
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer software and supercomputer technologies

Educational course

«Modern methods and technologies

of deep learning in computer vision»

Overview

of the Intel Distribution

of OpenVINO Toolkit

Vasiliev Evgeny

Supported by Intel

2

Content

 Goals

 Intel Distribution of OpenVINO Toolkit

 Components of the Intel Distribution of OpenVINO Toolkit

 Inference Engine

 DNN module of the OpenCV library

 Conclusion

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

3

Goals

 The goal is to study the features of the Intel Distribution

of OpenVINO Toolkit for deep learning inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

INTEL DISTRIBUTION

OF OPENVINO TOOLKIT

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
4

5

Intel Distribution of OpenVINO Toolkit (1)

 Intel Distribution of OpenVINO Toolkit is a toolkit for solving

computer vision and deep learning tasks, it is developing by Intel

 The goal is to simplify using of various computer vision and deep

learning algorithms on different Intel platforms

 Advantages:

– High performance, minimal package size and few dependencies

– High-performance inference of deep neural networks developed

and trained using different deep learning libraries

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

6

Intel Distribution of OpenVINO Toolkit (2)

 License: EULA (also, there is an open-source OpenVINO toolkit

licensed under Apache 2.0, https://01.org/openvinotoolkit)

 Documentation [https://docs.openvinotoolkit.org]

 Official page of the Intel Distribution of OpenVINO Toolkit

[https://software.intel.com/en-us/openvino-toolkit]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://01.org/openvinotoolkit
https://docs.openvinotoolkit.org/
https://software.intel.com/en-us/openvino-toolkit

7

Components of the Intel Distribution of OpenVINO

Toolkit (1)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

OS support: Windows 10 (64 bit), Ubuntu 18.04.3 LTS (64 bit), CentOS 7.4 (64 bit), macOS (64 bit)

Deep Learning

Open Model Zoo

150+ Pretrained Models Demos
Model

Downloader

Deep Learning Workbench

Benchmark

App

Post-Training

Optimization Toolkit

Accuracy

Checker

Intel Deep Learning Deployment Toolkit

IR = Intermediate Representation file

Model Optimizer
Convert & Optimize

Inference Engine
Optimized InferenceIR

Optimized Libraries & Code Samples

For Intel CPU & GPU/Intel Processor Graphics

Traditional Computer Vision

OpenCV Samples

Increase Media/Video/Graphics Performance

For GPU/Intel Processor Graphics

Tools & Libraries

Intel Media SDK
Open Source version

OpenCL
Drivers & Runtimes

Optimize Intel FPGA (Linux only)

FPGA Runtime

Environment
Bitstreams

8

Components of the Intel Distribution of OpenVINO

Toolkit (2)

 Deep Learning for Computer Vision

– Intel Deep Learning Deployment Toolkit (DLDT)

• Model Optimizer is a tool for converting pre-trained deep models from the

training framework format into the intermediate representation (IR) of the

OpenVINO toolkit

• Inference Engine is a component for high-performance inference of deep

neural networks

– Open Model Zoo is a public repository of pre-trained models

for solving various problems, samples and demos

– Deep Learning Workbench is a tool for calibrating models,

measuring accuracy and benchmarking models

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

9

Components of the Intel Distribution of OpenVINO

Toolkit (3)

 Traditional Computer Vision

– OpenCV is a well-known and widely used computer vision

library

 Tools & Packages

– Set of tools for improving performance of processing graphics

and video

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

10

Model Optimizer

 For high-performance inference of deep models using the

OpenVINO toolkit you need convert them into the intermediate

representation (IR)

 Model Optimizer is a tool for converting models from various

formats to the intermediate representation

 Supported formats: ONNX, TensorFlow, Caffe, MXNet, Kaldi

 Model Optimizer documentation

[https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Lear

ning_Model_Optimizer_DevGuide.html]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html

11

Inference Engine

 Inference Engine provides programming interface for deep

learning inference on the following platforms:

– Intel CPUs

– Intel Processor Graphics

– Intel FPGAs

– Intel Movidius Neural Compute Stick, etc.

