
Lobachevsky State University of Nizhni Novgorod 

Faculty of Computational mathematics and cybernetics 

Laboratory Work  

 Preconditioner Construction by Incomplete LU-

factorization  

Iterative Methods for Solving Linear Systems 

K.A. Barkalov,  

Software Department 

Supported by Intel 



2 

Contents 

 Preconditioner Search Problem 

– Incomplete LU-factorization 

 ILU(0) Software Implementation 

 ILU(0) Algorithm Implementation Run Analysis 

 ILU(p) Software Implementation 

– Software Implementation of the ILU(p) Symbolic Phase 

– Software Implementation of the ILU(p) Numerical Phase 

 ILU(p) Algorithm Implementation Run Analysis 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



3 

Introduction (1) 

 In case of solving linear systems by iterative methods, the 

matrix condition number must be as small as possible.  

– When the linear system matrix is ill-conditioned, iterative 

methods have a low convergence rate.  

 To reduce the condition number, special approaches and 

techniques must be used.  

– One of them consists in multiplication of the initial linear 

system matrix by the preconditioner matrix. 

MAxMb 

 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



4 

Introduction (2) 

 If a matrix inverse to the initial linear system matrix is used as 

a preconditioner, the system solution will result from matrix 

multiplication by a vector.  

– In this case, preconditioner search will reduce to the use of 

a direct method of solving linear systems.  

 If the preconditioner matrix is close to the inverse one, the 

new linear system will, from physical consideration, be well-

conditioned, as it will be close to the identity matrix.  

 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



5 

Introduction (3) 

 To search for the inverse matrix, one can make good use of 

the matrix factor. 

– Factor search is one of the most complex stages of direct 

methods. 

 For iterative methods, to reduce the time required to search 

the solution, incomplete LU-factorization is used.  

– Incomplete factorization makes it possible to obtain the 

matrices L and U close to the factor at a significantly 

shorter time required for incomplete factorization. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



6 

Purposes of work 

 The purpose of the laboratory work is to demonstrate 

practical implementation of the preconditioner search method 

based on the classical ILU(p) method. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



7 

Objectives of work 

 Study of the ILU(p) incomplete LU-factorization method. 

 Development of serial implementation of the ILU(0) 

preconditioner searching method. 

 Analysis of the method software implementation influence on 

the matrix condition. 

 Development of serial implementation of the ILU(p) 

preconditioner searching method. 

 Analysis of the level modification influence on the matrix 

condition and ILU(p) search time. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



8 

Test infrastructure 

CPU Two Intel Xeon E5520 processors (4 

core, 2.27 GHz) 

RAM 16 Gb 

OS Microsoft Windows 7 

Framework Microsoft Visual Studio 2008 

Compiler, profiler, 

debugger 

Intel Parallel Studio XE 2011 

Libraries Intel® Math Kernel Library (within 

Intel® Parallel Studio XE 2011) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



9 

Incomplete LU-factorization (1) 

 The basis for the implementation procedure of the incomplete 

LU-factorization is the Gaussian elimination method (or the 

complete LU-factorization). 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



10 

Incomplete LU-factorization (2) 

 Example of complete LU-factorization of a matrix 

 

 

 

 

 

 

 

 

 A complete LU-factorization of the initial matrix will result in 
additional nonzero elements.  

– In the case under consideration, one additional element has 
appeared. It is represented by a crosshatched square. 

 In the picture, matrix elements containing a zero value are shown in 
grey.  

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



11 

Incomplete LU-factorization (3) 

 The idea of ILU(0)-factorization is to eliminate all new non-

zero elements that appear in the course of decomposition, 

from the dct factor.  

– In the classical ILU(0) algorithm, the initial matrix pattern is 

used as the factor pattern. 

 In the numerical part of the algorithm, coefficients of the 

matrices L’ and U’ are computed so that the initial elements of 

the matrix A coincide with A’=L’*U’ during matrix 

multiplication. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



12 

Incomplete LU-factorization (4) 

 ILU(0) algorithm search pseudocode 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



13 

Incomplete LU-factorization (5) 

 Example of the found ILU(0)-factor of the matrix A 

 

 

 

 

 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



14 

Incomplete LU-factorization (6) 

 The main advantage of the ILU(0) algorithm is its running 

speed. 

 Multiplication of matrices of the obtained factor may result in 

new nonzeroes. 

 Example: 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



ILU(0) SOFTWARE 

IMPLEMENTATION 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



16 

ILU(0) software implementation 

 For convenience, the algorithm software implementation can 

be divided into three stages.  

– First, develop the ILU(0) software implementation.  

– Second, check the algorithm for consistency.  

