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Goals

 The goal is to study the features of the Intel Distribution

of OpenVINO Toolkit for deep learning inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit



INTEL DISTRIBUTION
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Intel Distribution of OpenVINO Toolkit (1)

 Intel Distribution of OpenVINO Toolkit is a toolkit for solving 

computer vision and deep learning tasks, it is developing by Intel

 The goal is to simplify using of various computer vision and deep 

learning algorithms on different Intel platforms

 Advantages:

– High performance, minimal package size and few dependencies

– High-performance inference of deep neural networks developed 

and trained using different deep learning libraries

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Intel Distribution of OpenVINO Toolkit (2)

 License: EULA (also, there is an open-source OpenVINO toolkit 

licensed under Apache 2.0, https://01.org/openvinotoolkit)

 Documentation [https://docs.openvinotoolkit.org]

 Official page of the Intel Distribution of OpenVINO Toolkit

[https://software.intel.com/en-us/openvino-toolkit]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://01.org/openvinotoolkit
https://docs.openvinotoolkit.org/
https://software.intel.com/en-us/openvino-toolkit
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Components of the Intel Distribution of OpenVINO

Toolkit (1)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Components of the Intel Distribution of OpenVINO

Toolkit (2)

 Deep Learning for Computer Vision

– Intel Deep Learning Deployment Toolkit (DLDT)

• Model Optimizer is a tool for converting pre-trained deep models from the 

training framework format into the intermediate representation (IR) of the 

OpenVINO toolkit

• Inference Engine is a component for high-performance inference of deep 

neural networks

– Open Model Zoo is a public repository of pre-trained models

for solving various problems, samples and demos

– Deep Learning Workbench is a tool for calibrating models, 

measuring accuracy and benchmarking models

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Components of the Intel Distribution of OpenVINO

Toolkit (3)

 Traditional Computer Vision

– OpenCV is a well-known and widely used computer vision 

library

 Tools & Packages

– Set of tools for improving performance of processing graphics 

and video

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Model Optimizer

 For high-performance inference of deep models using the 

OpenVINO toolkit you need convert them into the intermediate 

representation (IR)

 Model Optimizer is a tool for converting models from various 

formats to the intermediate representation

 Supported formats: ONNX, TensorFlow, Caffe, MXNet, Kaldi

 Model Optimizer documentation 

[https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Lear

ning_Model_Optimizer_DevGuide.html]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
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Inference Engine

 Inference Engine provides programming interface for deep 

learning inference on the following platforms:

– Intel CPUs 

– Intel Processor Graphics

– Intel FPGAs

– Intel Movidius Neural Compute Stick, etc.

 Inference Engine supports heterogeneous inference of neural 

networks, which assumes the distribution of model layers between 

computational devices

 Inference Engine also supports multi-device inference, in which 

multiple requests are distributed among available devices

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Open Model Zoo

 Open Model Zoo

– Hundreds of trained deep models in various formats (public 

models and models trained by Intel engineers)

– Library of samples and demo applications in C++ and Python

– Model Downloader for downloading models and converting them 

to the intermediate representation

 Open Model Zoo

[https://github.com/opencv/open_model_zoo]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/opencv/open_model_zoo


13

Intel models (1)

 Object detection problem

– Face detection and face recognition

– Pedestrian detection

– Vehicles detection (car model, color)

– License plates detection and recognition

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md
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Intel models (2)

 Object recognition problem

– Age and gender recognition models

– Emotions recognition

 Human pose estimation

 Segmentation problem

– Semantic segmentation

– Instance segmentation

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md
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Intel models (3)

 Object tracking

– Pedestrian tracking

– Person identification

 Image processing

– Super-resolution

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md
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Intel models (4)

 Text processing

– Text detection

– Text recognition

 Action recognition

– Driver action recognition

– General action recognition

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md
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Samples and demos

