
Lobachevsky State University of Nizhni Novgorod

Faculty of Computational mathematics and cybernetics

K.A. Barkalov,

Software Department

Iterative Methods for Solving Linear Systems

Supported by Intel

Laboratory Work

Solving Sparse Linear Systems Using the

Preconditioned Biconjugate Gradient Method

2

Contents

 The problem of solving linear system using the biconjugate

gradient method

 Consecutive implementation of the biconjugate gradient

algorithm

 Biconjugate gradient method convergence analysis

 Preconditioned biconjugate gradient method

 The possibility of parallel algorithm implementation

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

3

Introduction (1)

 Let us consider a system of n linear equations like

 As a matrix, the system may be represented as follows

 Axb

 A(aij) is a n×n real matrix; A is a sparse matrix; b and x are vectors

consisting of n elements.

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa







...

...

...

...

2211

22222121

11212111

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

4

Introduction (2)

 Methods of solving linear systems may be classified as direct

and iterative.

 Both types have their advantages and disadvantages.

– The use of direct methods leads to system matrix filling in

the course of factorization which may cause inefficient

memory usage.

– The use of iterative methods that do not lead to matrix

filling may sometimes lead to a low convergence rate.

 The purpose of this laboratory works is to study iterative

methods of solving linear systems.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

5

Introduction (3)

 An iterative method generates a sequence of vectors x(s)Rm,

s0,1,2,… where x(s) is an approximate system solution.

 Method convergence is convergence of the sequence x(s) to the

exact system solution from any initial approximation.

 Convergence rate is determined by the number of approximations

performed by the method until the stop criterion is met.

 In practice, convergence is not the only important thing. In the

course of computing, computational error is inevitable. A method is

numerically stable if the computational error tends to zero when

при уменьшении погрешности вычислений.

 The convergence and numerical stability of iterative methods are

the main issues solved as part of iterative method quality study.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

6

Introduction (4)

 Most methods converge quickly if the matrix is well-

conditioned or has few eigenvalues.

 Otherwise, due to computational error accumulation, a

method that converges in theory may diverge in reality.

 To overcome poor matrix conditioning, system

preconditioning is used, i.e. conversion to a linear system with

the same solution and a better matrix by multiplying the

system by a special matrix.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

7

Purposes of work

 The purpose of this laboratory work is to demonstrate

practical implementation of the biconjugate gradient method

for linear systems with sparse matrices

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

8

Objectives of work

 Study of the biconjugate gradient method for dense matrices

 Modification of the biconjugate gradient method for sparse

matrices

 Development of the biconjugate gradient method software

implementation for sparse matrices

 Developed method convergence analysis

 Development of the consecutive implementation of the

biconjugate gradient method

 Developed method convergence analysis

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

9

Test infrastructure

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

CPU Two Intel Xeon E5520 processors (4

core, 2.27 GHz)

RAM 16 Gb

OS Microsoft Windows 7

Framework Microsoft Visual Studio 2008

Compiler, profiler,

debugger

Intel® Parallel Studio XE 2011

Libraries Intel® Math Kernel Library (within

Intel® Parallel Studio XE 2011)

10

Biconjugate gradient method (1)

 The biconjugate gradient method is a generalization of the
conjugate gradient method which is intended for linear systems with
some arbitraty nonsingular matrix.

 At * A is known to be a symmetric positive definite matrix.

 Therefore, it is possible to proceed to solution of a new system
equivalent to the initial one:

At * A x = At * b

 This system can be solved by the conjugate gradient method,
though it is not easy to do it in practice, as the
At * A product substantially increases the matrix condition.

 Based on the relation, one can obtain an algorithm free from the
disadvantages of the At * A x system solution.

