
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Modern methods and technologies

of deep learning in computer vision»

Practice №1

Image classification with a large number of categories

using deep learning

Supported by Intel

Vasiliev E.P.

Nizhny Novgorod

2020

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

3 Installing the Intel the Distribution of OpenVINO Toolkit and its dependencies 3

3.1 Installing Python 3 .. 3

3.2 Creating a Python environment ... 4

3.3 Installing the Intel the Distribution of OpenVINO Toolkit ... 4

3.4 Installing the additional Python modules .. 4

4 Executing the OpenVINO samples and demos in Python ... 5

4.1 Configuring the OpenVINO environment ... 5

4.2 Downloading model .. 5

4.3 Converting model .. 5

4.4 Executing image classification samples .. 5

5 Developing the image classification application using the OpenVINO Toolkit 6

5.1 File structure .. 6

5.2 Loading model .. 7

5.3 Loading and preprocessing image ... 7

5.4 Inferring model .. 8

5.5 Processing model output ... 8

5.6 Implementing sample .. 8

5.6.1 Parsing command line arguments.. 8

5.6.2 Implementing main function ... 9

6 Executing developed sample ... 9

7 Additional tasks ... 10

8 Literature ... 10

8.1 Books ... 10

8.2 Further reading .. 10

8.3 References ... 10

3

1 Introduction
This practice is an introductory one and aimed at the creating infrastructure for all practices. In this

practice, the installation procedure for the Intel Distribution of OpenVINO Toolkit [3] is given and the

environment setup for working with the toolkit is described.

Implementation of the solutions is performed using Python 3. Models of the Open Model Zoo are used as

pre-trained deep learning models [3]. In this practice, the problem of image classification is described and

a scheme for solving it using the Intel Distribution of OpenVINO Toolkit is proposed.

2 Guidelines

2.1 Goals and tasks
The goal of this practice is to study deep models for solving the problem of image classification using the

Intel Distribution of OpenVINO Toolkit.

To achieve this goal, it is necessary to solve the following tasks:

 Install the Intel Distribution of OpenVINO Toolkit.

 Setup software environment.

 Learn the structure and modules of the Intel Distribution of OpenVINO Toolkit.

 Download and convert deep classification model.

 Perform image classification.

2.2 Practice structure
The guide describes installation of the Intel Distribution of OpenVINO Toolkit and its dependencies. This

guide includes a list of commands to configure the software environment and to execute classification

samples using various deep models. Further, source code for solving the image classification problem is

developed step-by-step.

2.3 Recommended study sequence
The recommended study sequence is as follows:

 Install the Intel Distribution of OpenVINO Toolkit and its dependencies.

 Setup the software environment.

 Learn the structure and modules of the Intel Distribution of OpenVINO Toolkit using the

corresponding lecture and documentation of the OpenVINO Toolkit.

 Develop source code for solving image classification problem using the Inference Engine

component, which is part of the Intel Distribution of OpenVINO Toolkit, and verify the

classification result.

3 Installing the Intel the Distribution of OpenVINO Toolkit

and its dependencies

3.1 Installing Python 3
To operate with OpenVINO 2021.1, we recommend to use the latest version of Python 3.8 (also you are

able to use Python 3.6 and 3.7), which can be downloaded from the official web-site [4].

The information below is relevant for users of the Windows operating system. If during installation the

path to the Python binaries was not added to the PATH environment variable, then you need to run the

following command to make Python accessible from the command:

set

PATH="C:\Users\<USERNAME>\AppData\Local\Programs\Python\Python38;%PATH%"

4

3.2 Creating a Python environment
Python libraries are installed on the operating system in the same way as software packages. It may

require several different versions of the same library. However, while developing applications, you may

need several different versions of the same Python library. To solve this problem, you can create several

virtual environments in which different versions of the library will be installed.

To create a new Python virtual environment named openvinoenv, execute the following commands.

mkdir openvino-virtual-environments && cd openvino-virtual-environments

python -m venv openvinoenv

To activate and use the virtual environment, use the commands represented below.

For Windows:

openvino-virtual-environments\bin\activate.bat

For Linux:

source openvino-virtual-environments/bin/activate

Further, you need to activate the existing virtual environment every time. For convenience, you can save

all the commands in a text file so that at the next time you do not type them manually, or create a script

that activates Python, a virtual environment and OpenVINO.