– In the end, develop main function of the program to enable 

experimentation and evaluate the obtained 

preconditioners. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



17 

Software implementation 

 Template of the function implementing ILU(0) 
/** 

 * API 

 *   int ilu0(int n, double* a,int* col,int* row,  

 *      double* luval, int* uptr) 

 *   ilu0 - matrix factorization 

 * INPUT 

 *   int    n   - matrix dimension 

 *   double * a - nonzero elements 

 *   int  * col - column indices 

 *   int  * row - row prefixes 

 * OUTPUT 

 *   double * luval - values of the resolved matrices L and U 

 *   int    * uptr - indices of diagonal elements 

 *                    in the luval array 

 * RETURN 

 *   an error code returns 

 *   0    - factorization is successful 

 *   -(n + 1) - number of row where the diagonal has 0 

 **/ 

int ilu0(int n, double * a, int * col, int * row,  

     double * luval, int * uptr); 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



18 

Task 1 

 Develop software implementation of the ILU(0) algorithm in 

accordance with the function template. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



19 

Software implementation (1) 

 Start algorithm implementation. First, declare the main variables 

used in the algorithm. 

int ilu0(int n, double * a, int * col, int * row,  

     double * luval, int * uptr) 

{ 

  int j1, j2;     // border of the current row 

  int jrow;       // number of the current column 

  int k, j, jj;   // cycle counters 

  int *iw = NULL; // temporary array  

  int jw; 

  double t1; 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



20 

Software implementation (2) 

 Among the declared variables, the pointer to the temporary 

array iw is very important.  

– This array stores the value index in the CRS array for the 

current row in the nonzero positions.  

– Instead of searching for each nonzero value, multilevel 

addressing is used. 

 Create a temporary array required for fast computation and 

clear its memory. 

    iw = new int[n]; 

  memset(iw, 0, n * sizeof(int)); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



21 

Software implementation (3) 

 To compute the factor, copy the initial matrix values to the 

factor value array. 

 

  memcpy(luval, a, row[n] * sizeof(double)); 

 

 The factor is computed in place of the initial matrix values. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



22 

Software implementation (4) 

 The factor is computed row-by-row, upside down. 

  for(k = 0; k < n; k++) 

  { 

 Then, fill the computation speedup array for each row. 

  j1 = row[k]; 

  j2 = row[k + 1]; 

  for(j = j1; j < j2; j++) 

  { 

    iw[col[j]] = j; 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



23 

Software implementation (5) 

 Then develop a code that updates the current row value until the diagonal 
is reached (i. e. for the lower triangle only). 

  for(j = j1; (j < j2) && (col[j] < k); j++) 

  { 

    jrow = col[j]; 

    t1 = luval[j] / luval[uptr[jrow]]; 

    luval[j] = t1; 

    for(jj = uptr[jrow]+1; jj < row[jrow + 1]; jj++) 

    { 

    jw = iw[col[jj]]; 

    if(jw != 0) 

    { 

      luval[jw] = luval[jw] - t1 * luval[jj]; 

    } 

    } 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



24 

Software implementation (6) 

 In the end, remember the diagonal element position for the 

current row.  

  jrow = col[j]; 

  uptr[k] = j; 

  if((jrow != k) || (fabs(luval[j]) < EPSILON)) 

  { 

    break; 

  } 

 To record the index, make sure that it exists.  

– If the element does not exist, it is impossible to compute 

the factor as zero division may be expected. 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



25 

Software implementation (7) 

 To complete row processing, empty the auxiliary array. 

    for(j = j1; j < j2; j++) 

    { 

      iw[col[j]] = 0; 

    } 

  } 

 In the end, the function must empty the memory and return the 
error code. 

    delete [] iw; 

  if(k < n) 

  return -(k+1); 

  return 0; 

} 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



26 

Checking the algorithm for consistency 

 It is important to check the developed code for consistency.  

– The only verifiable consistency criterion is the situation 

where, upon multiplication of the obtained factor matrices, 

the initial matrix values are preserved and new values may 

appear. 

 To check the implemented algorithm for consistency, divide 

the obtained matrices L and U by independent matrices and 

then multiply them using the standard matrix multiplication 

algorithm. After that, compare the obtained values. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



27 

Checking the algorithm for consistency 

 Matrix resolution function template: 
/** 

 * API 

 *  void LUmatrixSeparation (crsMatrix ilu, int *uptr,  

 *                           crsMatrix &L, crsMatrix &U); 

 *  matrix resolution into the matrices L and U 

 * INPUT 

 *   crsMatrix ilu  - ilu matrices in the same structure 

 *   int    * uptr - indices of diagonal elements 

 *                    in the ilu array 

 * OUTPUT 

 *   crsMatrix &L   - separated matrix L 

 *   crsMatrix &U   - separated matrix U 

 * RETURN 

 */ 

void LUmatrixSeparation(crsMatrix ilu, int *uptr, crsMatrix 
&L, crsMatrix &U); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



28 

Checking the algorithm for consistency 

 Matrix pattern consistency check function template 

/** 

 * API 

 *  bool structValidation (crsMatrix &A,  crsMatrix &M);  

 *  checking the preconditioner structure for consistency 

 * INPUT 

 *   crsMatrix &A   - initial matrix 

 *   crsMatrix &M   - preconditioner 

 * OUTPUT 

 *    

 * RETURN 

 * is the structure consistent? 

