
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Modern methods and technologies

of deep learning in computer vision»

Practice №3

Video object tracking

Supported by Intel

Vasiliev E. P.

Nizhny Novgorod

2020

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

3 Object tracking via matching detections ... 3

3.1 General scheme of tracking algorithm .. 3

3.2 Calculating similarity matrix ... 4

3.3 Searching for the best matches by similarity matrix ... 4

3.4 Updating tracks ... 5

4 Developing the object tracking application using the OpenVINO Toolkit ... 5

4.1 Installing additional dependencies .. 5

4.2 File structure .. 5

4.3 Developing method to calculate the similarity coefficient between tracks and detections based

on the place affinity ... 7

4.4 Developing method to calculate the similarity coefficient between tracks and detections based

on the shape affinity .. 7

4.5 Developing method to calculate the total similarity coefficient between track and detection 7

4.6 Developing method to construct similarity matrix of coefficients between tracks and objects 7

4.7 Developing method for solving the assignment problem .. 8

4.8 Developing method for filtering detections before assignment .. 8

4.9 Developing method to create a new track ... 8

4.10 Developing method for processing a video frame ... 8

4.11 Developing method for displaying tracks ... 9

4.12 Creating entity for object tracking... 9

4.13 Implementing sample .. 10

4.13.1 Parsing command line options .. 10

4.13.2 Implementing main function ... 10

5 Executing developed sample ... 11

6 Additional tasks ... 11

7 Literature ... 12

7.1 Books ... 12

7.2 Further reading .. 12

7.3 References ... 12

3

1 Introduction
In this practice, we solve the problem of object tracking via constructing object movement trajectories

and develop a solution based on the Intel Distribution of OpenVINO Toolkit. Pre-trained deep models

from the Open Model Zoo repository are used [5].

2 Guidelines

2.1 Goals and tasks
The goal of this practice is to study the problem of object tracking and implement an algorithm that solves

the problem via matching detections (tracking-by-detection approach), using the Intel Distribution of

OpenVINO Toolkit.

To achieve this goal, it is required to solve the following tasks:

 Study the algorithm of object tracking based on matching approach and implement it in Python.

 Develop an application based on the Inference Engine for object tracking. The tracking result

should be displayed on the original video.

 Execute and verify the developed sample.

2.2 Practice structure
First, a brief description of object tracking via matching detections is provided. Further, the application

for solving the problem of object tracking is developed step-by-step.

2.3 Recommended study sequence
The recommended practice sequence is as follows:

 Study tracking-by-detection approach and matching detection algorithm.

 Setup software environment for using the Intel Distribution of OpenVINO Toolkit.

 Develop an application based on the Inference Engine for object tracking. The tracking result

should be displayed on the original video.

Note that the environment setup is described in detail in the first practice; so this step is omitted in this

tutorial.

3 Object tracking via matching detections

3.1 General scheme of tracking algorithm
An input of object tracking is a sequence of video frames. An output is a set of object location sequences

on the input frames. The formal problem statement is represented in the lecture “Deep models for tracking

objects in the video” of this course.

The general scheme of the algorithm consists of several stages. It is also assumed that at first step,

separate parts of the tracks have already been constructed for a set of objects detected by the current step.

A track is a sequence of object locations (bounding boxes) on video frames.

1. Extract current video frame.

2. Detect objects in this frame.

3. Calculate the similarity matrix between the detected objects and objects for which separate parts

of the tracks are constructed.

4. Using the given similarity matrix, answer next questions:

4.1. What tracks does the detected object correspond to?

4.2. What objects appeared for the first time on the video (do not correspond to any of the

existing tracks)?

4.3. For which tracks on the new frame was the object not detected (the track ended because of

the object leaving the camera's field of view)?

4

5. In accordance with the answers, update the positions in the tracks, create new tracks for newly

discovered objects.