 The OpenVINO toolkit contains samples and demos for inferring 

models from Open Model Zoo

 Demo applications solve specific computer vision problems

– Smart Classroom Demo allows to detect students and recognize 

their actions

– Security Barrier Camera Demo allows to detect vehicles and 

recognize vehicle license plates

 In the demo application, you can use different deep neural 

networks that provide the solution of the same task. Different 

architectures may provide different accuracy and speed

 Demo applications are available by the link 

[https://github.com/opencv/open_model_zoo/tree/master/demos]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/opencv/open_model_zoo/tree/master/demos
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Deep Learning Workbench

 Deep Learning Workbench is a toolkit to measure model 

accuracy and increase model performance

– Deep Learning Workbench provides a graphical application for 

the OpenVINO components (Model Optimizer, Accuracy 

Checker Tool, etc.). It also allows to collect and visualize model 

inference statistics

– Benchmark App is a tool for evaluating performance of deep 

models on various devices

– Accuracy Checker Tool is a tool for measuring model accuracy 

on the provided dataset

– Post-Training Optimization Toolkit is a toolkit for optimizing 

models by converting them into a hardware-friendly 

representation

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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OpenCV

 OpenCV is a library of computer vision, image processing and 

general-purpose numerical algorithms

 OpenCV is an open-source library licensed under BSD 3-Clause 

License, the library can be used in commercial projects

 OpenCV is developed in C/C++ programming language, and it 

provides programming interfaces for Python, Java, and other 

languages

 OpenCV [https://opencv.org]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://opencv.org/
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OpenCV modules

 The selected modules of the OpenCV library:

– core is a library core containing basic data types and math 

functions

– imgproc is an image processing module (image filtering, 

drawing functions, color spaces)

– video is a video analytics module

– features2d is a module containing the implementation of 

keypoints detectors and descriptors

– objdetect is a module for detecting objects using cascade 

classifiers

– ml is a module of classical machine learning algorithms 

(clustering, regression, statistical classification)

– dnn is a module for deep learning inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Components discussed below

 Further, the components of the Intel Distribution of OpenVINO

Toolkit providing the deep learning inference will be discussed

– Inference Engine

– DNN module of the OpenCV library

 Study sequence:

– Purpose and features of the component

– Application programming interface (API)

– Example

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Inference Engine

 Inference Engine is a component that provides a high-level 

programming interface (C++, C, Python) for inference of deep 

neural networks in the intermediate representation on various Intel 

platforms due to the plugins

– CPU (for Intel Xeon, Intel Core Processors, Intel Atom 

Processors, it is based on MKL-DNN)

– GPU (for Intel Processor Graphics, it is based on clDNN

(OpenCL))

– FPGA (for Intel Programmable Acceleration Card)

– MYRIAD (for Intel Movidius Neural Compute Stick, OpenCL)

– Heterogeneous plugin

– Multi-device plugin

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Heterogeneous inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Inference Engine supports automatic splitting of a network 

inference between several devices, for example, CPU+GPU, 

CPU+FPGA

* Belova A. Introduction to the Intel Distribution of OpenVINO Toolkit. Tutorial “Object detection with deep 

learning: Performance optimization of neural network inference using the Intel OpenVINO toolkit” on 

PPAM 2019.
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Inference modes (1) 

 Inference Engine supports two inference modes:

– Latency mode. Supposed the next inference request is 

executed after the completion of the previous one. This mode 

minimizes inference time of a single request due to parallelizing 

calculations during forward propagation

– Throughput mode. Assumed constructing a queue of inference 

requests, several requests can be executed in parallel. This 

mode maximizes the number of completed requests (as a rule, 

minimizes a total time)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Inference modes (2) 

 Illustration of different modes:

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Latency mode

 Latency mode is used to minimize the time of a single inference 

request

 Speedup on CPUs is achieved due to the parallelism on shared-

memory systems

 Parallelism on CPUs is implemented using threads

 The number of threads is a parameter which can be set manually. 