 */ 

bool structValidation   (crsMatrix &A,  crsMatrix &M) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



29 

Checking the algorithm for consistency 

 Matrix value consistency check function template 

/** 

 * API 

 *  double MatrixCompare (crsMatrix &A,  crsMatrix &M); 

 *  computation of degree of matrix difference 

 * INPUT 

 *   crsMatrix &A   - initial matrix 

 *   crsMatrix &M   - preconditioner 

 * OUTPUT 

 *    

 * RETURN 

 *  degree of difference 

 */ 

double MatrixCompare (crsMatrix &A, crsMatrix &M) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



30 

Task 2 

 Implement preconditioner check for consistency by 

implementing the declared funtions. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



31 

Checking the algorithm for consistency (1) 

 Implement the matrix resolution function. The function accepts 

the matrix and diagonal element index array, returns and  

void LUmatrixSeparation(crsMatrix ilu, int 

*uptr, crsMatrix &L, crsMatrix &U) 

{ 

 Declare the required variables. 

  int countL, countU; 

  int i, j, s, f, k; 

  double *val; 

  int    *col; 

  countU = 0; 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



32 

Checking the algorithm for consistency (2) 

 First of all, count the number of elements in the matrices and 

  for(i = 0; i < ilu.N; i++) 

  { 

    countU += (ilu.RowIndex[i+1] - uptr[i]); 

  } 

  countL = ilu.NZ + ilu.N - countU; 

 Then memory has to be allocated to matrices.  

  InitializeMatrix(ilu.N, countL, L); 

  InitializeMatrix(ilu.N, countU, U); 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



33 

Checking the algorithm for consistency (3) 

 Upon memory allocation, fill the matrix arrays using arrays of the accepted matrix. 
  k = 0; 

  val = L.Value;  col = L.Col; 

  L.RowIndex[0] = k; 

  for(i = 0; i < ilu.N; i++) 

  { 

    s = ilu.RowIndex[i]; 

    f = uptr[i]; 

    for(j = s; j < f; j++) 

    { 

      val[k] = ilu.Value[j]; 

      col[k] = ilu.Col[j]; 

      k++; 

    } 

    val[k] = 1.0; col[k] = i; 

    k++; 

    L.RowIndex[i + 1] = k; 

  } 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



34 

Checking the algorithm for consistency (4) 

 In the end, values fill the matrix. 
  k = 0; 

  val = U.Value; 

  col = U.Col; 

  U.RowIndex[0] = k; 

  for(i = 0; i < ilu.N; i++) 

  { 

    s = uptr[i]; 

    f = ilu.RowIndex[i + 1]; 

    for(j = s; j < f; j++) 

    { 

      val[k] = ilu.Value[j]; 

      col[k] = ilu.Col[j]; 

      k++; 

    } 

    U.RowIndex[i + 1] = k; 

  } 

} 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



35 

Checking the algorithm for consistency (5) 

 For the purpose of matrix multiplication, one can use the 

algorithm implemented in the course of the laboratory work on 

Sparse Matrix Multiplication. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



36 

Checking the algorithm for consistency (6) 

 Implement the matrix pattern consistency check function 

  bool structValidation   (crsMatrix &A,  crsMatrix &M) 

 Declare the required variables. 
  int i, j, fA, fM; 

  i = 0; 

  j = 0; 

  int k;   

 Perform minimum consistency checks 
  if(A.N != M.N) 

  { 

    return false; 

  } 

  

  if(M.NZ <= A.NZ) 

  { 

    return false; 

  } 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



37 

Checking the algorithm for consistency (7) 

 For each row, check that the initial column index array is included into the new one. To speed up 
the check, remember that index arrays are continuous. 

  for(k = 0; k < A.N; k++) 

  { 

    i  = M.RowIndex[k]; fM = M.RowIndex[k + 1]; 

    j  = A.RowIndex[k]; fA = A.RowIndex[k + 1]; 

    while((i < fM) && (j<fA)) 

    { 

      if(M.Col[i] != A.Col[j]) i++; 

      else  

      { 

        j++; 

        i++; 

      } 

    } 

    if((i == fM) && (j != fA)) 

      return false; 

  } 

  return true; 

} 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



38 

Checking the algorithm for consistency (8) 

 After checking matrix patterns, matrix nonzero values also 

have to be compared.  

 Matrix values are compared in the same way as matrix 

patterns. 

