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Goals 

 The goal is to study deep models for solving problem of instance 

segmentation 
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Problem statement (1) 

 The problem of instance segmentation is to match each image 

pixel with the class of objects and with image object number to 

which this pixel belongs 

 Object detection and semantic segmentation results should be 

combined 
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Classification 
Object detection 

Semantic segmentation Instance segmentation 

Lin T.Y., et al. Microsoft COCO: Common objects in context-– 2014. – [https://arxiv.org/pdf/1405.0312] 

https://arxiv.org/pdf/1405.0312
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Problem statement (2) 

 Comparison with semantic segmentation:  

– It’s also pixel classification task, but the mark of every pixel 

responds object class and object number 

– Comparison with object detection: 

 More accurate object borders detection in comparison with 

bounding boxes 

– non-maximum suppression is more accurate 
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Public datasets (1) 
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Dataset Number of images in 

train dataset 

Number of images 

in test dataset 

Number  

of classes 

PASCAL VOC 2012 
[http://host.robots.ox.ac.uk/pascal/VOC

/voc2012]  

9 963 1 447 20 

MS COCO’15 
[http://mscoco.org] 

80 000 40 000 80 

Sun-RGBD 
[http://rgbd.cs.princeton.edu] 

10 355 2 860 37 

Cityscapes 
[https://www.cityscapes-dataset.com] 

2 975 500 19 

http://host.robots.ox.ac.uk/pascal/VOC/voc2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012
http://mscoco.org/
http://rgbd.cs.princeton.edu/
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
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MS COCO’15 (1) 

 MS COCO’15 is the largest public dataset of real-life images 

(similar to PASCAL VOC) by the number of object classes 

(80 categories) and the number of images; each category contains 

a significant number of images (approximately equal number of 

objects for each class) 

 

Nizhny Novgorod, 2020 Instance segmentation  

of images using deep learning 

* Lin T.Y., et al. Microsoft COCO: Common objects in context // Lecture Notes in Computer Science. – 2014. –– 

[https://arxiv.org/pdf/1405.0312]. 

https://arxiv.org/pdf/1405.0312
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MS COCO’15 (2) 
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Cow 

* Lin T.Y., et al. Microsoft COCO: Common objects in context. – 2014. – [https://arxiv.org/pdf/1405.0312]. 

Motobike 

Car 

https://arxiv.org/pdf/1405.0312
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SUN RGB-D 

 Object classes are relatively few 
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bedroom conference room 

classroom home office 

Song S., Lichtenberg S. P., Xiao J. Sun rgb-d: A rgb-d scene understanding benchmark suite.– 2015. – 

[https://rgbd.cs.princeton.edu/] 
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Applications 

 medical diagnostics 

 object parameters research 

 scene understanding and scene reconstruction: 

– aircraft autodriving  

– car autodriving 

– scene reconstruction 

– scene modelling 

– placing virtual objects on the scene 
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Average Precision (1) 

 IoU (Intersection Over Union)  -  is a ratio of overlapping the 

segmented and labeled (groundtruth) masks (Intersection over 

Union) 

 

 TP -  is a number of segmented objects for which intersection over 

union is not less a certain threshold t  (we think of the object is 

segmented correctly, it is a true positive) 

 

 FP -  is a number of segmented objects for which intersection over 

union is less than t (the object was segmented incorrectly), or the 

object was segmented more than once (false positives) 

 

 FN - is a number of unsegmented objects (false negatives) 
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Average Precision (2) 

 The threshold value  usually is chosen equal to 0.5 

 

 Precision is a ratio of true positives by the overall number of 

detections 

 

 

 

 Recall is a ratio of true positives by the overall number of objects 

 

 

 

 meanAP – mean AP from all object classes 
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Average precision (3) 

 Example of calculating average precision: 

– Calculating the area under the zigzag curve, i.e. interpolating 

and calculating the area under the stepped curve 
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Deep models (1) 

DeepMask (2015), Instance FCN (2016) 

– Pinheiro P. O., Collobert R., Dollár P. Learning to segment 

object candidates //Advances in neural information processing 

systems. – 2015. –  [https://arxiv.org/pdf/1506.06204.pdf] 

 Instance FCN (2016) 

– Dai J. et al. Instance-sensitive fully convolutional networks 

//European Conference on Computer Vision. – 2016. – 

[https://arxiv.org/pdf/1603.08678.pdf] 

MNC (2016) 