 Inference Engine supports heterogeneous inference of neural

networks, which assumes the distribution of model layers between

computational devices

 Inference Engine also supports multi-device inference, in which

multiple requests are distributed among available devices

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

12

Open Model Zoo

 Open Model Zoo

– Hundreds of trained deep models in various formats (public

models and models trained by Intel engineers)

– Library of samples and demo applications in C++ and Python

– Model Downloader for downloading models and converting them

to the intermediate representation

 Open Model Zoo

[https://github.com/opencv/open_model_zoo]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/opencv/open_model_zoo

13

Intel models (1)

 Object detection problem

– Face detection and face recognition

– Pedestrian detection

– Vehicles detection (car model, color)

– License plates detection and recognition

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md

14

Intel models (2)

 Object recognition problem

– Age and gender recognition models

– Emotions recognition

 Human pose estimation

 Segmentation problem

– Semantic segmentation

– Instance segmentation

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md

15

Intel models (3)

 Object tracking

– Pedestrian tracking

– Person identification

 Image processing

– Super-resolution

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md

16

Intel models (4)

 Text processing

– Text detection

– Text recognition

 Action recognition

– Driver action recognition

– General action recognition

* Validation results for the selected Intel models [https://github.com/itlab-vision/openvino-dl-

benchmark/blob/master/results/validation_results_intel_models.md].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/itlab-vision/openvino-dl-benchmark/blob/master/results/validation_results_intel_models.md

17

Samples and demos

 The OpenVINO toolkit contains samples and demos for inferring

models from Open Model Zoo

 Demo applications solve specific computer vision problems

– Smart Classroom Demo allows to detect students and recognize

their actions

– Security Barrier Camera Demo allows to detect vehicles and

recognize vehicle license plates

 In the demo application, you can use different deep neural

networks that provide the solution of the same task. Different

architectures may provide different accuracy and speed

 Demo applications are available by the link

[https://github.com/opencv/open_model_zoo/tree/master/demos]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://github.com/opencv/open_model_zoo/tree/master/demos

18

Deep Learning Workbench

 Deep Learning Workbench is a toolkit to measure model

accuracy and increase model performance

– Deep Learning Workbench provides a graphical application for

the OpenVINO components (Model Optimizer, Accuracy

Checker Tool, etc.). It also allows to collect and visualize model

inference statistics

– Benchmark App is a tool for evaluating performance of deep

models on various devices

– Accuracy Checker Tool is a tool for measuring model accuracy

on the provided dataset

– Post-Training Optimization Toolkit is a toolkit for optimizing

models by converting them into a hardware-friendly

representation

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

19

OpenCV

 OpenCV is a library of computer vision, image processing and

general-purpose numerical algorithms

 OpenCV is an open-source library licensed under BSD 3-Clause

License, the library can be used in commercial projects

 OpenCV is developed in C/C++ programming language, and it

provides programming interfaces for Python, Java, and other

languages

 OpenCV [https://opencv.org]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://opencv.org/

20

OpenCV modules

 The selected modules of the OpenCV library:

– core is a library core containing basic data types and math

functions

– imgproc is an image processing module (image filtering,

drawing functions, color spaces)

– video is a video analytics module

– features2d is a module containing the implementation of

keypoints detectors and descriptors

– objdetect is a module for detecting objects using cascade

classifiers

– ml is a module of classical machine learning algorithms

(clustering, regression, statistical classification)

– dnn is a module for deep learning inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

21

Components discussed below

 Further, the components of the Intel Distribution of OpenVINO

Toolkit providing the deep learning inference will be discussed

– Inference Engine

– DNN module of the OpenCV library

 Study sequence:

– Purpose and features of the component

– Application programming interface (API)

– Example

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

INFERENCE ENGINE

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
22

23

Inference Engine

 Inference Engine is a component that provides a high-level

programming interface (C++, C, Python) for inference of deep

neural networks in the intermediate representation on various Intel

platforms due to the plugins

– CPU (for Intel Xeon, Intel Core Processors, Intel Atom

Processors, it is based on MKL-DNN)

– GPU (for Intel Processor Graphics, it is based on clDNN

(OpenCL))

– FPGA (for Intel Programmable Acceleration Card)

– MYRIAD (for Intel Movidius Neural Compute Stick, OpenCL)

– Heterogeneous plugin

– Multi-device plugin

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

24

Heterogeneous inference

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Inference Engine supports automatic splitting of a network

inference between several devices, for example, CPU+GPU,

CPU+FPGA

* Belova A. Introduction to the Intel Distribution of OpenVINO Toolkit. Tutorial “Object detection with deep

learning: Performance optimization of neural network inference using the Intel OpenVINO toolkit” on

PPAM 2019.