6. Repeat from the first step until the video ends.

The first step of the described scheme is performed by standard libraries. The second step supposes

solving the problem of object detection using deep learning models. Object detection based on deep

learning approach was described in the previous practice. Steps 3 – 5 are described in detail below.

3.2 Calculating similarity matrix
Similarity matrix 𝐴 between 𝑁 tracks and 𝑀 objects is a matrix of the size 𝑁 × 𝑀, where each element

𝑎𝑖𝑗 represents the similarity coefficient between the track 𝑇𝑖 and the object 𝑅𝑗. Using this matrix, you can

find the best matches between the detected objects and existing tracks.

The easiest way to calculate the similarity coefficient of the track 𝑇𝑖 and the new object 𝑅𝑗 is shown

below:

1. Extract the last object position (bounding box) from the track 𝑇𝑖.

2. Compare the object in the track and the detected object 𝑅𝑗 according to some features.

To compare it is possible to use one or more of the following features: location, shape and appearance of

the object. Let 𝐷 is the distance between the centers of the bounding boxes (diagonals intersection),

(𝑤1, ℎ1) is the width and height of the last bounding box in the track, (𝑤2, ℎ2) is the width and height of

the detected bounding box, 𝐶1, 𝐶2 are the weights of the features into the similarity coefficient. Then the

formula for calculating the similarity coefficient for the location feature is as follows:

𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑝𝑙𝑎𝑐𝑒 = 𝑒
−𝐶1(

𝐷2

𝑤1ℎ1
)
,

and the formula for calculating the similarity coefficient by the shape feature is represented below:

𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑠ℎ𝑎𝑝𝑒𝑠 = 𝑒
−𝐶2(

𝑤1−𝑤2
𝑤1

+
ℎ1−ℎ2

ℎ1
)
.

The similarity coefficient is determined as follows:

𝑎𝑖𝑗 = 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑝𝑙𝑎𝑐𝑒 ∗ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑠ℎ𝑎𝑝𝑒𝑠.

3.3 Searching for the best matches by similarity matrix
The problem of searching for the matches by the similarity matrix reduces to the assignment

problem [3, 4, 6].

1. There are {1, . . . , 𝑁} agents and {1, . . . , 𝑁} tasks, which can be distributed between these agents.

2. Only one task can be assigned to each agent, and each task can be assigned to only one agent

𝑗 = 𝑓(𝑖) with cost 𝑎(𝑖, 𝑗) ≥ 0.

3. The assignment problem is to find a feasible set of assignments 𝐴 = {(𝑖1, 𝑗1), … , (𝑖𝑛, 𝑗𝑛)} of the

minimum total cost: ∑ 𝑎(𝑖, 𝑓(𝑖))𝑗 → 𝑚𝑖𝑛.

The problem of searching for the best matches of the tracks and detections by the similarity matrix is the

problem of maximizing the total similarity. In order to reduce this problem to the assignment problem, it

is required to perform the following actions:

1. Make matrix 𝐴 square. We are able to add a number of empty rows and columns filled by zeros.

2. Reduce the maximization problem to the minimization problem. Since 0 ≤ 𝑎𝑖𝑗 ≤ 1, it is enough

to replace each element in the similarity matrix by the formula 𝑎𝑖𝑗
′ = 1 − 𝑎𝑖𝑗.

To solve the assignment problem, you can use the linear_sum_assignment function of the

scipy.optimize package, which implements the Hungarian algorithm [3, 4].

5

3.4 Updating tracks
When the matches of tracks and objects were constructed, it is required to update tracks.

1. If the similarity coefficient between the object and the track exceeds a threshold (usually in the

range 0.02 – 0.2), then append the object to the track.

2. If the object is not appended to any track, then create a new track and append the detected object

to this track.

4 Developing the object tracking application using the OpenVINO

Toolkit

4.1 Installing additional dependencies
In this practice, we need to use the scientific-python library, so we should install the SciPy

package. SciPy is a free library used for scientific and engineering calculations.

pip install scipy

4.2 File structure
For this practice, please, create two files: matching_tracker.py is a file containing classes

Tracklet and MatchingTracker, and tracking_sample.py is a file containing the testing code

for the implemented tracking algorithm.