– Dai J., He K., Sun J. Instance-aware semantic segmentation via 

multi-task network cascades //Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. – 

2016. – [https://arxiv.org/pdf/1512.04412.pdf] 

 
Nizhny Novgorod, 2020 Instance segmentation  

of images using deep learning 

S
li

d
in

g
 w

in
d

o
w

 

 

T
w

o
-s

ta
g

e
 

m
o

d
e
ls

 



19 

Deep models (2) 

Mask R-CNN (2017)  

– He K. et al. Mask r-cnn. – 2017. – 

[https://openaccess.thecvf.com/content_ICCV_2017/papers/He_

Mask_R-CNN_ICCV_2017_paper.pdf] 

Mask Scoring R-CNN  (2019) 

– Huang Z. et al. Mask scoring r-cnn. – 2019. – 

[https://arxiv.org/pdf/1903.00241.pdf] 

 PANet (2018) 

– Liu S. et al. Path aggregation network for instance 

segmentation. – 2018. – [https://arxiv.org/pdf/1803.01534.pdf] 
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Deep models (3) 

 YOLACT (2019) 

– Bolya D. et al. Yolact: Real-time instance segmentation 

//Proceedings of the IEEE international conference on computer 

vision. – 2019. – [https://arxiv.org/pdf/1904.02689.pdf] 

 YOLACT++ (2019) -  

– Bolya D. et al. Yolact++: Better real-time instance segmentation. 

– 2019.–  [https://arxiv.org/pdf/1904.02689.pdf] 

CenterMask (2020) 

– Lee Y., Park J. CenterMask: Real-time anchor-free instance 

segmentation. – 2020. – [https://arxiv.org/pdf/1911.06667.pdf] 

 SOLO (2020) 

– Wang X. et al. Solo: Segmenting objects by locations //arXiv 

preprint arXiv:1912.04488. – 2020. – 

[https://arxiv.org/pdf/1912.04488.pdf] 

 
Nizhny Novgorod, 2020 Instance segmentation  

of images using deep learning 

O
n

e
-s

ta
g

e
 m

o
d

e
ls

 



21 

DeepMask (1) 

 DeepMask was developed in 2015 

 It’s one of the first decision for instance segmentation task using 

deep learning 

 For the feature map construction ImageNet pretrained VGG-A is 

used 

– 5-pooling layer and fc-layers are deleted 

 Input image size is 224х224 

 There are two stages: classification and segmentation 
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DeepMask (2) 

 This deep learning model was developed to segment  object on 

image patch 

 Object placed in the center in fully included on image patch 

 Segmentation is applied for the following variants: 

– different image resolution ratio ([1/4, 2]) 

– different position of sliding windows (stride = 16) 

 In training process batch size is 32 

 Number of parameters - 75М 
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DeepMask (3) 
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DeepMask (4) 

 Segmentation branch is for  1-object binary segmentation. It 

includes the following sequence of layers: conv 1х1-,  1 fc-layer; fc-

layer for classification pixels of 56х56 map.  There is no ReLU after 

fc-layers. To get 224х224 segmentation result bilinear interpolation 

is used 

 Classification branch solves binary classification task of object 

presence (is there object? or not). There are 2 maxpooling  2x2 

layers, 2х dropout fc-layers (with 512 и 1024 neurons of inner 

layer). ReLU activation is applied after fc-layers. The output is 1 

value. It’s reliability of object presence 
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Instance FCN (1) 

 Instance-sensitive Fully Convolutional Networks 

 It’s developted to solve instance segmentations task for various 

size images 

 Model architecture contains two part: segmentation branch and 

classification branch 

 Classification and segmentation branches are FCN-models 

 To take feature map 13 convolution layers of ImageNet pretrained 

VGG-16 are used 

– modification: stride = 1 for maxpooling-4 (not 2). As a results the 

size of feature map is larger 

 In 5-th conv-layer dilated-convolutions  with stride = 8 are used  
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Instance FCN (2) 
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Dai J. et al. Instance-sensitive fully convolutional networks.  – 2016. – [https://arxiv.org/pdf/1603.08678.pdf] 
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Instance FCN (3) 

 

Nizhny Novgorod, 2020 Instance segmentation  

of images using deep learning 

Feature  

map 

A
s
s
e
m

b
lin

g
 

Instance sensitive maps 

generation 



28 

Instance FCN (4) 

 

 Segmentation branch. The stage of calculation instance sensitive 

feature map:  