By default, the optimal number of threads is equal to the number of 

physical cores

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Throughput mode

 Throughput mode maximizes performance due to the parallel 

processing of several inference requests

 This mode allows you to increase overall throughput

 Throughput mode supposes the physical threads are divided into 

logical groups called streams, in which calculations can be 

performed simultaneously and independently. Each stream 

processes one inference request

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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Inference Engine API for Python

 To infer deep neural networks using the OpenVINO toolkit, the 
following classes of the openvino.inference_engine module 

are used:

– IECore represents an Inference Engine entity and allows you to 

manipulate with plugins using unified interfaces

– IENetwork contains the information about the network model 

read from intermediate representation and allows you to 

manipulate with some model parameters such as output layers 

– ExecutableNetwork represents a network instance loaded to 

the plugin and ready for inference 

– InferRequest provides an interface to inference requests 

of ExecutableNetwork and serves to handle inference 

requests execution and to set and get output data 
* Inference Engine Python API Overview 

[https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_docs_api_overview.html].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_docs_api_overview.html
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General outline of deep learning inference

1. Loading a deep neural network

2. Loading input images and converting to the format of the deep 

model input

3. Deep model inference

4. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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1. Loading a deep model

 Initialize Inference Engine using IECore

 Create an object of the IENetwork class

 Load a deep model into the plugin and create an object for 
inference on the device using the load_network method of the 

IECore object

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

from openvino.inference_engine import IENetwork, IECore

configPath = 'path_to_model_config.xml'

weightsPath = 'path_to_model_weights.bin'

ie = IECore()

net = IENetwork(model = configPath, weights = weightsPath)

exec_net = ie.load_network(network = net, device_name = 'CPU')
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2. Loading input images and converting to the format 

of the deep model input (1)

 As a rule, an input of the model is a 4-dimensional tensor of the 

size [𝐵 × 𝐶 × 𝐻 × 𝑊]

– 𝐵 is a number of images

– 𝐶 is a number of channels for the image

– 𝐻 is an image height

– 𝑊 is an image width

 If we read images using the OpenCV library, then it is required to 
convert the tensor from the format {BGRBGR…} to the format 

{RRR…GGG…BBB…}, and change its shape in accordance with the 

model input shape

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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2. Loading input images and converting to the format 

of the deep model input (2)

 Read one or more images using the imread function

 Resize images using the resize function

 Reorder channels BGR -> RGB (if it is required) in images using 
the cvtColor function

 Reorder dimensions using the transpose function

 Expand tensor dimension if only one image is loaded using the 
expand_dims function of the numpy package

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

def prepare_image(imagePath, h, w):

image = cv2.imread(imagePath)

image = cv2.resize(image, (w, h))

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image = image.transpose((2, 0, 1))

blob = np.expand_dims(image, axis = 0)

return blob
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3. Deep model inference (1)

 There are synchronous (Sync API) and asynchronous 

programming interface (Async API) in the OpenVINO toolkit for 

deep learning inference:

– Synchronous call blocks an application until the completion of 

inference request; it is not required to track the request 

completion. Synchronous API is used to implement the latency 

mode

– Asynchronous call does not block an application until the 

completion of inference request; it is required to track the 

request completion. Asynchronous API can be used to 

implement both the latency and throughput modes

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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3. Deep model inference (2)

 Synchronous API

– To run the deep model inference in a synchronous mode, it is 

required to set the input tensor as the input of the deep model 
loaded to the plugin and call the infer() function

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

input_blob = next(iter(net.inputs))

out_blob = next(iter(net.outputs))

n, c, h, w = net.inputs[input_blob].shape

# Load, transpose, expand operations

blob = prepare_image(imagePath, h, w)

# Execute

output = exec_net.infer(inputs = {input_blob: blob})

output = output[out_blob]
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3. Deep model inference (3)

 Asynchronous API

– To run the deep model inference in an asynchronous mode, it is 

required to set the input tensor as the input of the deep model 
loaded to the plugin, call the infer_async() function and wait 

for the request completion to extract the model output

– There are two ways to check request completion:

• Using the wait() function to check request status or wait for the request 

completion

• Creating a callback function that will be called after the request 

completion

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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3. Deep model inference (4)