– For this purpose, the sequence of residuals and directions from
the conjugate gradient method and the respective biconjugates
are used.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

11

Biconjugate gradient method (2)

 Biconjugate gradient algorithm

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

Consecutive implementation

of the biconjugate gradient method

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method
12

13

Project creation (1)

 For convenience, let us divide the biconjugate gradient

method implementation into several projects. A total of three

projects will be required:

– parser is the project containing implementation of

functionality that enables reading of systems from files and

a number of operations required for memory allocation and

data initialization.

– routine is the project containing some mathematic

operations such as multiplication of matrices and vectors

and checking the solution for correctness.

– BiCG is the project containing the biconjugate gradient

method implementation and the program main function.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method
13

14

Project creation (2)

 Create the following set of files in the parser project :

– readMTX.h, readMTX.cpp –files to declare and implement

functions required for reading matrices from the file

– routines.h, routines.cpp – files to declare and implement

auxiliary functions required for reading matrices from the

file and print the read data from the file

– type.h – file to declare the involved structures of data and

invariables

– util.h, util.cpp – files to declare and implement the set of

functions to distinguish, initialize and delete data for CRS

matrices.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

15

Project creation (3)

 Create the following set of files in the routine project:

– sparseMatrixOperation.h, sparseMatrixOperation.cpp –

files to declare and implement sparse operations with CRS

matrices.

– timer.hpp, timer.cpp – files to declare and implement time

measurement functions.

– validation.h, validation.cpp – files to declare and

implement functions that check the obtained solutions for

correctness.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

16

Project creation (4)

 Create the following set of files in the BiCG project :

– BiCG.h, BiCG.cpp – file to contain various

implementations of the biconjugate gradient method.

– main.cpp – file to contain implementation of the main

program function.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

17

Project creation (5)

 Determine relationship between the projects.

 Routine depends on parser and BiCG depends on both

routine and parser.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

18

Involved data structures

 For sparse matrix representation, use the CRS (Column Row
Storage) format.

 From parser, declare in type.h the CrsMatrix structure describing
the matrix in the CRS format:

typedef struct CrsMatrix

{

 int N; // matrix dimension (N x N)

 int NZ; // number of nonzeroes

 FLOAT_TYPE* Value; // values array (dimension NZ)

 int* Col; // column numbers array

 // (NZ dimension)

 int* RowIndex; // row indices array

 // (dimension N + 1)

} crsMatrix;

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

19

Main() function (1)

 Build the main() function as follows:

– Reading the command line arguments

– Reading the system matrix from the file

– Initialization of variables

• Memory allocation

• Setting the right-hand vector

– Solving linear systems using the biconjugate gradient

method

– Computation of the system residual over the obtained

solution.

– Method operation data output

– Memory release

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

20

Main() function (2)

 Read command line arguments and announce the variables
int main(int argc, char ** argv)

{

 // 1. Reading the command line arguments

 char *matrixName;

 ParseArgv(argc, argv, matrixName);

 // declaring the required variables

 crsMatrix readA; // read matrix

 crsMatrix *matA; // pointer to the matrix

 // used for computation

 int typeOfMatrix; // type of the read matrix

 int error; // error code returned by the functions

 double diff; // computation error

 int iter; // number of performed iterations

 // timer used to measure

 // algorithm part runtime

 Stopwatch *time = createStopwatch();

 int i;

 double *b; // right-side vector

 double *x; // desired linear system solution

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

21

Main() function (3)

 Read the matrix
 // 2. Read the matrix from the file

 printf("read matrix (%s) \n", matrixName);

 time->start();

 error = ReadMatrixFromFile(matrixName,

 &(readA.N), &(readA.NZ),

 &(readA.Col), &(readA.RowIndex), &(readA.Value),

 &(typeOfMatrix));

 if(error != BICG_OK)

 {

 printf("error read matrix %d\n", error);

 return error;

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

22

Main() function (4)

 // if the matrix is symmetric and

 // defined only by the upper triangle,

 // make it full

 if(typeOfMatrix == UPPER_TRIANGULAR)