– conv1х1 with ReLU-activation is used to transfrom feauture map 

– conv3х3 is used to generate instance sensitive map;as a result, 

k^2 channels are generated; it corresponds k^2 different 

locations of sliding window center 

 Аssembling module is applied on instance sensitive feature map 

using mxm sliding window(21x21). Every element of result map is 

copied from corresponding layer of input feature map 
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Instance FCN (5) 

 Classification branch contains the following layers: 

– conv3х3 with ReLU-activation 

– conv1х1 

– Sliding mxm window for generation reliability of object presence 

 Reliability of object presence is calculated 
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MNC (1) 

❑ Multi-task Network Cascades 

❑ The winner if the 2015 COCO competition 

❑ Cascade includes the following branches:: 

– detection branch 

– segmentation branch 

– classification of instance branch 

❏ Current model backbone is VGG-16. It’s shared part for every 

branch 

❏ For initialization of backbone weights and two fc-layers (4096 

elements) ImageNet pretrained VGG model is used 

❏ For another layers random initialization is used 
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MNC (2) 
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MNC (3) 

 Object detection branch(region-of-interest subtraction) is realized 

using RPN-model. Non-maximum suppression in used 

 Segmentation branch used feature map and detected RoI-set. 

Segmentation is realized for every RoI 

– RoI warping stage extracts RoI-corresponding features from 

image feature map 

– RoI pooling is used to get RoI-feature map of fixed size(14*14) 

– 2 fc-layers  

 The output is 28*28 feature map 
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MNC (4) 

 Classification branch used image feature map,RoI candidats, 

segmentation mask 

– ROI warping is used to get RoI feature map 

– ROI pooling is used to get feature map of fixed size (14*14). 

– Using segmentation mask non-object feature map elements are 

setted in 0 

– 2 fc-layes (4096 neurons in each layer) are used for 

classification 
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Mask R-CNN (1) 

 It’s extension  of Fast R-CNN 

 Instance segmentation decomposed on two stages 

– Object detection is to get bounding box for every object 

– Binary segmentation. It’s applied for every RoI and its parallel 

to classification branch and bounding box regression. The 

output is k m×m binary masks. k  - number of classes on every 

region of interest 

 Mask R-CNN is flexible structure for object-level vision task. It’s 

used for different tasks, such as key-point detection and solving 

pose-estimation problem 
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Mask R-CNN (2) 

❑ To take object candidates RPN model is used 

❑ Segmentation mask and object class are predicted using 

independent from each other way 

❑ RoIAlign layer is used. It saves accurate values of RoI feature 

map elements without quatonization  

– Bilinear interpolation is used to calculate accurate values of 

RoI mapin 4-point regular grid for every RoI-element 

– Maximum or average value is calculated for every 4-point set 

– Accuracy of segmentation result up to 10–50% 
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Mask R-CNN (3) 

 RoIAlign: 

– dotted lines is image feature 

map 

– solid lines - RoI 

– RoIAlign calculates every 

checked point value using 

bilinear interpolation from 

nearest points on image 

feature map 

– result value of RoI feature 

map element is average or 

maximum value from checked 

points 
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He K. et al. Mask r-cnn. – 2017. –. 

https://openaccess.thecvf.com/content_ICCV_20

17/papers/He_Mask_R-

CNN_ICCV_2017_paper.pdf 

https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
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Mask scoring R-CNN (1) 

 Based on Mask R-CNN 

 It’s developted to solve the following problem: 

– the most accurate segmentation mask has the highest 

probability value 

 The ideal segmentation mask:  

– is on 100% same with labeled mask 

– has correct classification result 

 Additional branch Mask IoU was presented to approximate mask 

segmentation result to ideal 
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Mask scoring R-CNN (2) 
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Mask scoring R-CNN (3) 

 Mask IoU: 

– RoI Align align feature map is concatenated with predicted mask 

– max-pooling 2х2 is applied 

– model branch consists from 4 convolution layers (3х3) and 3 fc-

layers 

 In the training stage the input of MaskIoU branch is intersection 

over union between predicted and labeled mask 

– In the inference time the MaskIoU is used only to calculate 

correct object class 

– New reliability values are calculated by element-wise 

multiplication of classification-stage results  and Mask IoU-stage 

results 
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PANet (1) 

 Path Aggregation Network is extension of Mask R-CNN to up 

segmentation quality 

 The winner of  COCO 2017 Challenge (Instance Segmentation) 