 Asynchronous API

– Sample of creating three inference requests and checking their 
completion using the wait() function

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

# Image loading similar to sync version

blobs = [blob1, blob2, blob3] # Images for independent requests

# Start async requests

for request_id in range(len(blobs)):

exec_net.start_async(request_id = request_id, 

inputs = blobs[request_id])

# Wait for completing requests

for request_id in range(requests_counter):

exec_net.requests[request_id].wait(-1)

# Copy results

list = [copy(exec_net.requests[request_id].outputs) 

for request_id in range(len(blobs))]
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3. Deep model inference (5)

 To run several requests on CPU simultaneously, it is required to 

set the number of requests that can be simultaneously executed 

when the network is loaded to the device



 You can get the available number of requests using the following 

command:

 If the number of input batches is greater than the available number 

of requests, then it is required to implement the queue of requests 

and set input batches from the queue to the pending requests

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

exec_net = ie.load_network(network = net, device_name = 'CPU',

num_requests = YOUR_REQUESTS_NUMBER)

requests_number = len(exec_net.requests)
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4. Output processing

 To process the network output, it is supposed the understanding of 

the format of the model output tensors

 The output tensors differ by task and model architecture

 For public models of Open Model Zoo, which solve the image 

classification problem on the ImageNet dataset, the output tensor 

shape is [𝐵 × 1000] as usual, where 1000 corresponds to the 

number of image categories

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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DNN module of the OpenCV library

 DNN module of the OpenCV library supports the inference of deep 

neural networks on various hardware, including ARM processors

 DNN module submitted to OpenCV, starting with the version 3.3

 OpenCV supports models in the following formats: Caffe, 

TensorFlow, Darknet, ONNX

 Models trained using MXNet, Pytorch, and CNTK are supported by 

converting to the ONNX format

 OpenCV. Deep Neural Networks (dnn module) 

[https://docs.opencv.org/master/d2/d58/tutorial_table_of_content_d

nn.html]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.opencv.org/master/d2/d58/tutorial_table_of_content_dnn.html
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DNN backends

 OpenCV supports several backends for deep learning inference:

– OpenCV (the easiest backend)

– Inference Engine (the high-performance backend)

– Halide [https://halide-lang.org]. Halide is a programming 

language that is designed to develop high-performance 

applications for image and array processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://halide-lang.org/
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DNN targets

 The parameter describing the device for deep learning inference is 

called the target

 The DNN module supports the following targets with various 

backends:

– CPU – OpenCV, Inference Engine, Halide

– OpenCL – OpenCV, Inference Engine, Halide

– OpenCL FP16 – OpenCV, Inference Engine

– Intel Movidius Neural Compute Stick – Inference Engine

– FPGA – Inference Engine

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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General outline of deep learning inference

1. Loading a deep model

2. Loading input images 

3. Converting images to the deep model input

4. Deep model inference

5. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
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1. Loading a deep model (1)

 Deep model usually consists of one or two files, the first one 

corresponds to the model architecture, the second one contains 

model weights

 To read a model, the readNet function is used, its parameters is a 

path (or two paths) to the model file, in any order

 Example of loading the model in the Caffe format, setting the 

backend and the target device by calling the 
setPreferableBackend and setPreferableTarget

methods:

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

model = "deploy.prototxt"

weights = "bvlc_alexnet.caffemodel"

net = cv2.dnn.readNet(model, config) 

net.setPreferableBackend(backend) 

net.setPreferableTarget(target)
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1. Loading a deep model (2)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Available backends:

 Available targets:

backend = cv2.dnn.DNN_BACKEND_DEFAULT 

backend = cv2.dnn.DNN_BACKEND_HALIDE

backend = cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE

backend = cv2.dnn.DNN_BACKEND_OPENCV

target = cv2.dnn.DNN_TARGET_CPU

target = cv2.dnn.DNN_TARGET_OPENCL

target = cv2.dnn.DNN_TARGET_OPENCL_FP16

target = cv2.dnn.DNN_TARGET_MYRIAD
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2. Loading images