 {

 matA = UpTriangleMatrixToFullSymmetricMatrix(&readA);

 FreeMatrix(readA);

 }

 else

 {

 matA = &readA;

 }

 time->stop();

 printf("read matrix from file time: %f\n",

 time->getElapsed());

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

23

Main() function (5)

 Initialize the variables

 // 3. Initialization of variables

 // allocate memory to the right-hand vector and

 // solve the linear system

 x = new double [matA->N];

 b = new double [matA->N];

 // initialize the right-hand part

 for(i = 0; i < matA->N; i++)

 {

 b[i] = 1.0;

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

24

Main() function (6)

 In place of the highlighted “call for the function of system

solution using BiCG”comment, call for the function with our

method implementation will be written in the future.

 time->reset();

 time->start();

 // 4. call the function of solving linear

systems by the BiCG method

 time->stop();

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

25

Main() function (7)

 In the end, check the solution for correctness and free the allocated
memory.

 // 5. Checking the BiCG method for correctness

 diff = diffSolution(*matA, x, b);

 // 6. Method operation data output

 printf("BiCG time: %f\n", time->getElapsed());

 printf("count of iteration: %d\n", iter);

 printf("calc error: %f\n", diff);

 // 7. Dynamic memory release

 FreeMatrix(*matA);

 delete [] b;

 delete [] x;

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

26

Auxiliary functions (1)

 Let us study the auxiliary functions necessary to implement the
method.

 Place the functions of memory allocation and release for the matrix
storage structure in util.h and util.cpp.

– InitializeMatrix() – memory allocation to store a matrix in the
CRS format.The function inputs are dimension of the matrix n
and number of nonzeroes NZ. The outputs are a link to the
structure of the matrix in the CRS format with initialized fields
and allocated memory. The function returns the error code.

int InitializeMatrix(int N, int NZ, crsMatrix

&mtx);

– FreeMatrix() – memory release from the matrix in the CRS
format. The output is a link to the structure that contains the
matrix. The function returns the error code.

int FreeMatrix(crsMatrix &mtx);

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

27

Auxiliary functions (2)

 From parser, announce the ReadMatrixFromFile() function,

which reads the matrix from the file in the mtx format and

stores it in the SRC format, in readMTX.h and implement it in

readMatrix.сpp. As an input, the function will accept

matrixName - name of the file containing the matrix. The

function outputs are the matrix dimension n, pointers to

initialized arrays column, row, val describing the matrix. The

function returns the error code.

int ReadMatrixFromFile(char* matrixName,

 int* n, int** column, int** row,

 FLOAT_TYPE** val);

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

28

mtx format

 The mtx file is a matrix in coordinate representation.

– The file contains such matrix parameters as the number of

rows, columns and nonzeroes.

– Then, row-by-row, the parameters of matrix nonzeroes are

listed such as the respective row, column and value.

– Row and column numbering starts from 1.

– If the matrix is symmetric, the file can contain only its upper

or lower triangle.

– Comment fields start with %.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

29

Task 1

 Implement the abovementioned functions dealing with

matrices in the CRS format and read them from file.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

30

Auxiliary functions (3)

 Implement matrix-vector operations of the biconjugate

gradient method.

 From routine, declare and implement the functions in

sparseMatrixOperation.h and sparseMatrixOperation.cpp,

respectively.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

31

Auxiliary functions (4)

 MatrixVectorMult() – matrix-vector product computation. As inputs, the function
receives pointers to the matrix A in the CRS format and vector b. Function output is the
pointer to their product x. As the result, the function returns the error code.

int MatrixVectorMult(crsMatrix A, double * b, double *x)

{

 int i, j;

 int s, f;

 for(i = 0; i < A.N; i++)

 {

 s = A.RowIndex[i];

 f = A.RowIndex[i + 1];

 x[i] = 0.0;

 for(j = s; j < f; j++)

 x[i] += A.Value[j] * b[A.Col[j]];