25

Inference modes (1)

 Inference Engine supports two inference modes:

– Latency mode. Supposed the next inference request is

executed after the completion of the previous one. This mode

minimizes inference time of a single request due to parallelizing

calculations during forward propagation

– Throughput mode. Assumed constructing a queue of inference

requests, several requests can be executed in parallel. This

mode maximizes the number of completed requests (as a rule,

minimizes a total time)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

26

Inference modes (2)

 Illustration of different modes:

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

Throughput

mode

Load Data 1 Run Inference 1 Run Inference 2Load Data 2

time

time

Load Data 2Load Data 1

Run Inference 1

Run Inference 2

Result 1

Result 1

Result 2

Result 2

Latency

mode

27

Latency mode

 Latency mode is used to minimize the time of a single inference

request

 Speedup on CPUs is achieved due to the parallelism on shared-

memory systems

 Parallelism on CPUs is implemented using threads

 The number of threads is a parameter which can be set manually.

By default, the optimal number of threads is equal to the number of

physical cores

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

28

Throughput mode

 Throughput mode maximizes performance due to the parallel

processing of several inference requests

 This mode allows you to increase overall throughput

 Throughput mode supposes the physical threads are divided into

logical groups called streams, in which calculations can be

performed simultaneously and independently. Each stream

processes one inference request

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

Device resources

Execution stream 1

Execution stream 2

Execution stream K

Inference request 1

Inference request 2

Inference request N

… …

29

Inference Engine API for Python

 To infer deep neural networks using the OpenVINO toolkit, the
following classes of the openvino.inference_engine module

are used:

– IECore represents an Inference Engine entity and allows you to

manipulate with plugins using unified interfaces

– IENetwork contains the information about the network model

read from intermediate representation and allows you to

manipulate with some model parameters such as output layers

– ExecutableNetwork represents a network instance loaded to

the plugin and ready for inference

– InferRequest provides an interface to inference requests

of ExecutableNetwork and serves to handle inference

requests execution and to set and get output data
* Inference Engine Python API Overview

[https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_docs_api_overview.html].

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_docs_api_overview.html

30

General outline of deep learning inference

1. Loading a deep neural network

2. Loading input images and converting to the format of the deep

model input

3. Deep model inference

4. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

31

1. Loading a deep model

 Initialize Inference Engine using IECore

 Create an object of the IENetwork class

 Load a deep model into the plugin and create an object for
inference on the device using the load_network method of the

IECore object

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

from openvino.inference_engine import IENetwork, IECore

configPath = 'path_to_model_config.xml'

weightsPath = 'path_to_model_weights.bin'

ie = IECore()

net = IENetwork(model = configPath, weights = weightsPath)

exec_net = ie.load_network(network = net, device_name = 'CPU')

32

2. Loading input images and converting to the format

of the deep model input (1)

 As a rule, an input of the model is a 4-dimensional tensor of the

size [𝐵 × 𝐶 × 𝐻 × 𝑊]

– 𝐵 is a number of images

– 𝐶 is a number of channels for the image

– 𝐻 is an image height

– 𝑊 is an image width

 If we read images using the OpenCV library, then it is required to
convert the tensor from the format {BGRBGR…} to the format

{RRR…GGG…BBB…}, and change its shape in accordance with the

model input shape

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

33

2. Loading input images and converting to the format

of the deep model input (2)

 Read one or more images using the imread function

 Resize images using the resize function

 Reorder channels BGR -> RGB (if it is required) in images using
the cvtColor function

 Reorder dimensions using the transpose function

 Expand tensor dimension if only one image is loaded using the
expand_dims function of the numpy package

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

def prepare_image(imagePath, h, w):

image = cv2.imread(imagePath)

image = cv2.resize(image, (w, h))

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image = image.transpose((2, 0, 1))

blob = np.expand_dims(image, axis = 0)

return blob

34

3. Deep model inference (1)

 There are synchronous (Sync API) and asynchronous

programming interface (Async API) in the OpenVINO toolkit for

deep learning inference:

– Synchronous call blocks an application until the completion of

inference request; it is not required to track the request

completion. Synchronous API is used to implement the latency

mode

– Asynchronous call does not block an application until the

completion of inference request; it is required to track the

request completion. Asynchronous API can be used to

implement both the latency and throughput modes

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

35

3. Deep model inference (2)

 Synchronous API

– To run the deep model inference in a synchronous mode, it is

required to set the input tensor as the input of the deep model
loaded to the plugin and call the infer() function

