steps:

1. Parsing command line arguments.

2. Creating an object of the InferenceEngineDetector class.

3. Creating an object of the MatchingTracker class with empirically selected affinity weight

parameters for the input video.

4. Creating an object of the Videoanalytics class with the necessary parameters.

5. Loading the video.

6. Performing actions for each video frame:

6.1. Detecting objects in the image.

6.2. Filtering detections using the tracker.filter_detections method.

6.3. Tracking objects using the tracker.process_new_frame method.

6.4. Displaying detections and tracks of vehicles on the frame and displaying the statistics on the

frame using the videoanalytics.draw_videoanalytics method.

def main():

 log.basicConfig(format="[%(levelname)s] %(message)s",

 level=log.INFO, stream=sys.stdout)

 args = build_argparser().parse_args()

 log.info("Start videoanalytics sample")

 ie_detector = InferenceEngineDetector(configPath=args.model,

 weightsPath=args.weights, device=args.device,

 extension=args.cpu_extension, classesPath = args.classes)

 tracker = MatchingTracker()

 videoanalytics = Videoanalytics(args.classes_detected, args.classes)

 cap = cv2.VideoCapture(args.input)

 timestamp = 0

 while(cap.isOpened()):

 timestamp += 1

 _, frame = cap.read()

 detections_mat = ie_detector.detect(frame)

 detections = tracker.filter_detections(detections_mat, 0.5)

 tracker.process_new_frame(frame, detections, timestamp)

 result_image = videoanalytics.draw_videoanalytics(frame, tracker)

 cv2.imshow('Videanalytics', result_image)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

8

 cap.release()

 cv2.destroyAllWindows()

 return

6 Executing developed sample
The easiest way to execute your sample is the command line represented below.

python videoanalytics_sample.py -i video.mp4 -m ssd300.xml -w ssd300.bin \

 -c pascal_voc.txt -c_d 2 6 7 14 19

The -i argument specifies the path to the input video, the -m argument specifies the model configuration

path, the -w argument specifies the model weight path, the -c argument specifies the path to the file

containing object class names, the -c_d argument specifies a list of vehicle class identifiers, the -l

argument specifies the path to the dynamic library with custom layers.

The result of the application execution is as follows. A message about the start of the application is

displayed, then a window is opened in which the video frames with the detected objects, tracks and

counting statistics are displayed (Fig. 1).

[INFO] Start videoanalytics sample

Fig. 1. Example output of the calculating statistics for class "car"

7 Additional tasks
The developed sample contains the minimum required functionality. As additional tasks, it is proposed to

provide support for the following features:

1. The scheme with storing information about all detected objects in tracks is not effective. It is

proposed to filter non-vehicles immediately after detection and track vehicles.

2. The detector on different frames for the same object can predict various object classes. It is

supposed to implement a scheme for determining the object class based on the full track

information, not just the last frame. The easiest scheme is the voting one, when the object class is

determined by the majority of the bounding boxes in the track.

It is proposed to solve these tasks independently using the documentation and examples included in the

OpenVINO Toolkit.

9

8 Literature

8.1 Books
1. Chollet F. Deep Learning with Python. – Manning Publications Co, NY, USA, – 2017.

8.2 Further reading
2. Ramalho L. Fluent Python: Clear, Concise, and Effective Programming. – O’Reilly Media, Inc., CA,

USA, 2015.

8.3 References
3. Inference Engine demos [https://docs.openvinotoolkit.org/latest/omz_demos_README.html].

4. Open Model Zoo repository of deep models [https://github.com/openvinotoolkit/open_model_zoo].

5. Action recognition Python demo

[https://docs.openvinotoolkit.org/latest/omz_demos_python_demos_action_recognition_README.ht

ml].

6. Crossroad camera demo

[https://docs.openvinotoolkit.org/latest/omz_demos_crossroad_camera_demo_README.html].

7. Security barrier camera demo

[https://docs.openvinotoolkit.org/latest/omz_demos_security_barrier_camera_demo_README.html]

8. Smart Classroom C++ Demo

[https://docs.openvinotoolkit.org/latest/omz_demos_smart_classroom_demo_README.html].