 }

 return BICG_OK;

}

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

32

Auxiliary functions (5)

 scalarProduct() – vector scalar product computation. As inputs,
the function receives pointers to the vectors a, b and their
dimension n. Output of the function is the scalar product.

double scalarProduct(int n, double *a, double *b)

{

 double sum = 0.0;

 int i;

 for(i = 0; i < n; i++)

 {

 sum += a[i] * b[i];

 }

 return sum;

}

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

33

Software implementation of the biconjugate

gradient method (1)

 Let us start software implementation of the biconjugate

gradient method of solving linear systems.

 Declare and implement the BiCG() function of solving linear

systems using the iterative method in question in BiCG.h and

BiCG.cpp, respectively.

 As inputs, the function will receive the system matrix A in the

CRS format,righ-hand vector b and the maximum allowable

number of iterations CountIteration. Function outputs are the

pointer to the computed approximate solution x, number of

performed iterations iter.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

34

Software implementation of the biconjugate

gradient method (2)

 In the function body, compute approximations to the system

solution in the x array.

 As the method stop criterion, use the maximum allowable

number of iterations CountIteration or the required solution

accuracy.

 The attainable accuracy will be computed in the check

variable as the relative residual norm

– Required accuracy is set by the EPSILON invariable in the

type.h file of the parser project.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

35

Software implementation of the biconjugate

gradient method (3)

int BiCG(crsMatrix A, double * b, double *x,

int CountIteration, int &iter)

{

 // To speed up computation, compute

 // the transposed matrix A

 crsMatrix At;

 At.N = A.N;

 At.NZ = A.NZ;

 Transpose(A.N, A.Col, A.RowIndex, A.Value,

 &(At.Col), &(At.RowIndex), &(At.Value));

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

36

Software implementation of the biconjugate

gradient method (4)

 // arrays to store the residual

 // of the current and next approximations

 double * R, * biR;

 double * nR, * nbiR;

 R = new double [A.N];

 biR = new double [A.N];

 nR = new double [A.N];

 nbiR = new double [A.N];

 // arrays to store the current and next

 // method step direction vectors

 double * P, * biP;

 double * nP, * nbiP;

 P = new double [A.N];

 biP = new double [A.N];

 nP = new double [A.N];

 nbiP = new double [A.N];

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

37

Software implementation of the biconjugate

gradient method (5)

 // pointer to change pointers for the vectors of the current

 // and next method steps

 double * tmp;

 // arrays to store the product of matrix multiplication by

 // the direction vector and the biconjugate vector

 double * multAP, * multAtbiP;

 multAP = new double [A.N];

 multAtbiP = new double [A.N];

 // beta and alfa - computing formula coefficients

 double alfa, beta;

 // numerator and denominator of beta and alfa

 double numerator, denominator;

 // variables for computation

 // of the current approximation accuracy

 double check, norm;

 norm = sqrt(scalarProduct(A.N, b, b));

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

38

Software implementation of the biconjugate

gradient method (6)

 As the initial approximation, take a unit vector
 // setting the initial approximation

 int i;

 int n = A.N;

 for(i = 0; i < n; i++)

 {

 x[i] = 1.0;

 }

 // Method initialization

 MatrixVectorMult(A, x, multAP);

 for(i = 0; i < n; i++)

 {

 R[i] = biR[i] = P[i] = biP[i] = b[i] - multAP[i];

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

39

Software implementation of the biconjugate

gradient method (7)

 // Method initialization

 for(iter = 0; iter < CountIteration; iter++)

 {

 MatrixVectorMult(A, P, multAP);

 MatrixVectorMult(At, biP, multAtbiP);

 numerator = scalarProduct(A.N, biR, R);

 denominator = scalarProduct(A.N, biP, multAP);

 alfa = numerator / denominator;

 for(i = 0; i < n; i++)