 For comparison purposes it is proposed to find the maximum 

difference modulus for the corresponding matrix elements. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



39 

Main function implementation (1) 

 The necessary functionality has been implemented, so it can 

be incorporated in the main program function. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



40 

Main function implementation (2) 

 First, accept the resolved matrix name using command line 

arguments. 

int main(int argc, char **argv) 

{ 

  // review of parameters 

  char *matrixName; 

  ParseArgv(argc, argv, matrixName); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



41 

Main function implementation (3) 

 Then, declare the necessary variables to store matrices and 
concomitant structures. 

   crsMatrix readA; 

  crsMatrix *matA; 

  crsMatrix lu; 

  crsMatrix L; 

  crsMatrix U; 

  crsMatrix M; 

  int *uptr; 

  int typeOfMatrix; 

  int error; 

  double diff; 

 Create a respective timer. 

  Stopwatch *time = createStopwatch(); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



42 

Main function implementation (4) 

 Read the matrix from the file. 

  printf("read matrix (%s) \n", matrixName); 

  time->start(); 

  error = ReadMatrixFromFile(matrixName, 

&(readA.N), &(readA.NZ), 

  &(readA.Col), &(readA.RowIndex), &(readA.Value), 

  &(typeOfMatrix)); 

  

  if(error != ILU_OK) 

  { 

  printf("error read matrix %d\n", error); 

  return error; 

  } 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



43 

Main function implementation (5) 

 If the matrix is symmetric and specified only by the upper triangle, the 
algorithm will not work.  

– In this case, to ensure algorithm operability, the lower triangle must be 
added to the matrix. 

  if(typeOfMatrix == UPPER_TRIANGULAR) 

  { 

    matA = UpTriangleMatrixToFullSymmetricMatrix(&readA); 

  }  

  else  

  { 

    matA = &readA; 

  } 

  time->stop(); 

  printf("read matrix from file time: %f\n", time->             

                                             getElapsed()); 

  

  uptr = new int [matA->N]; 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



44 

Main function implementation (6) 

 Having read the initial matrix, create a matrix to store the computed factor. 

  time->reset(); 

  time->start(); 

  InitializeMatrix(matA->N, matA->NZ, lu); 

  memcpy(lu.RowIndex, matA->RowIndex,  

         (matA->N + 1) * sizeof(int)); 

 Everything is ready to call the factor computation function. 

  error = ilu0(matA->N, matA->Value, matA->Col,  

               matA->RowIndex, lu.Value, uptr); 

  time->stop(); 

 To analyze runtime-related algorithm efficiency, derive the factor 
computing time.  

  printf("ILU factorization time: %f\n", time->  

                                           getElapsed()); 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



45 

Main function implementation (7) 

 In the end, the developed algorithm must be checked for 

consistency 

 

  // checking ILU for consistency 

  // matrix resolution into L and U 

  LUmatrixSeparation(lu, uptr, L, U); 

  

  // matrix multiplication 

  ProductSparseMatrix(L, U, M); 

  

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



46 

Main function implementation (8) 

  // checking the obtained matrix structure for 
consistency 

  if(!structValidation(*matA, M)) 

  { 

    printf("invalid struct of matrix M \n"); 

    return -2; 

  } 

  

  // computing difference of values 

  diff = MatrixCompare(*matA, M); 

  

  printf("distinction value of matrix %f \n", diff); 

  

  return 0; 

} 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



47 

ILU(0) algorithm implementation run analysis 

 Run the developed ILU(0) software implementation. 

 

 

 

 

 

 The run results prove that the time required to search for the 

factor is short indeed.  

 The algorithm runs in a consistent manner. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



48 

Time and consistency of ILU(0) implementation 

running for symmetric matrix sample 

Matrix 

matrix 

dimension factor search time error 

bcsstk01 48 0,000018 0,00000 

bcsstk05 153 0,000117 0,00000 

bcsstk10 1 086 0,000642 0,00000 

bcsstk13 2 003 0,005276 0,00156 

parabolic_fem 525 825 0,090491 0,00000 

tmt_sym 726 713 0,090719 0,00000 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



49 

Time and consistency of ILU(0) implementation 

running for non-symmetric matrix sample 

Matrix 

matrix 

dimension factor search time Error 

fs_541_1 541 0,000066 0,00000 

ex22 839 0,000929 0,00000 

sherman2 1 080 0,000812 0,00000 

cage10 11 397 0,003938 0,00000 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



50 

ILU(0) algorithm implementation run analysis  

 As you can see from these tables, the algorithm runtime is 

very short even for large matrices.  

 However, short runtimes do not always mean good algorithm 

performance.  

 Evaluate quality of the obtained preconditioner.  

– For this purpose, compute condition numbers for the matrix 

without preconditioner and the preconditioned one.  

 To compute condition numbers, you can use the respective 

MKL functionality. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



51 

ILU(0) algorithm implementation run analysis  

 To start with, implement the auxiliary functionality.  

 The first function to be developed is conversion of a sparse 

matrix into a dense one.  