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

input_blob = next(iter(net.inputs))

out_blob = next(iter(net.outputs))

n, c, h, w = net.inputs[input_blob].shape

Load, transpose, expand operations

blob = prepare_image(imagePath, h, w)

Execute

output = exec_net.infer(inputs = {input_blob: blob})

output = output[out_blob]

36

3. Deep model inference (3)

 Asynchronous API

– To run the deep model inference in an asynchronous mode, it is

required to set the input tensor as the input of the deep model
loaded to the plugin, call the infer_async() function and wait

for the request completion to extract the model output

– There are two ways to check request completion:

• Using the wait() function to check request status or wait for the request

completion

• Creating a callback function that will be called after the request

completion

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

37

3. Deep model inference (4)

 Asynchronous API

– Sample of creating three inference requests and checking their
completion using the wait() function

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

Image loading similar to sync version

blobs = [blob1, blob2, blob3] # Images for independent requests

Start async requests

for request_id in range(len(blobs)):

exec_net.start_async(request_id = request_id,

inputs = blobs[request_id])

Wait for completing requests

for request_id in range(requests_counter):

exec_net.requests[request_id].wait(-1)

Copy results

list = [copy(exec_net.requests[request_id].outputs)

for request_id in range(len(blobs))]

38

3. Deep model inference (5)

 To run several requests on CPU simultaneously, it is required to

set the number of requests that can be simultaneously executed

when the network is loaded to the device



 You can get the available number of requests using the following

command:

 If the number of input batches is greater than the available number

of requests, then it is required to implement the queue of requests

and set input batches from the queue to the pending requests

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

exec_net = ie.load_network(network = net, device_name = 'CPU',

num_requests = YOUR_REQUESTS_NUMBER)

requests_number = len(exec_net.requests)

39

4. Output processing

 To process the network output, it is supposed the understanding of

the format of the model output tensors

 The output tensors differ by task and model architecture

 For public models of Open Model Zoo, which solve the image

classification problem on the ImageNet dataset, the output tensor

shape is [𝐵 × 1000] as usual, where 1000 corresponds to the

number of image categories

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

DNN MODULE OF THE OPENCV

LIBRARY

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit
40

41

DNN module of the OpenCV library

 DNN module of the OpenCV library supports the inference of deep

neural networks on various hardware, including ARM processors

 DNN module submitted to OpenCV, starting with the version 3.3

 OpenCV supports models in the following formats: Caffe,

TensorFlow, Darknet, ONNX

 Models trained using MXNet, Pytorch, and CNTK are supported by

converting to the ONNX format

 OpenCV. Deep Neural Networks (dnn module)

[https://docs.opencv.org/master/d2/d58/tutorial_table_of_content_d

nn.html]

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://docs.opencv.org/master/d2/d58/tutorial_table_of_content_dnn.html

42

DNN backends

 OpenCV supports several backends for deep learning inference:

– OpenCV (the easiest backend)

– Inference Engine (the high-performance backend)

– Halide [https://halide-lang.org]. Halide is a programming

language that is designed to develop high-performance

applications for image and array processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

https://halide-lang.org/

43

DNN targets

 The parameter describing the device for deep learning inference is

called the target

 The DNN module supports the following targets with various

backends:

– CPU – OpenCV, Inference Engine, Halide

– OpenCL – OpenCV, Inference Engine, Halide

– OpenCL FP16 – OpenCV, Inference Engine

– Intel Movidius Neural Compute Stick – Inference Engine

– FPGA – Inference Engine

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

44

General outline of deep learning inference

1. Loading a deep model

2. Loading input images

3. Converting images to the deep model input

4. Deep model inference

5. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

45

1. Loading a deep model (1)

 Deep model usually consists of one or two files, the first one

corresponds to the model architecture, the second one contains

model weights

 To read a model, the readNet function is used, its parameters is a

path (or two paths) to the model file, in any order

 Example of loading the model in the Caffe format, setting the

backend and the target device by calling the
setPreferableBackend and setPreferableTarget

methods:

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

model = "deploy.prototxt"

weights = "bvlc_alexnet.caffemodel"

net = cv2.dnn.readNet(model, config)

net.setPreferableBackend(backend)

net.setPreferableTarget(target)