 {

 nR[i] = R[i] - alfa * multAP[i];

 }

 for(i = 0; i < n; i++)

 {

 nbiR[i] = biR[i] - alfa * multAtbiP[i];

 }

 denominator = numerator;

 numerator = scalarProduct(A.N, nbiR, nR);

 beta = numerator / denominator;

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

40

Software implementation of the biconjugate

gradient method (8)

 for(i = 0; i < n; i++)

 {

 nP[i] = nR[i] + beta * P[i];

 }

 for(i = 0; i < n; i++)

 {

 nbiP[i] = nbiR[i] + beta * biP[i];

 }

 // control compliance with accuracy requirements

 check = sqrt(scalarProduct(n, R, R)) / norm;

 if (check < EPSILON)

 break;

 for(i = 0; i < n; i++)

 {

 x[i] += alfa * P[i];

 }

 // swap positions of the current and next step arrays

 tmp = R; R = nR; nR = tmp;

 tmp = P; P = nP; nP = tmp;

 tmp = biR; biR = nbiR; nbiR = tmp;

 tmp = biP; biP = nbiP; nbiP = tmp;

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

41

Software implementation of the biconjugate

gradient method (9)

 // memory release

 FreeMatrix(At);

 delete [] R;

 delete [] biR;

 delete [] nR;

 delete [] nbiR;

 delete [] P;

 delete [] biP;

 delete [] nP;

 delete [] nbiP;

 delete [] multAP;

 delete [] multAtbiP;

 return BICG_OK;

}

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

42

Biconjugate gradient

method convergence analysis (1)

 Incorporate the call for BiCG() in the main() function body.

 Now the project can be compiled from Build→Rebuild and

the respective correctness check can be performed.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

43

Biconjugate gradient

method convergence analysis (2)

 Example of program implementing the biconjugate gradient

method for a well-conditioned matrix

 Example of program implementing the biconjugate gradient

method for an ill-conditioned matrix

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

44

Biconjugate gradient

method convergence analysis (3)

 No solution has been found for the second matrix due to two

factors.

– First, the matrix bcsstk01.mtx is ill-conditioned.

– Second, the parameter restricting the number of algorithm

iterations during experiments was the matrix size

(theoretical estimate).

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

45

Biconjugate gradient

method convergence analysis (4)

 Results of running the software implementation of the

biconjugate gradient method for symmetric matrices (required

computational accuracy is 0.0001).

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

Matrix

matrix

dimensio

n

attainable

method

accuracy

number of

iterations

algorithm

runtime

bcsstk01 48 116213.2199 48 0.000

bcsstk05 153 27.2275 153 0.002

bcsstk10 1 086 162.2504 1 086 0.092

bcsstk12 1 473 8576.2735 1 473 0.187

parabolic_fem 525 825 0.0012 717 25.089

tmt_sym 726 713 0.0062 2 487 122.543

46

Biconjugate gradient

method convergence analysis (5)

 Results of running the software implementation of the

biconjugate gradient method for non-symmetric matrices

(required computational accuracy is 0.0001).

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

Matrix

matrix

dimensio

n

attainable

method

accuracy

number of

iterations

algorithm

runtime

fs_541_1 541 0.00030 6 0.000

ex22 839 1.63999 839 0.068

sherman2 1080 5075084918.6 1080 0.103

cage10 11397 0.00213 10 0.011

47

Biconjugate gradient

method convergence analysis (6)

 To improve the method convergence rate, preconditioning is

used.

 Let us implement the preconditioned biconjugate gradient

method.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

Software implementation of the preconditioned

conjugate gradient method

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method
48

49

Preconditioned biconjugate gradient method

implementation

 Algorithm pseudocode:

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method
49

50

Project creation

 Preconditioner implementation is outside the scope of this

laboratory work. Use the ILU-preconditioner from the

respective laboratory work.