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



52 

ILU(0) algorithm implementation run analysis 

/** 

 * API 

 *   double * CRStoGeneral(crsMatrix A) 

 *   matrix conversion from CRS to dense format 

 * INPUT 

 *   crsMatrix A - matrix in a CRS format 

 * OUTPUT 

 *    

 * RETURN 

 *   matrix in a dense form 

 **/ 

double * CRStoGeneral(crsMatrix A) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



53 

ILU(0) algorithm implementation run analysis 

double * CRStoGeneral(crsMatrix A) 

{ 

  int i, j, s, f; 

  double * mat; 

  mat = new double[A.N * A.N]; 

  memset(mat, 0, A.N * A.N * sizeof(double)); 

  for(i = 0; i < A.N; i++) 

  { 

    s = A.RowIndex[i]; 

    f = A.RowIndex[i + 1]; 

    for(j = s; j < f; j++) 

    { 

      mat[i * A.N + A.Col[j]] = A.Value[j]; 

    } 

  } 

  return mat; 

} 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



54 

ILU(0) algorithm implementation run analysis 

 In MKL, the condition number is approximated.  

 For computation purposes, the matrix norm is used.  

– One can use either 1-norm or infinite norm. 

– For the purposes of this laboratory work, the infinite matrix 

norm will be used. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



55 

ILU(0) algorithm implementation run analysis 

/** 

 * API 

 *   double MatrixNormI(double* Matrix, int size) 

 *   infinite matrix norm 

 * INPUT 

 *   double* Matrix - matrix in a dense form 

 *   int     size   - matrix dimension 

 * OUTPUT 

 * RETURN 

 *   infinite matrix norm 

 **/ 

double MatrixNormI(double* Matrix, int size) 

{ 

  double norm = 0.0; 

  double sum; 

  for (int i = 0; i < size; i++) 

  { 

    sum = 0.0; 

    for (int j = 0; j < size; j++)  

      sum += fabs(Matrix[i*size + j]); 

    if (sum > norm) norm = sum; 

  } 

  return norm; 

} 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



56 

ILU(0) algorithm implementation run analysis 

 Using the functional for matrix conversion and norm calculation, 
one can compute the initial matrix condition number. 

/** 

 * API 

 *   double getConditionNumber(crsMatrix A) 

 *   condition number evaluation 

 * INPUT 

 *   crsMatrix A - matrix in a CRS format 

 * OUTPUT 

 *    

 * RETURN 

 *   condition number  

 **/ 

double getConditionNumber(crsMatrix A) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



57 

ILU(0) algorithm implementation run analysis 

 First, declare the necessary set of variables. 
  // auxiliary variables 

  double *Matrix; 

  int* Size = &(A.N); 

  int* ipiv = new int [A.N]; 

  double* ANorm;  

  double* work = new double [A.N*4]; 

  int* iwork = new int [A.N]; 

  int lda = A.N; 

  int* Lda = &lda; 

  int info = 0; 

  int *Info = &info; 

  double rcond; 

  double* Rcond = &rcond; 

  // norms and condition numbers 

  double norm, cond = -1.0; 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



58 

ILU(0) algorithm implementation run analysis 

 Second, convert the matrix from sparse into dense. 
  // make the matrix dense 

  Matrix = CRStoGeneral(A); 

 In the end, call the condition number evaluation algorithm implemented in MLK. 
  // compute the norm 

  norm = MatrixNormI(Matrix, A.N); 

  //РLU factorization 

  dgetrf(Size,Size,Matrix,Lda,ipiv,Info); 

  // condition number 1 norm 

  ANorm = &norm; 

  dgecon("O",Size,Matrix,Lda,ANorm,Rcond,work,iwork,Info); 

  cond = 1.0/(rcond); 

   

  delete [] Matrix; 

  delete [] ipiv; 

  delete [] work; 

  delete [] iwork; 

  return cond; 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



59 

ILU(0) algorithm implementation run analysis 

 The condition number for a preconditioned matrix is computed 

in a similar way.  

 The only difference is that the initial matrix has to be 

multiplied by the matrix inverse to A’ = L’ U’. 

 One can solve two triangular systems instead of finding the 

inverse matrix A’. This functionality is implemented in 

mkl_dcsrsm. 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



60 

Task 3 

 Implement the preconditioned matrix condition number 

search. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



61 

Comparison of condition numbers  

for symmetric and non-symmetric matrices 

Matrix 

matrix 

dimension 

Matrix 

condition 

number А 

Matrix condition 

number  

condition 

numbers ratio 

bcsstk01 48 1597600 231583 6,90 

bcsstk05 153 35319 5869 6,02 

bcsstk10 1 086 1318823 1499780 0,88 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 

Matrix 

matrix 

dimension 

Matrix 

condition 

number, А 

Matrix condition 

number, M^-1 * А 

condition 

numbers ratio 

fs_541_1 541 1060 1 1060,00 

ex22 839 61837 18969 3,26 

sherman2 1 080 1,68E+12 3869118 434334,24 



ILU(P) SOFTWARE 

IMPLEMENTATION 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



63 

An approach to ILU(p) matrix pattern search 

 When the preconditioner quality is poor, it may be improved.  