3.3 Installing the Intel the Distribution of OpenVINO Toolkit
To install the OpenVINO Toolkit, you need to download the installer from the official web-site [5].

Download is free and requires registration. The registration key will be available after downloading. It is

not necessary to save this key; the software works without activation.

3.4 Installing the additional Python modules
To infer deep models using the OpenVINO Toolkit, you need to convert the model from the original

framework to the OpenVINO intermediate representation (IR). It requires to install the current version of

the training framework. You are able to install the framework you are interested in or all frameworks at

once using one of the following commands.

Installing all frameworks:

pip install -r "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\model_optimizer\requirements.tx

t"

Only Caffe:

pip install -r "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\model_optimizer\requirements_ca

ffe.txt"

To download pre-trained models from the Open Model Zoo repository, you need to install dependencies

required for network manipulations from Python.

pip install -r "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\open_model_zoo\tools\downloader

\requirements.in"

After these steps, the OpenVINO is ready for the further use.

5

4 Executing the OpenVINO samples and demos in Python

4.1 Configuring the OpenVINO environment
When the OpenVINO Toolkit is installed and the Python virtual environment is created and activated, it is

required to add the OpenVINO Python libraries to the PATH environment variable using one of the

following commands.

For Windows:

"C:\Program Files (x86)\Intel\openvino_2021\bin\setupvars.bat"

For Linux:

source ~/intel/openvino_2021/bin/setupvars.sh

4.2 Downloading models
Open Model Zoo [3] is a repository containing a large number of pre-trained deep models that can be

executed using the OpenVINO Toolkit. This repository stores models and parameters for converting

models from different frameworks into the intermediate representation.

To download pre-trained models from the Open Model Zoo repository, you need to use the Model

Downloader tool. Execute the download.py script to use this tool.

python "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\tools\model_downloader\download

er.py" --name <model_name> --output_dir <destination_folder>

where <model_name> is the name of the model to download, and <destination_folder> is the

directory where to download the model.

The list of all models available for downloading can be obtained using the key --print_all when

executing the script:

python "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\tools\model_downloader\download

er.py" --print_all

To solve the classification problem, you can use the Squeezenet1.1 model, which is a good compromise

between performance and quality.

4.3 Converting models
To convert downloaded models, it is required to execute the Model Optimizer tool using the

converter.py script.

python "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\tools\model_downloader\converte

r.py" --name <model_name> --download_dir <destination_folder>

To convert your own models, you need to add additional converter parameters and use the mo.py

module, which will be described later.

4.4 Executing image classification samples
The OpenVINO Toolkit contains the classification_sample.py file, which performs

classification of any image using a deep neural network. A full description of this sample and user guide

are available on the official web-site [7].

To execute the sample, please, download and convert the Squeezenet model, the sequence of commands

is given below, you only need to replace the paths in angle brackets with the real paths of your computer.

6

python "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\tools\model_downloader\download

er.py" --name squeezenet1.1 --output_dir <destination_folder>

python "C:\Program Files

(x86)\Intel\openvino_2021\deployment_tools\tools\model_downloader\converte

r.py" --name squeezenet1.1 --download_dir <destination_folder>

python "C:\Program Files

(x86)\Intel\openvino_2021\inference_engine\samples\python

\classification_sample\classification_sample.py" -i <path_to_image> -m

<path_to_model>\squeezenet1.1.xml

After starting the sample, the following output should appear in the console.

[INFO] Creating Inference Engine

[INFO] Loading network files:

 squeezenet1.0.xml

 squeezenet1.0.bin

[INFO] Preparing input blobs

[WARNING] Image dog.jpg is resized from (486, 729) to (227, 227)

[INFO] Batch size is 1

[INFO] Loading model to the plugin

[INFO] Starting inference in synchronous mode

[INFO] Processing output blob

[INFO] Top 10 results:

Image dog.jpg

classid probability

------- -----------

 208 0.6787384

 243 0.1161512

 207 0.0784803

 247 0.0298401

 167 0.0120248

 222 0.0113272

 246 0.0085536

 159 0.0085039

 212 0.0081170

 242 0.0065376

[INFO] This sample is an API example, for any performance measurements

please use the dedicated benchmark_app tool

Source code of samples can be used to learn the programming interface of the Inference Engine

component. The next section provides the step-by-step tutorial for developing your own application for

image classification.