 Add to the solution a project containing implementation of the

ILU(p)-preconditioner. The project contains the following files:

– ilup.h and ilup.cpp – files containing declaration and

software implementation of the symbolic and numerical

pars of the ILU(p) algorithm

– validation.h and validation.cpp – files containing

declaration and software implementation of factorization

check for correctness and the function that divides the

matrix containing both L and U into two separate matrices.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

51

Auxiliary functions (1)

 To use the ILU-preconditioner, implement the additional function of
solving triangular systems GaussSolve() in the
sparseMatrixOperation.cpp and sparseMatrixOperation.h files.

 The GaussSolve() function solves linear systems with triangular
matrices. As inputs, the function receives the structure of the
system matrix A, right-hand vector b and symbol denoting system
type uplo - L means the lower triangular system and U means the
upper triangular one. The output is the system solution x.

 To implement the function, use the existing functionality
represented in the MKL.

– To use the mkl_dcsrtrsv() function of triangular system
solution, represent the matrix so that its indices start from 1.

– Having solved the system, go back to numbering accepted in
C/C++ starting from zero.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

52

Auxiliary functions (2)

void GaussSolve(crsMatrix* A, char uplo,

 double* b, double* x)

{

 char transa = 'N';

 char diag = 'N';

 int i;

 for(i = 0; i < A->N + 1; i++)

 A->RowIndex[i] ++;

 for(i = 0; i < A->NZ; i++)

 A->Col[i] ++;

 mkl_dcsrtrsv(&uplo, &transa, &diag, &(A->N), A->Value,

 A->RowIndex, A->Col, b, x);

 for(i = 0; i < A->N + 1; i++)

 A->RowIndex[i] --;

 for(i = 0; i < A->NZ; i++)

 A->Col[i] --;

}

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

53

Software implementation of the preconditioned

biconjugate gradient method (1)

 Develop BiCG_M(), a new function of solving linear systems

using the preconditioned biconjugate gradient method.

 Main features of the function

1. The function accepts the preconditioner in the form of two

matrices, L and U.

2. Для вычислений необходимо хранить помимо

транспонированной матрицы транспонированные

матрицу фактора предобуславливателя

3. The biconjugate gradient method requires additional

steps to apply the preconditioner to the linear system.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

54

Software implementation of the preconditioned

biconjugate gradient method (2)

int BiCG_M(crsMatrix A, double * b, double *x, crsMatrix L, crsMatrix U,

 int CountIteration, int &iter)

{

 // To speed up computation, compute the transposed matrix A,

 crsMatrix At;

 ...

 // To compute the matrix inverse to the transposed

 // preconditioner matrix, compute the transposed

 // matrices L and U

 crsMatrix Lt;

 Lt.N = L.N;

 Lt.NZ = L.NZ;

 Transpose(L.N, L.Col, L.RowIndex, L.Value,

 &(Lt.Col), &(Lt.RowIndex), &(Lt.Value));

 crsMatrix Ut;

 Ut.N = U.N;

 Ut.NZ = U.NZ;

 Transpose(U.N, U.Col, U.RowIndex, U.Value,

 &(Ut.Col), &(Ut.RowIndex), &(Ut.Value));

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

55

Software implementation of the preconditioned

biconjugate gradient method (3)

 // arrays to store the residue of the current

 // and next approximations

 double * R, * biR;

 double * nR, * nbiR;

 ...

 // auxiliary vector and the biconjugate vector

 // to use the preconditioner

 double * Z, * biZ;

 double * nZ, * nbiZ;

 double * sol;

 Z = new double [A.N];

 biZ = new double [A.N];

 nZ = new double [A.N];

 nbiZ = new double [A.N];

 sol = new double [A.N];

 // arrays to store the current and next

 // method step direction vectors

 double * P, * biP;

 double * nP, * nbiP;

 ...