The base entity, which contains information about the object location in the image, is the named tuple

DetectedObject.

DetectedObject = namedtuple('DetectedObject',

 ['confidence', 'frame_idx', 'object_id', 'timestamp', 'class_id',

 'x_left', 'y_bottom', 'x_right', 'y_top',])

 confidence is a confidence of the object location in the selected area (float).

 frame_idx is a frame number (integer).

 object_id is a track identifier (integer, takes value -1 if the object is not assigned to any track).

 timestamp is a timestamp (integer, in milliseconds), it is required to track the point in time

when an object was detected.

 class_id is an object class identifier (integer, used to display the class name on the screen).

 x_left, y_bottom, x_right, y_top are coordinates of the bounding boxes in the range from

0 to 1.

A class to represent a track is Tracklet. This class stores a list of DetectedObject objects and

provides several methods.

 __init__ is a constructor, it creates inside itself a list of DetectedObject for storing.

 __len__ is a method to get the length of an object list.

 __getitem__ is a method to receive an object by its number.

 add_new_detection is a method to add a new DetectedObject to the list.

class Tracklet():

 def __init__(self, detection=[]):

 self._trackedObjects = []

 self._trackedObjects.append(detection)

 def __len__(self):

 return len(self._trackedObjects)

 def __getitem__(self, position):

 return self._trackedObjects[position]

 def add_new_detection(self, detection):

 self._trackedObjects.append(detection)

6

There is a common practice in Python to create a new data type from named tuple and a class for storing

and access to elements. To work with tracks in the paradigm of the Python language, the standard

methods __len__ and __getitem__ are overridden.

The main part of this application is the MatchingTracker class. This class creates and stores tracks,

and also provides matching between tracks and objects detected in the frame. The MatchingTracker

class contains the following methods:

 __init__ is a constructor, it creates inside itself a list of Tracklets.

 add_new_track is a method to add a new track.

 filter_detections is a method that filters the detection output and creates objects of type

DetectedObject from the detection output.

 _shape_affiinity is a method that calculates the similarity coefficient of two objects based

on their size.

 _place_affinity is a method that calculates the similarity coefficient of two objects based on

shapes affinity.

 _affinity is a method that calculates the total similarity coefficient based on shape and

location affinities.

 _compute_dissimilarity_matrix is a method for constructing a two-dimensional

similarity matrix, which consists of similarity coefficient between tracks and detected objects.

 _solve_assignment_problem is a method to search for the best matches of tracks and

detections by solving the assignment problem.

 process_new_frame is a public method that processes the new frame.

 _draw_active_track is a method for drawing existing tracks on the frame.

class MatchingTracker:

 """

 Class that stores and processes tracks

 """

 def __init__(self, dist_weight=0.5, shape_affinity_weight=0.4,

 place_affinity_weight=0.5):

 pass

 def add_new_track(self, detection):

 pass

 def filter_detections(self, detect_mat, threshold=0.5):

 pass

 def process_new_frame(self, frame, detections, timestamp):

 pass

 def _solve_assignment_problem(self, tracks, detections):

 pass

 def _compute_dissimilarity_matrix(self, tracks, detections):

 pass

 def _affinity(self, obj1, obj2):

 pass

 def _shape_affinity(self, obj1, obj2, weight):

 pass

 def _place_affinity(self, o1, o2, weight):

 pass

 def draw_active_tracks(self, image):

 pass

Further, we consider the implementation of the above methods.