 One of the ways to improve the ILU algorithm quality is to 

construct a factor which is closed to the matrix factor (i. e. a 

certain factor filling is allowable compared to ILU(0)).  

 Let us study one of these algorithms, the ILU(p) factorization 

method based on the idea of p filling level. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



64 

An approach to ILU(p) matrix pattern search 

 The classical ILU(p) searching algorithm pseudocode 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



65 

An approach to ILU(p) matrix pattern search 

 In practice, implementation of this algorithm is very inefficient.  

– The algorithm must compute all elements of the complete 

factor and only after that reject elements whose filling level 

exceeds p.  

– The algorithm does not let asses the required memory 

before its completion.  

– The array with levels must be stored either for all 

elements or in the dynamic data structures. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



66 

An approach to ILU(p) matrix pattern search 

 Hysom D. and Pothen A. proposed an ILU(p) algorithm 

modification free from the mentioned disadvantages.  

– The algorithm provides for accurate calculation of 

nonzeroes in the row and row structure without storing all 

the information about levels. 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



67 

An approach to ILU(p) matrix pattern search 

 For incomplete LU-factorization, use the matrix graph.  

 Based on the matrix graph, an exclusive tree is formed.  

– The easiest way to form an exclusive tree is graph 

traversal without reentering the nodes. 

 To obtain ILU(p) all the exclusive tree nodes whose height 

exceed p are rejected.  

 The reduced exclusive tree lets construct the matrix factor row 

pattern. The pattern results from merging the patterns of rows 

that correspond to the exclusive tree nodes. 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



68 

An approach to ILU(p) matrix pattern search 

 Let us illustrate the algorithm by an example. 

 

 

 

 

 

 

 The element added as a result of ILU(1) factor pattern search 

is cross-hatched. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



69 

An approach to ILU(p) matrix pattern search 

 Exclusive tree-based row structure search algorithm 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



70 

Software implementation of the ILU(p) symbolic 

phase  

/** 

 * API 

 *   int symbolicILUp(int p, int n, int * col, int * row,  

 *                    int * lucol, int * lurow,  

                      double * &luval, 

 *                    int * uptr, int &countL, int &countU); 

 *   ILU(p) symbolic phase 

 * INPUT 

 *   int    n     - matrix dimension 

 *   matrix A 

 *   int  * col   - column indices of the matrix a 

 *   int  * row   - row prefixes of the matrix a 

 *   matrix LU pattern 

 *   int  * &lucol - column indices of the matrix lu 

 *   int  * &lurow - row prefixes of the matrix lu 

 *   double * &luval - matrix values 

 *   int  * uptr  - indices of diagonal elements 

 *                  in the luval array 

 * OUTPUT 

 *   double * luval - values of the resolved matrices L and U 

 *   int &countL    - L matrix dimension 

 *   int &countU    - U matrix dimension 

 * RETURN 

 *   an error code returns 

 **/ 

int symbolicILUp(int p, int n, int * col, int * row,  

                 int * &lucol, int * &lurow,  

                 double * &luval, 

                 int * uptr, int &countL, int &countU); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



71 

Task 4 

 Implement the symbolic ILU(p) factor search. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



72 

Software implementation of the ILU(p) symbolic 

phase (1) 

 Proceed to implementation of the symbolic part of the algorithm. 
int symbolicILUp(int p, int n, int * col, int * row,  

                 int * &lucol, int * &lurow, double * 
&luval, 

                 int * uptr, int &countL, int &countU) 

{ 

 Start implementation by declaring the necessary variables. 
  int i, j, h, s, f;   // cycle counters  

  int jcol;            // and temporary variables 

  int * len; 

  int * visited; 

  len = new int[n]; 

  adj = new int[n]; 

  visited = new int[n]; 

  countL = 0; 

  countU = 0; 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



73 

Software implementation of the ILU(p) symbolic 

phase (2) 

 For computational convenience, calculate the number of added 
nonzeroes in the adj array for each row. 

  int * adj; 

 The algorithm requires a queue. We will use the queue 
implementation from STL. 

  queue<int> Q; 

 To ensure algorithm consistency, initialize the values of the 
revisited nodes array and the number of added nodes.  