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

56

Software implementation of the preconditioned

biconjugate gradient method (4)

 // Method initialization

 MatrixVectorMult(A, x, multAP);

 for(i = 0; i < n; i++)

 {

 R[i] = biR[i] = b[i] - multAP[i];

 }

 GaussSolve(&L, 'L', R , sol);

 GaussSolve(&U, 'U', sol, Z);

 GaussSolve(&Ut, 'L', biR, sol);

 GaussSolve(&Lt, 'U', sol, biZ);

 for(i = 0; i < n; i++)

 {

 P[i] = Z[i];

 biP[i] = biZ[i];

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

57

Software implementation of the preconditioned

biconjugate gradient method (5)

 // Method implementation

 for(iter = 0; iter < CountIteration; iter++)

 {

 MatrixVectorMult(A, P, multAP);

 MatrixVectorMult(At, biP, multAtbiP);

 numerator = scalarProduct(A.N, biR, Z);

 denominator = scalarProduct(A.N, biP, multAP);

 alfa = numerator / denominator;

 for(i = 0; i < n; i++)

 {

 nR[i] = R[i] - alfa * multAP[i];

 }

 for(i = 0; i < n; i++)

 {

 nbiR[i] = biR[i] - alfa * multAtbiP[i];

 }

 GaussSolve(&L, 'L', nR , sol);

 GaussSolve(&U, 'U', sol, nZ);

 GaussSolve(&Ut, 'L', nbiR, sol);

 GaussSolve(&Lt, 'U', sol , nbiZ);

 denominator = numerator;

 numerator = scalarProduct(A.N, nbiR, nZ);

 beta = numerator / denominator;

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

58

Software implementation of the preconditioned

biconjugate gradient method (6)

 for(i = 0; i < n; i++)

 {

 nP[i] = nZ[i] + beta * P[i];

 }

 for(i = 0; i < n; i++)

 {

 nbiP[i] = nbiZ[i] + beta * biP[i];

 }

 check = sqrt(scalarProduct(n, R, R)) / norm;

 if (check < EPSILON)

 break;

 for(i = 0; i < n; i++)

 {

 x[i] += alfa * P[i];

 }

 // swap array positions

 tmp = R; R = nR; nR = tmp;

 tmp = P; P = nP; nP = tmp;

 tmp = biR; biR = nbiR; nbiR = tmp;

 tmp = biP; biP = nbiP; nbiP = tmp;

 tmp = Z; Z = nZ; nZ = tmp;

 tmp = biZ; biZ = nbiZ; nbiZ = tmp;

 }

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

59

Software implementation of the preconditioned

biconjugate gradient method (7)

 // memory release

 ...

 FreeMatrix(Lt);

 FreeMatrix(Ut);

 delete [] Z;

 delete [] biZ;

 delete [] nZ;

 delete [] nbiZ;

 delete [] sol;

 ...

 return BICG_OK;

}

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

60

Task 2

 Modify the main() function to call for the biconjugate gradient

method.

– For this purpose, connect the ilup.h header file.

– Call the ILU(p) computation function.

– Divide matrices into L and U.

– Call the implemented BiCG_M() function.

 Study how the preconditioner quality influences the method

operation quality.

– For this, add the call for system solution using the

biconjugate gradient method with a preconditioner

computed at various p levels.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

61

Preconditioned biconjugate gradient method

convergence analysis (1)

 Run the biconjugate gradient algorithm for the bcsstk01.mtx

matrix.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

62

Preconditioned biconjugate gradient method

convergence analysis (2)

 The matrix bcsstk01.mtx is ill-conditioned.

– As a result, this matrix showed a greater iterative method

error in the context of restricted number of iterations.

 The use of preconditioner enabled highly accurate system

solution.

 As p (algorithm level parameter) grows, the number of

iterations required to find the solution reduces.