 To take feature map FPN model is used 

 To improve localization and segmentation accuracy the bottom-up 

augmentation path is improved 

– High-level features are expanded by low-level features 

– The direct path between high-level features and low-level 

features are constructed 
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PANet (2) 
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PANet (3) 

 High-level features describes  general, universe data features 

 Low-level features describes local data features 
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PANet (4) 

 Structure block of bottom-up augmentation path 

 The output of this stage is pyramid of feature maps N2, N3, N4, N5 

(N2=P2) 
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PANet (5) 

 Adaptive pooling structure: 

– region feature map on every level of pyramid features are 

extracted 

– RoIAlign is applied to take accurate valued of feature elements 

– feature maps from different pyramid level are concatenated 

– final map is calculated using maximum or average calculation 

between pixels on every pyramid level 

 Final feature map is used on classification, detection, segmentation 

steps 
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PANet (6) 

 Adaptive pooling structure 
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PANet (7) 
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YOLACT (1) 

 It was developed for real-time object segmentation 

 The main idea is to add branch to calculate binary segmentation 

mask (sa in Mask R-CNN)  but without localization step 

 Model architecture is allowed to solve 2 different task. Results of 

two different tasks are combined to form final segmentation results 

 It’s extension anchor-based models for object detection task 

 To produce feature map FPN model is used 

 Используется ResNet-101, размер входного изображения 

 550×550 

 Mask: 

– Linear combination of masks with mask coefficients is calculated 

 Final mask is cropped by predicted bounding boxThe threshold 

binarization is applied to form final segmentation mask 
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YOLACT (2) 
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Bolya D. et al. Yolact: Real-time instance segmentation. – 2019. – [https://arxiv.org/pdf/1904.02689.pdf] 
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YOLACT (3) 

 Branch of  mask prototype generation: 

– Generate k predicted mask with size of input image 

– It’s FCN with k-channel last layer  

– It’s also contained 3 convolution layer 3x3 

– Last convolution layer has 1x1 convolutions 

– ReLU-activation is used 

– Upsampling is used to up feature size 
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YOLACT (4) 

 Mask coefficients map: 

– New branch is added  

– k mask coefficient are 

predicted, one for every 

prototype. For every anchor 

4+c+k vector is calculated 

(offset - 4, с - class prediction, 

k - mask prediction) 

– tanh-activation is used 

 Non-maximum suppression 

procedure and thresholding are 

applied for anchors 
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Bolya D. et al. Yolact: Real-time instance 

segmentation. – 2019. – 

[https://arxiv.org/pdf/1904.02689.pdf] 
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YOLACT++ (1) 

 It’s improvement of YOLACT model 

 The problem of inconsistency between predicted mask and mask 

koefficient is solved by special branch of mask re-scoring 

 Convolutions 3х3 of convolutional layers 3-5 are changed on 

deformable convolutions  3х3 

 There is optimization for anchor choosing for every level of FPN 
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YOLACT++ (2) 

 Branch of mask re-scoring containes: 

– 6 convolutional layers with ReLU-activation function 

– 1 layer of global pooling 

– The input is predicted mask of image size (with zero-values out 

of the anchor-box) 

 FCN based model 
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Bolya D. et al. Yolact++: Better real-time 

instance segmentation. – 2019. – 

[https://arxiv.org/pdf/1904.02689.pdf] 

138x138x1 69x69x8 

35x35x16 

18x18x32 

9x9x64 

5x5x128 
5x5xc 

1x1xc 

https://arxiv.org/pdf/1904.02689.pdf
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YOLACT++ (3) 

 Deformable convolutions example 

 Deformations depends from features of previous layer 
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Bolya D. et al. Yolact++: Better real-time instance segmentation.– 2019. [https://arxiv.org/pdf/1904.02689.pdf] 

https://arxiv.org/pdf/1904.02689.pdf
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CenterMask (1) 

 Simple, effective, one-stage network for object segmentation 

 There are three parts: 

– Feature map extraction is realized using FPN model 

• The base model version backbone is ResNet-101 

• The lite-model version backbone is VoVNetV2 

– Object detection (without candidates generation)is realized 

using FCOS model 

– Object segmentation is realized  using SAG-Mask 
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CenterMask (2) 
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of centers 
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pooling 

avg 

pooling 
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SAG-Mask 

Lee Y., Park J. CenterMask: Real-time anchor-free instance segmentation. – 2020. – [https://arxiv.org/pdf/1911.06667.pdf] 