– As it can be seen from the algorithm, the complete array 
initialization is required only once.  

  for(j = 0; j < n; j++) 

  { 

    visited[j] = -1; 

    adj[j] = 0; 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



74 

Software implementation of the ILU(p) symbolic 

phase (3) 

 Then, count the number of nonzeroes for each row according to the algorithm described above. 

  for(i = 0; i < n; i++) 

  { 

    Q.push(i); len[i] = 0; visited[i] = i; 

    while(!(Q.empty())) 

    { 

      h = Q.front(); Q.pop(); 

      s = row[h];  f = row[h + 1]; 

      for(j = s; j < f; j++) { 

        jcol = col[j]; 

        if(visited[jcol] != i) { 

          visited[jcol] = i; 

          if((jcol > i) && (len[h]<p)) { 

            Q.push(jcol);  

            len[jcol] = len[h] + 1; 

          } 

          if(jcol < i) { 

            countL++;  

            adj[i]++; 

          } 

        } 

      } 

    } 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



75 

Software implementation of the ILU(p) symbolic 

phase (4) 

 Then one can calculate nonzeroes for L and U. At the same time, one can 
calculate the values of the array resolving the factor into the matrices L 
and U.  

  for(i = 0; i < n; i++) 

  { 

    s = row[i]; 

    f = row[i + 1]; 

    for(j = s; (j < f) && (col[j] < i); j++); 

    uptr[i] = j; 

    if(col[uptr[i]] != i) 

    { 

      return -(i + 1); 

    } 

    countU += (f - j); 

    adj[i] += (f - j); 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



76 

Software implementation of the ILU(p) symbolic 

phase (5) 

 Then allocate enough memory to store the factor. 
  if(lucol != NULL) 

  { 

    delete []lucol; 

  } 

  if(lurow != NULL) 

  { 

    delete []lurow; 

  } 

  if(luval != NULL) 

  { 

    delete []luval; 

  } 

  

  lucol = new int[countL + countU]; 

  lurow = new int[n + 1]; 

  luval = new double[countL + countU]; 

 
Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



77 

Software implementation of the ILU(p) symbolic 

phase (6) 

 Initialize the dedicated arrays. 

  memset(luval, 0, (countL + countU) * sizeof 

(double)); 

  lurow[0] = 0; 

  for(i = 0; i < n; i++) 

  { 

    lurow[i + 1] = lurow[i] + adj[i]; 

    adj[i] = 0; 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



78 

Software implementation of the ILU(p) symbolic 

phase (7) 

 To search for the factor structure, use the factor row pattern search algorithm for each 
row. 

  for(i = 0; i < n; i++) 

  { 

    Q.push(i); len[i] = 0; visited[i] = i; 

    while(!(Q.empty())) 

    { 

      h = Q.front(); Q.pop(); 

      s = row[h]; f = row[h + 1]; 

      for(j = s; j < f; j++) 

      { 

        jcol = col[j]; 

        if(visited[jcol] != i) { 

          visited[jcol] = i; 

          if((jcol > i) && (len[h]<p)) { 

            Q.push(jcol); 

            len[jcol] = len[h] + 1; 

          } 

          if(jcol < i) { 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



79 

Software implementation of the ILU(p) symbolic 

phase (8) 

 It is important to note that column indices in this code area are added to the end, so 
they may not be sorted. 

            lucol[lurow[i] + adj[i]] = jcol; 

            adj[i]++; 

          } 

        } 

      } 

    } 

  

    s = uptr[i]; 

    f = row[i + 1]; 

    uptr[i] = lurow[i] + adj[i]; 

    for(j = s; j < f; j++) 

    { 

      lucol[lurow[i] + adj[i]] = col[j]; 

      adj[i]++; 

    } 

  } 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



80 

Software implementation of the ILU(p) symbolic 

phase (9) 

 To sort the factor pattern, perform double transposition. 
  int *tCol; 

  int *tRow; 

  StructTranspose(n, lucol, lurow, tCol, tRow); 

  delete []lucol; 

  delete []lurow; 

  StructTranspose(n, tCol, tRow, lucol, lurow); 

  delete []tCol; 

  delete []tRow; 

  

  delete[] len; 

  delete[] adj; 

  

  return ILU_OK; 

} 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



81 

Software implementation of the ILU(p) numerical 

phase 

/** 

* API 

*   int numericalILUp(int n, double * a, int * col, int * row,  

*                     int * lucol, int * lurow, int * uptr, double * luval); 

*   ILU(p) numerical phase 

* INPUT 

*   int    n     - matrix dimension 

*   double * a   - nonzero elements 

*   int  * col   - column indices of the matrix a 

*   int  * row   - row prefixes of the matrix a 

*   int  * lucol - column indices of the matrix lu 

*   int  * lurow - row prefixes of the matrix lu 

*   int  * uptr  - indices of diagonal elements 

*                  in the luval array 

* OUTPUT 

*   double * luval - values of the resolved matrices L and U 

* RETURN 

*   an error code returns 

*   0        - factorization is successful 

*   -(n + 1) - number of row where the diagonal has a 0 

**/ 

int numericalILUp(int n, double * a, int * col, int * row,  

                  int * lucol, int * lurow, int * uptr, double * luval) 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



82 

Task 5 

 Implementation of the ILU(p) numerical part is almost similar 

to that of ILU(0). Implement this part of algorithm on your own. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