7

4.3 Developing method to calculate the similarity coefficient between tracks

and detections based on the place affinity
The method of calculating the similarity coefficient between track and detection based on shape affinity

takes the last object location in the track and the detection, and the coefficient “place affinity weight

score”. This method calculates the similarity coefficient according to the formula presented in the

algorithm described in the previous section. The result of the method is a value from 0 to 1.

def _place_affinity(self, obj1, obj2, weight):

 obj1_x = (obj1.x_left + obj1.x_right) * 0.5

 obj1_y = (obj1.y_top + obj1.y_bottom) * 0.5

 obj2_x = (obj2.x_left + obj2.x_right) * 0.5

 obj2_y = (obj2.y_top + obj2.y_bottom) * 0.5

 obj2_width = obj2.x_right- obj2.x_left

 obj2_height = obj2.y_top - obj2.y_bottom

 x_dist = ((obj1_x - obj2_x) ** 2) / (obj2_width ** 2)

 y_dist = ((obj1_y - obj2_y) ** 2) / (obj2_height ** 2)

 return math.exp(-weight * (x_dist + y_dist))

4.4 Developing method to calculate the similarity coefficient between tracks

and detections based on the shape affinity
The method for calculating the similarity coefficient between track and detection based on shape affinity

takes the last object location in the track and the detection, and the weight for coefficient “shape affinity

weight score”. This method calculates the similarity coefficient according to the formula presented in the

algorithm described in the previous section. The result of the method is a value from 0 to 1.

def _shape_affinity(self, obj1, obj2, weight):

 obj1_width = obj1.x_right-obj1.x_left

 obj2_width = obj2.x_right-obj2.x_left

 obj1_height = obj1.y_top - obj1.y_bottom

 obj2_height = obj2.y_top - obj2.y_bottom

 w_dist = abs(obj1_width - obj2_width) / (obj1_width + obj2_width)

 h_dist = abs(obj1_height - obj2_height) / (obj1_height + obj2_height)

 return math.exp(-weight * (w_dist + h_dist))

4.5 Developing method to calculate the total similarity coefficient between

track and detection
The _affinity method calculates the total similarity coefficient between tracks and detections using

the similarity coefficients obtained with the previous two methods. The result of this function is a value

from 0 to 1.

def _affinity(self, obj1, obj2):

 shp_aff = self._shape_affinity(obj1, obj2,

 self._shape_affinity_weight)

 mot_aff = self._place_affinity(obj1, obj2,

 self._place_affinity_weight)

 return shp_aff * mot_aff

4.6 Developing method to construct similarity matrix of coefficients between

tracks and objects
The _compute_dissimilarity_matrix method constructs a similarity matrix where cell [i,j]

contains a similarity coefficient of the track i and the detection j. To solve this assignment problem, the

matrix should be square, it means that the number of tracks should correspond to the number of

detections. If this condition is not true, empty rows and columns with zero elements should be added to

the matrix.

def _compute_dissimilarity_matrix(self, tracks, detections):

8

 size = max(len(tracks), len(detections))

 diss_mat = np.zeros(shape=(size, size), dtype=float)

 for i in range(len(tracks)):

 for j in range(len(detections)):

 diss_mat[i, j] = 1.0 - \

 self._affinity(tracks[i][-1], detections[j])

 return diss_mat

4.7 Developing method for solving the assignment problem
The _solve_assignment_problem method searches for the best matches between the tracks and

detections through solving the assignment problem [6]. The input of this method is a list of tracks and a

list of detections; the output is a set of matched pairs of track identifiers (row of the similarity matrix) and

bounding box identifiers (column of the similarity matrix).

from scipy.optimize import linear_sum_assignment

def _solve_assignment_problem(self, tracks, detections):

 dissimilarity_mat = self._compute_dissimilarity_matrix(

 tracks, detections)

 row_ind, col_ind = linear_sum_assignment(dissimilarity_mat)

 return row_ind, col_ind

4.8 Developing method for filtering detections before assignment
The filter_detections method receives the result of object detection using a deep model (for

example, the SSD300 model considered in the previous practice), and creates a list of DetectedObject

objects that will be processed. Objects for which the confidence is less than a certain threshold (0.5 by

default) are discarded and are not included in the list of detected objects.