5 Developing the image classification application using

the OpenVINO Toolkit

5.1 File structure
For the first practice, please, create two files: ie_classifier.py is a file containing the

InferenceEngineClassifier class with _prepare_image, classify, get_top methods to

implement image classification, and classification_sample.py is a file containing the testing

code for the InferenceEngineClassifier.

7

Methods of the InferenceEngineClassifier class:

 init is a constructor, it initializes the Inference Engine and loads the model from file.

 _prepare_image is a method to convert the image into the deep model input array.

 classify is a method for image classification using the deep model.

 get_top is a method to select N best classification results (with maximum confidence).

class InferenceEngineClassifier:

 def __init__(self, configPath = None, weightsPath = None,

 classesPath = None):

 pass

 def get_top(self, prob, topN = 1):

 pass

 def _prepare_image(self, image, h, w):

 pass

 def classify(self, image):

 pass

We separate the class and the testing code for this class, since the InferenceEngineClassifier

class will be needed as part of the following practices. Further, we consider the implementation of each

method of the specified class and testing code.

5.2 Loading deep model from file
In order to load the model, we need to implement the constructor of the

InferenceEngineClassifier class placed in the ie_classifier.py file. The constructor

receives the following required and optional parameters:

 configPath is a path to the .xml file of the model description.

 weightsPath is a path to the .bin file of the model weights.

 classesPath is a path to the file containing class names for the given classification model.

The constructor performs the following actions:

1. Creating an object of the class IECore.

self.ie = IECore()

2. Creating an object of the class IENetwork with parameters corresponding to the model paths.

self.net = self.ie.read_network(model=configPath, weights=weightsPath)

3. Loading the created object of the IENetwork class into IECore, this means preparing the

model for executing device.

self.exec_net = self.ie.load_network(network=self.net,

 device_name=device)

4. Loading the class names from the file located at path classesPath.

if classesPath:

 self.classes = [line.rstrip('\n') for line in open(classesPath)]

5.3 Loading and preprocessing image
The next step is to implement the _prepare_image method.

In first, it is necessary to resize the image to the size of the network input.

image = cv2.resize(image, (w, h))

8

Deep models require images in a per-channel format, and not pixel-by-pixel format, input images have to

be converted from the format RGBRGBRG... to the format RRRGGGBBB... You can use the

transpose function to do this.

image = image.transpose((2, 0, 1))

In common, a 4-dimensional tensor should be set to the model input, for example, tensor [1,3,227,227],

where the first coordinate is the number of images in a batch (subset of images processed

simultaneously); 3 is the number of color channels of the image; 227, 227 are width and height of the

image. However, if a 3-dimensional tensor [3,227,227] is set to the network input, then the OpenVINO

Toolkit will automatically add the fourth dimension.

It is also worth remembering one fact about the OpenCV library. OpenCV stores images in a BGR

format, not RGB. If the model is loaded from the Open Model Zoo and converted with default

parameters, then this moment is already taken into account the model. However, if the model is not used

from the Open Model Zoo, then the red and blue channels of the image have to be swapped.

5.4 Inferring model
The next step is the implementation of the classify method, which launches the deep model inference

on the device specified in the constructor. The sequence of operations for the classify method is as

follows:

1. Get information about the model input and output.

input_blob = next(iter(self.net.input_info))

out_blob = next(iter(self.net.outputs))

2. From the model input, obtain the input dimension required by the model for the image.

n, c, h, w = self.net.input_info[input_blob].input_data.shape

3. Preprocess image using the function _prepare_image.

blob = self._prepare_image(image, h, w)

4. Infer the model in synchronous mode.

output = self.exec_net.infer(inputs = {input_blob: blob})

5. Extract the tensor with the classification result from the model output.

output = output[out_blob]

5.5 Processing model output
To process the output, it is necessary to implement the _get_top function in order to extract the most

probable N classes predicted by the neural network. To derive top-N probabilities, probabilities can be

sorted in ascending order. You can use the numpy.argsort function for implementation. It is worth

noting that the argsort function receives a one-dimensional tensor as an input. If the input tensor has a

size [1,1000,1,1], then it is necessary to convert it to a tensor of the size [1000], you can use function

np.squeeze(). It is required to establish compliance with the list of classes contained in the file, the

path to which is passed as an input parameter to the constructor.