46

1. Loading a deep model (2)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Available backends:

 Available targets:

backend = cv2.dnn.DNN_BACKEND_DEFAULT

backend = cv2.dnn.DNN_BACKEND_HALIDE

backend = cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE

backend = cv2.dnn.DNN_BACKEND_OPENCV

target = cv2.dnn.DNN_TARGET_CPU

target = cv2.dnn.DNN_TARGET_OPENCL

target = cv2.dnn.DNN_TARGET_OPENCL_FP16

target = cv2.dnn.DNN_TARGET_MYRIAD

47

2. Loading images

 The image is loaded using the imread function, the parameter is

the path to the image

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

image = cv2.imread(imagePath)

48

3. Converting images to the deep model input (1)

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 As a rule, an input of the model is a 4-dimensional tensor of the

size [𝐵 × 𝐶 × 𝐻 × 𝑊]

– 𝐵 is a number of images

– 𝐶 is a number of channels for the image

– 𝐻 is an image height

– 𝑊 is an image width

 If we read images using the OpenCV library, then it is required to
convert the tensor from the format {BGRBGR…} to the format

{RRR…GGG…BBB…}, and change its shape in accordance with the

model input shape

49

3. Converting images to the deep model input (2)

 To convert a single image, the blobFromImage function is used

 Sample of converting an image into the input format of the deep

model is shown below

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

scalefactor = 1.0

mean intensity

mean = (104, 117, 123)

input size

size = (224, 224)

blob = cv2.dnn.blobFromImage(image, scalefactor = 1.0, size,

mean, swapRB = True)

50

4. Deep model inference

 To run the deep model inference, it is required to set the input
tensor as the input of the deep model and execute the forward()

method

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

net.setInput(blob)

preds = net.forward()

51

5. Output processing

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

output shape [1, 1000] for one input image

prob = preds[0]

classid = np.argmax(prob)

classprob = np.max(prob)

print('Class {}, probability {}'.format(classid, classprob))

 To process the network output, it is supposed the understanding of

the format of the model output tensors

 For public models of Open Model Zoo which solve the image

classification problem on the ImageNet dataset, the output tensor

shape is [𝐵 × 1000] as usual, where 1000 corresponds to the

number of image categories

52

Conclusion

 Components of the Intel Distribution of OpenVINO Toolkit were

overviewed

 Possible ways to implement deep learning inference using

Inference Engine and OpenCV were described

 Solving the practical tasks of the course, it is supposed to use one

of the considered components

 Tutorials for solving the practical tasks prepared by the authors of

the course are based on the Inference Engine component

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

53

Literature

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

 Intel Distribution of OpenVINO Toolkit

[https://software.intel.com/en-us/openvino-toolkit].

 OpenVINO documentation website

[https://docs.openvinotoolkit.org].

 OpenVINO – Open Sourced version [01.org/openvinotoolkit].

 OpenVINO performance topics

[https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Intro_to_Perf

ormance.html].

 CPU Inference Performance Boost with “Throughput” Mode in the

Intel Distribution of OpenVINO Toolkit

[https://www.intel.ai/cpu-inference-performance-boost-openvino].

 OpenCV [https://opencv.org].

 Open Model Zoo [https://github.com/opencv/open_model_zoo].

https://software.intel.com/en-us/openvino-toolkit
https://docs.openvinotoolkit.org/
01.org/openvinotoolkit
https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Intro_to_Performance.html
https://www.intel.ai/cpu-inference-performance-boost-openvino/
https://opencv.org/
https://github.com/opencv/open_model_zoo

54

Authors

 Turlapov Vadim Evgenievich, Dr., Prof., department of computer

software and supercomputer technologies

vadim.turlapov@itmm.unn.ru

 Vasiliev Engeny Pavlovich, lecturer, department of computer

software and supercomputer technologies

evgeny.vasiliev@itmm.unn.ru

 Getmanskaya Alexandra Alexandrovna, lecturer, department of

computer software and supercomputer technologies

alexandra.getmanskaya@itmm.unn.ru

 Kustikova Valentina Dmitrievna

Phd, assistant professor, department of computer software and

supercomputer technologies

valentina.kustikova@itmm.unn.ru

Nizhny Novgorod, 2020 Overview of the Intel Distribution of OpenVINO toolkit

mailto:vadim.turlapov@itmm.unn.ru
mailto:evgeny.vasiliev@itmm.unn.ru
mailto:alexandra.getmanskaya@itmm.unn.ru
mailto:valentina.kustikova@itmm.unn.ru