def filter_detections(self, detect_mat, threshold=0.5):

 detect_mat = detect_mat[0, 0, :, :]

 detections = []

 for i in range(detect_mat.shape[0]):

 # Parse one string in ie_detection_output

 conf = detect_mat[i, 2]

 if conf > threshold:

 detection = DetectedObject(

 detect_mat[i, 2],

 -1,

 -1,

 -1,

 detect_mat[i, 1],

 detect_mat[i, 3],

 detect_mat[i, 4],

 detect_mat[i, 5],

 detect_mat[i, 6])

 detections.append(detection)

 return detections

4.9 Developing method to create a new track
This method receives a new detection as an input, creates a new track and adds it to the track list.

def add_new_track(self, detection):

 track = Tracklet(detection)

 self._tracks.append(track)

4.10 Developing method for processing a video frame
The method receives a list of bounding boxes detected on the new frame as an input, constructs a

similarity matrix, and solves the assignment problem. For the matches, the similarity coefficient for which

9

is above the threshold, we update the corresponding tracks. If the similarity coefficient is low, then new

tracks are created for such detections.

def process_new_frame(self, frame, detections, timestamp):

 if self._tracks and detections:

 row_indexes, col_indexes = self._solve_assignment_problem(

 self._tracks, detections)

 # For each assignment

 for i in range(len(row_indexes)):

 row_id = row_indexes[i]

 col_id = col_indexes[i]

 # If we find existing track and existing detection

 if row_id < len(self._tracks) and col_id < len(detections):

 # Add detection to track if objects are close

 dist = 1.0 - self._affinity(

 self._tracks[row_id][-1], detections[col_id])

 if dist < self._dist_weight:

 self._tracks[row_id].add_new_detection(

 detections[col_id])

 elif col_id < len(detections):

 self.add_new_track(detections[col_id])

 else:

 # Add new tracks

 for id, detection in enumerate(detections):

 self.add_new_track(detection)

 return

4.11 Developing method for displaying tracks
The draw_active_tracks method draws tracks on the frame. Each track is drawn as follows: the

centers of the bounding boxes in frames i and i+1 are calculated and a line is drawn between them.

def draw_active_tracks(self, image):

 w, h = image.shape[:2]

 for i, track in enumerate(self._tracks):

 # Draw one track from segments

 for i in range(len(track) - 1):

 cv2.line(img=image,

 pt1=(int((track[i].x_left + track[i].x_right) * h)//2,

 int((track[i].y_bottom + track[i].y_top) * w)//2),

 pt2=(int((track[i+1].x_left + track[i+1].x_right) * h)//2,

 int((track[i+1].y_bottom + track[i+1].y_top) * w)//2),

 color=(0, 255, 0), thickness=3)

 return image

4.12 Creating entity for object tracking
The constructor of the MatchingTracker class creates an empty list of tracks and sets parameters for

calculating the similarity coefficients of objects. These parameters are set for a specific video separately.

def __init__(self, dist_weight=0.5, shape_affinity_weight=0.5,

 place_affinity_weight=0.7):

 self._tracks = []

 self._dist_weight = dist_weight

 self._shape_affinity_weight = shape_affinity_weight

 self._place_affinity_weight = place_affinity_weight

 return

10

4.13 Implementing sample

4.13.1 Parsing command line options

In this practice, the following command line arguments will be required:

 Path to the input video (required).

 Path to the model weights file (required).

 Path to the model configuration file (required).

 Path to the dynamic library with custom layers (needed to infer the SSD-based models using

CPU) (optional).

 Path to the file containing class names (optional).