– For this matrix, the higher is the level, the better is the

preconditioner.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

63

Preconditioned biconjugate gradient method

convergence analysis (3)

 Results of running the preconditioned biconjugate method

software implementation for the bcsstk10 matrix.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

matrix: bcsstk10 dimension: 1 086

p

number of

iterations

attainable

method

accuracy

ILU(p)

symbolic part

time

ILU(p)

numerical

part time

BiCG

time Total time

without ILU 1086 162.250 0.0922 0.0922

0 211 0.00030 0,0010 0.0007 0.0910 0.0927

1 83 0.00059 0,0030 0.0009 0.0335 0.0374

2 70 0.00032 0,0059 0.0010 0.0303 0.0373

3 92 0.00012 0,0093 0.0011 0.0407 0.0511

64

Preconditioned biconjugate gradient method

convergence analysis (4)

 Results of running the preconditioned biconjugate method

software implementation for the tmt_sym matrix.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

matrix: tmt_sym dimension: 726 713

P

number of

iterations

attainable

method

accuracy

ILU(p) symbolic

part time

ILU(p)

numerical

part time BiCG time Total time

without

ILU 2487 0.006 122.5435 122.5435

0 894 0.00933 0.2886 0.0906 140.6882 141.0673

1 896 0.00813 0.6497 0.1218 151.9161 152.6875

2 894 0.00870 1.3676 0.1608 163.7241 165.2525

3 895 0.01176 2.4250 0.2079 183.1238 185.7567

65

Preconditioned biconjugate gradient method

convergence analysis (5)

 From the tables above one can see that the use of

preconditioner lets considerably reduce the number of

iterations required by the method to solve a linear system.

 Reduction of method iterations may not always improve the

solution time in general (the most important thing is the

preconditioner quantity, not the level).

– For the matrix tmt_sym, the number of iterations reduced

more than twice but the solution time has increased.

– At the same time, computation speedup is observed for the

bcsstk10 matrix.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

66

Preconditioned biconjugate gradient method

convergence analysis (5)

 The preconditioner quality in the algorithm may not always

depend on the level.

– For the bcsstk10 matrix, the best level value is 1 or 2.

– For the tmt_sym matrix, the 0 level will be the best.

 To obtain better preconditioners that are less dependent on

parameters, other preconditioner search algorithms should be

employed.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

67

Software implementation of the algorithm

 The main computation operation of the biconjugate gradient

algorithm is scalar product computation.

– The scalar product has a low computational complexity but is

used more than once for the algorithm purposes. Therefore,

scalar product parallelization will definitely be inefficient.

– Low efficiency is due to considerable contingencies for parallel

computation.

 It will be more efficient to replace the developed software

implementation of the scalar product by function call from the

library.

– Such libraries as Intel MKL can be used.

 To parallelize the biconjugate gradient algorithm in a more efficient

manner, one can compute independent scalar products in parallel.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

68

Added tasks

1. Analyze the method convergence rate depending on
precision of the floating point arithmetics.

2. Implement the biconjugate gradient method with a
preconditioner resulting from the ILUT algorithm.

3. Analyze the efficiency and scalability of the BiCG algorithm
parallel modification with parallelization on the scalar product
level.

4. Evaluate the efficiency of library implementations of the
mathematic operations offered by Intel MLK for the
biconjugate gradient method.

5. Analyze the efficiency and scalability of the BiCG algorithm
parallel modification with parallelization by parallel
computation of independent scalar products.

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

69

References

1. Saad Y. Iterative methods for sparse linear systems. – SIAM,

2003.

2. Laboratory Work on Solving sparse linear systems using the

preconditioned conjugate gradient method

3. Laboratory Work on Multiplication of Matrices

4. ILU(p) Laboratory Work

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

70

Questions

 ???

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

71

Authors

 Evgeny Kozinov,

Assistant, Software Department, CMC Faculty,

Nizhny Novgorod State University

Evgeniy.Kozinov@gmail.com

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method

mailto:Evgeniy.Kozinov@gmail.com