83 

ILU(p) algorithm implementation run analysis 

 Run the developed ILU(p) software implementation for 

several p values. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



84 

Runtime depending on the level 

for symmetric matrices 

Matrix 

matrix 

dimension p 

Symbolic 

phase 

 Numerical 

phase total time 

bcsstk01  48 0 0,000027 0,000016 0,000043 

  1 0,000077 0,000029 0,000106 

  2 0,000159 0,000040 0,000199 

  3 0,000229 0,000045 0,000274 

bcsstk05 153 0 0,0001 0,0001 0,0002 

  1 0,0005 0,0002 0,0006 

  2 0,0006 0,0001 0,0007 

  3 0,0009 0,0001 0,0010 

bcsstk10 1086 0 0,0006 0,0005 0,0011 

  1 0,0022 0,0008 0,0030 

  2 0,0046 0,0009 0,0055 

  3 0,0071 0,0010 0,0081 

bcsstk13 2003 0 0,00 0,01 0,01 

  1 0,02 0,01 0,03 

  2 0,05 0,02 0,07 

  3 0,11 0,02 0,14 

parabolic_fem  525825 0 0,17 0,08 0,26 

  1 0,51 0,18 0,68 

  2 1,28 0,26 1,55 

  3 2,35 0,37 2,72 

tmt_sym 726713 0 0,20 0,08 0,28 

  1 0,50 0,10 0,60 

  2 1,18 0,15 1,33 

  3 2,12 0,18 2,30 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



85 

Runtime depending on the level 

for non-symmetric matrices 

Matrix 

matrix 

dimension p 

Symbolic 

phase 

 Numerical 

phase total time 

fs_541_1 541 0 0,0001 0,0001 0,0002 

    1 0,0003 0,0001 0,0004 

    2 0,0008 0,0002 0,0010 

    3 0,0018 0,0003 0,0021 

ex22 839 0 0,001 0,001 0,002 

    1 0,003 0,001 0,004 

    2 0,008 0,002 0,009 

    3 0,013 0,002 0,015 

sherman2 1080 0 0,001 0,001 0,001 

    1 0,003 0,002 0,004 

    2 0,008 0,002 0,010 

    3 0,016 0,004 0,020 

cage10 11397 0 0,005 0,004 0,009 

    1 0,026 0,016 0,042 

    2 0,142 0,059 0,201 

    3 0,509 0,182 0,692 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



86 

ILU(p) algorithm implementation run analysis 

 The tables show that the higher is the level, the longer is the 

algorithm runtime.  

– Remaining time will be used for matrix pattern search  

 This disadvantage of the classical algorithm may be 

remedied, for example, by means of more complex algorithms 

that analyze factor using complete blocks instead of a single 

row. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



87 

ILU(p) performance quality for symmetric 

matrices depending on the level 

Matrix 

matrix 

dimension p 

Condition 

number A 

Condition 

number  

M-1*A 

Condition 

number 

reduction 

bcsstk01  48 0 

1597600 

231583 6,8 

    1 69385 23,0 

    2 66197 24,1 

    3 59113 27,0 

bcsstk05 153 0 

35319 

5869 6,0 

    1 3977 8,9 

    2 4287 8,2 

    3 4278 8,3 

bcsstk10 1086 0 

1318823 

1499780 0,9 

    1 123576 10,6 

    2 258998 5,1 

    3 758553 1,7 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



88 

ILU(p) performance quality for non-symmetric 

matrices depending on the level 

Matrix 

matrix 

dimension p 

Conditio

n 

number 

A 

Condition 

number  

M-1*A 

Condition 

number 

reduction 

ex22 839 0 

61837 

18969 3,3 

    1 17808 3,5 

    2 23713 2,6 

    3 25986 2,4 

sherman2 1080 0 

1,68E+12 

3869118 434334,2 

    1 3975617 422699,3 

    2 3951175 425314,1 

    3 3932957 427284,2 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



89 

ILU(p) algorithm implementation run analysis 

 Experimental results listed in the tables show that the level 

increase can influence the preconditioner quality in various 

ways.  

– The preconditioner quality can either gradually improve 

(see bcsstk01) or change in an unpredictable way (see 

bcsstk10).  

 The main reason is that the algorithm accounts only for the 

pattern of the obtained factor. The algorithm takes no account 

of the values rejected in the course of factorization.  

– For due account of the values added to the matrix factors, 

other euristic approached are used, such as ILUT. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



90 

Added tasks 

1. Implement a parallel ILU(p) algorithm version and analyze its 

scalability. 

2. Implement the ILU – ILUT modification. 

3. Implement a block modification of the ILU(p) algorithm to 

increase the algorithm efficiency for large matrices. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



91 

References 

1. Saad Y. Iterative methods for sparse linear systems. – SIAM, 

2003. 

2. Hysom D., Pothen A. Level-based Incomplete LU 

Factorization: Graph Model and Algorithms  // SIAM Journal 

On Matrix Analysis and Applications, nov. 2002. 

3. Laboratory Work on Multiplication of Matrices 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



92 

Questions 

 ??? 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 