The implementation of the command line parser using the argparse package is represented below.

def build_argparser():

 parser = argparse.ArgumentParser()

 parser.add_argument('-m', '--model', help = 'Path to an .xml \

 file with a trained model.', required = True, type = str)

 parser.add_argument('-w', '--weights', help = 'Path to an .bin file \

 with a trained weights.', required = True, type = str)

 parser.add_argument('-i', '--input', help = 'Path to \

 input video', required = True, type = str)

 parser.add_argument('-l', '--cpu_extension', help='MKLDNN \

 (CPU)-targeted custom layers. Absolute path to a shared library \

 with the kernels implementation', type=str, default=None)

 parser.add_argument('-c', '--classes', help = 'File containing \

 classnames', type = str, default = None)

 return parser

4.13.2 Implementing main function

In the file tracking_sample.py create a function main that implements the following steps:

1. Parsing command line arguments.

2. Creating an object of the InferenceEngineDetector class.

3. Creating an object of the MatchingTracker class with empirically selected affinity weight

parameters for the input video.

4. Loading the video.

5. Repeating the following actions for each video frame:

5.1. Detecting objects in the frame.

5.2. Filtering detections using the tracker.filter_detections method.

5.3. Tracking objects using the tracker.process_new_frame method.

5.4. Drawing tracking results on the frame and displaying on the screen.

def main():

 args = build_argparser().parse_args()

 ie_detector = InferenceEngineDetector(configPath=args.model,

 weightsPath=args.weights, device=args.device,

 extension=args.cpu_extension, classesPath=args.classes)

 tracker = MatchingTracker()

 cap = cv2.VideoCapture(args.input)

 timestamp = 0

 while(cap.isOpened()):

11

 timestamp += 1

 _, frame = cap.read()

 detections_mat = ie_detector.detect(frame)

 detections = tracker.filter_detections(detections_mat, 0.5)

 tracker.process_new_frame(frame, detections, timestamp)

 tracks_image = tracker.draw_active_tracks(frame)

 result_image = ie_detector.draw_detection(detections_mat,

 tracks_image)

 cv2.imshow('Detections', result_image)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 cap.release()

 cv2.destroyAllWindows()

 return

5 Executing developed sample
The easiest way to execute your sample is the command line represented below.

python tracking_sample.py -i video.mp4 -m ssd300.xml -w ssd300.bin

The -i argument specifies the path to the input video, the -m argument specifies the model configuration

path, the -w argument specifies the model weight path, the -c argument specifies the path to the file

containing object class names.

The result of launching the application looks like in the paragraph below. A message about the start of the

application is displayed, then a window is opened in which the video frames with the detected objects and

tracks are displayed (Fig. 1).

[INFO] Start matching tracking sample

Fig. 1. Example output of the tracking application

6 Additional tasks
The developed sample contains the minimum required functionality. As additional tasks, it is proposed to

provide support for the following features:

12

1. Displaying the total number of detected objects on each frame and the number of objects by class.

We propose to display information about the most numerous three classes.

2. Limiting the number of object classes depending on the video context. For example, if a detection

model trained on the PASCAL VOC dataset and we process video from crossroad camera, then

only traffic objects (cars, buses, pedestrians) have to be detected and tracked.

3. Supporting for dividing tracks into “active” and “inactive”. By “inactive” we mean tracks for

which the corresponding object was not found within a certain period of time (for example,

within a few seconds). It is proposed to draw tracks using different colors during this time period,

and after this time not to display these tracks.

It is proposed to solve these tasks independently using the documentation and examples included in the

OpenVINO Toolkit.

7 Literature

7.1 Books
1. Chollet F. Deep Learning with Python. – Manning Publications Co, NY, USA, – 2017.

7.2 Further reading
2. Ramalho L. Fluent Python: Clear, Concise, and Effective Programming. – O’Reilly Media, Inc., CA,

USA, 2015.

3. Kuhn H.W. The Hungarian Method for the assignment problem // Naval Research Logistics

Quarterly. – 1955.

4. Kuhn H.W. Variants of the Hungarian method for assignment problems // Naval Research Logistics

Quarterly. – 1956.

7.3 References
5. Open Model Zoo repository of deep models [https://github.com/openvinotoolkit/open_model_zoo].

6. The assignment problem and The Hungarian algorithm [http://www.hungarianalgorithm.com].