56 

CenterMask (3) 

 FCOS (Fully convolutional one-stage object detector) 

directly,without candidates choosing predicts the following values: 

– object center 

– 4 offsets from center 

– class reliability 
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Tian Z. et al. Fcos: Fully convolutional one-stage 

object detection. – 2019. –  

[https://arxiv.org/pdf/1904.01355.pdf] 
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CentrMask (4) 

 Feature map extraction is realized according Mask R-CNN 

description 

 Multi-level feature pyramid is presented 

 Choose the pyramid level for feature extruction is realized 

according formula 

 

 

 Ainput, ARoI - areas of segmented and labeled region 

 Feature map size is 14х14 

 RoIAlign is applied to calculate elements of feature map 
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CenterMask (5) 

 SAG-Mask (Spatial Attention-Guided Mask) 

 The goal is highlight informative features and hide non-informative 

features 

– Region feature map is the input of 4 convolution layer sequence. 

The result is feature map А 

– Max-pooling and average pooling are applied, the results are 

concatenated 

– 3х3 convolution layer with sigmoid activate is presented. 

Feature map В is the result 

– А and В are concatenated by element-wise multiplication 

– Deconvolution 2х2 is applied, size of feature map is 28х28 

– Convolution layer 1х1 is applied to generate segmentation mask 

for every class 
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SOLO (1) 

 SOLO (Segment objects by locations) 

 In contrast to semantic segmentation, it is proposed to distinguish 

between instances of objects in the image by introducing the 

concept of "category of instances“ 

 Input image is divided on SxS blocks 

 To generate feature map with fixed channel count (256) on every 

level FPN model is used 
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SOLO (2) 
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Wang X. et al. Solo: Segmenting objects by locations.– 2019. – [https://arxiv.org/pdf/1912.04488.pdf] 
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Block mask predictions 

For every pyramid level 
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SOLO (3) 

 Semantic categorization of block: 

– object class predicted for every block 

– C-channel vector demonstrated reliability for current class 

 Block structure: 

– 7 convolution layer (SxSx256 is output) 

– 1 convolution layer (SxSxC is output) 

 The result of classification for (i,j) block is computed in an obvious 

way. Index k of mask mk that is correspond with current block is: 

– k = i*S + j 
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SOLO (4) 

 Binary segmentation of the objects: 

– The input is feature map that is concatenated with normalized ([-

1,1]) space coordinates of the image  

– SxS object masks are generated 

 Structure: 

– 7 convolution layer (H x W x 256 is output) 

– 1 convolution layer (H x W x S^2 is output) 

– Bilinear interpolation for the inference mode 

 Non-maximum suppression is used 
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Comparison of deep models for instance segmentation (1) 

 MS COCO dataset 
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of images using deep learning 

Hafiz A. M., Bhat G. M. A survey on instance segmentation: state of the art .– 2020. – 

[https://link.springer.com/article/10.1007/s13735-020-00195-x] 

Model AP Year 

PANet  42.0% 2018 

SOLOv2 41.7% 2020 

SOLO 40.4% 2019 

Mask Scoring R-

CNN 

39.6% 2019 

CenterMask 38.3% 2020 

Mask R-CNN 37.1% 2017 

YOLACT  29.8% 2019 
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Comparison of deep models for instance 

segmentation (2) 
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❑ An effective model is a compromise between quality and 

performance 

Bolya D. et al. Yolact++: Better real-time instance segmentation. – 2019. 

[https://arxiv.org/pdf/1904.02689.pdf] 

https://arxiv.org/pdf/1904.02689.pdf
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Comparison of deep models for instance 

segmentation (3) 
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❑ An effective model is a compromise between quality and 

performance 

Lee Y., Park J. CenterMask: Real-time anchor-free instance segmentation. – 2020. –  

[https://arxiv.org/pdf/2004.04446.pdf] 

https://arxiv.org/pdf/2004.04446.pdf
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Conclusion 

 Models for instance segmentation are not limited to those 

discussed in the lecture 

 The main problem constructing instance-segmentation models is to 

combine results of object detection part and semantic 

segmentation part 

 The considered models solve this problem in different ways. As a 

rule, the decision greatly affects the performance 

 The optimal model is a compromise between quality and 

complexity 

– Quality is determined by the requirements for solving a practical 

problem 

– Complexity is determined by the available computational 

resources and inference time requirements 
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