5.6 Implementing sample

5.6.1 Parsing command line arguments

When working with Python programs, it is the best practice to use the command line and execute scripts

with named arguments. In Python, the argrparse package supports named arguments processing. This

package allows you to describe the name, type, and other parameters for each argument. We recommend

to implement the build_argparser function that will create an ArgumentParser object to process

command line arguments.

9

In this practice, the following command line arguments will be required:

 Path to the input image (required).

 Path to the model weights file (required).

 Path to the model configuration file (required).

 Path to the file containing class names (optional).

def build_argparser():

 parser = argparse.ArgumentParser()

 parser.add_argument('-m', '--model', help = 'Path to an .xml \

 file with a trained model.', required = True, type = str)

 parser.add_argument('-w', '--weights', help = 'Path to an .bin file \

 with a trained weights.', required = True, type = str)

 parser.add_argument('-i', '--input', help = 'Path to \

 image file', required = True, type = str)

 parser.add_argument('-c', '--classes', help = 'File containing \

 classnames', type = str, default = None)

 return parser

5.6.2 Implementing main function

In the file classification_sample.py create a function main that implements the following steps:

1. Parsing command line arguments.

2. Creating an object of the InferenceEngineClassifier class with the necessary parameters.

3. Reading the image.

4. Classifying the image.

5. Displaying of the classification result to the screen.

To output logs, use the logging package.

import logging as log

def main():

 log.basicConfig(format="[%(levelname)s] %(message)s",

 level=log.INFO, stream=sys.stdout)

 args = build_argparser().parse_args()

 log.info("Start IE classification sample")

 ie_classifier = InferenceEngineClassifier(configPath=args.model,

 weightsPath=args.weights, device=args.device,

 extension=args.cpu_extension, classesPath=args.classes)

 img = cv2.imread(args.input)

 prob = ie_classifier.classify(img)

 predictions = ie_classifier.get_top(prob, 5)

 log.info("Predictions: " + str(predictions))

 return

if __name__ == '__main__':

 sys.exit(main())

6 Executing developed sample
The easiest way to execute your sample is the command line.

10

python ie_classification_sample.py -i image.jpg -m squeezenet1.1.xml \

 -w squeezenet1.1.bin -c imagenet_synset_words.txt

The -i argument specifies the path to the image, the -m argument specifies the model configuration path,

the -w argument specifies the model weights path, the -c argument specifies the file containing a list of

classes for the model.

The result of application execution is as follows. A message about the start of the application is displayed,

then a list of classes and their scores are represented.

[INFO] Start IE classification sample

[INFO] Predictions: [['n02099712 Labrador retriever',

67.87383556365967], ['n02108422 bull mastiff', 11.615122854709625],

['n02099601 golden retriever', 7.8480251133441925], ['n02109525 Saint

Bernard, St Bernard', 2.984011545777321], ['n02089973 English foxhound',

1.2024826370179653]]

7 Additional tasks
The developed classification sample contains the minimum required functionality. As additional tasks, it

is proposed to provide support for the following features:

1. Support for the classification of not only one image, but also several images.

2. Support for the output of deep models, not only on the CPU, but also on the Intel Processor

Graphics or Neural Compute Stick (if it is available).

3. Support for asynchronous inference mode of deep models.

It is proposed to solve these tasks independently using the documentation and examples included in the

OpenVINO Toolkit.

8 Literature

8.1 Books
1. Chollet. F. Deep Learning with Python. – Manning Publications Co, NY, USA, – 2017.

8.2 Further reading
2. Ramalho L. Fluent Python: Clear, Concise, and Effective Programming. – O’Reilly Media, Inc., CA,

USA, 2015.

8.3 References
3. Open Model Zoo home page [https://github.com/openvinotoolkit/open_model_zoo].

4. Python 3.8.6 download page [https://www.python.org/downloads/release/python-386/].

5. Intel Distribution of OpenVINO Toolkit download page [https://software.intel.com/en-us/openvino-

toolkit/choose-download].

6. Intel Distribution of OpenVINO Toolkit documentation

[https://docs.openvinotoolkit.org/latest/index.html].

7. OpenVINO classification sample

[https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_sample_classification_

sample_README.html].