 The image is loaded using the imread function, the parameter is 

the path to the image

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

image = cv2.imread(imagePath)
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3. Converting images to the deep model input (1)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 As a rule, an input of the model is a 4-dimensional tensor of the 

size [𝐵 × 𝐶 × 𝐻 × 𝑊]

– 𝐵 is a number of images

– 𝐶 is a number of channels for the image

– 𝐻 is an image height

– 𝑊 is an image width

 If we read images using the OpenCV library, then it is required to 
convert the tensor from the format {BGRBGR…} to the format 

{RRR…GGG…BBB…}, and change its shape in accordance with the 

model input shape
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3. Converting images to the deep model input (2)

 To convert a single image, the blobFromImage function is used

 Sample of converting an image into the input format of the deep 

model is shown below

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

scalefactor = 1.0

# mean intensity

mean = (104, 117, 123)

# input size

size = (224, 224)

blob = cv2.dnn.blobFromImage(image, scalefactor = 1.0, size, 

mean, swapRB = True)



50

4. Deep model inference

 To run the deep model inference, it is required to set the input 
tensor as the input of the deep model and execute the forward() 

method

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

net.setInput(blob)

preds = net.forward()
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5. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

# output shape [1, 1000] for one input image

prob = preds[0]

classid = np.argmax(prob)

classprob = np.max(prob)

print('Class {}, probability {}'.format(classid, classprob))

 To process the network output, it is supposed the understanding of 

the format of the model output tensors

 For public models of Open Model Zoo which solve the image 

classification problem on the ImageNet dataset, the output tensor 

shape is [𝐵 × 1000] as usual, where 1000 corresponds to the 

number of image categories
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Conclusion

 Components of the Intel Distribution of OpenVINO Toolkit were 

overviewed

 Possible ways to implement deep learning inference using 

Inference Engine and OpenCV were described

 Solving the practical tasks of the course, it is supposed to use one 

of the considered components

 Tutorials for solving the practical tasks prepared by the authors of 

the course are based on the Inference Engine component

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit



53

Literature

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Intel Distribution of OpenVINO Toolkit 

[https://software.intel.com/en-us/openvino-toolkit].

 OpenVINO documentation website 

[https://docs.openvinotoolkit.org].

 OpenVINO – Open Sourced version [01.org/openvinotoolkit].

 OpenVINO performance topics 

[https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Intro_to_Perf

ormance.html].

 CPU Inference Performance Boost with “Throughput” Mode in the 

Intel Distribution of OpenVINO Toolkit                                                    

[https://www.intel.ai/cpu-inference-performance-boost-openvino].

 OpenCV [https://opencv.org].

 Open Model Zoo [https://github.com/opencv/open_model_zoo].

https://software.intel.com/en-us/openvino-toolkit
https://docs.openvinotoolkit.org/
01.org/openvinotoolkit
https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Intro_to_Performance.html
https://www.intel.ai/cpu-inference-performance-boost-openvino/
https://opencv.org/
https://github.com/opencv/open_model_zoo


54

Authors

 Turlapov Vadim Evgenievich, Dr., Prof., department of computer 

software and supercomputer technologies

vadim.turlapov@itmm.unn.ru

 Vasiliev Engeny Pavlovich, lecturer, department of computer 

software and supercomputer technologies

evgeny.vasiliev@itmm.unn.ru

 Getmanskaya Alexandra Alexandrovna, lecturer, department of 

computer software and supercomputer technologies

alexandra.getmanskaya@itmm.unn.ru

 Kustikova Valentina Dmitrievna

Phd, assistant professor, department of computer software and 

supercomputer technologies

valentina.kustikova@itmm.unn.ru

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

mailto:vadim.turlapov@itmm.unn.ru
mailto:evgeny.vasiliev@itmm.unn.ru
mailto:alexandra.getmanskaya@itmm.unn.ru
mailto:valentina.kustikova@itmm.unn.ru

