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Problem Description 

 Let us consider a system of n linear equations like 

  

 

 

 

 As a matrix, the system may be represented as follows 

    Axb 

 A(aij) is a n×n  real matrix; b and x are vectors consisting of n 

elements; x*is the exact solution of the system  

 An iterative method generates a sequence of vectors x(s)Rm, 

s0,1,2,…, where x(s) is an approximate system solution.  
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Properties of Iterative Methods 

 Iterative method is convergent if 

    x(0)Rm 

 Iterative method stop criteria: accuracy and number of 

iterations. 

– Stop, if ||x(s)x(s1)||1, where 2||x(s)x(s1)|| is the attainable 

method accuracy. 

– Stop, if ||r(s)||1 , where 2||r(s)|| is the attainable method accuracy. 

– Stop, if sN , where x(N) is understood as an obtained solution. 

The maximum number of iterations N is predefined. 

 From this on, let us suppose that A is a SPD matrix. 
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Fixed Point Iteration Method 

 Solve the system Axb 

 Convert it into    xGx+c 

 Ways of conversion are varied 

 Let AMN, then (MN)xb, Mx  Nx+b 

xM1Nx+M1b,  i.e. GM1N,  cM1b. 

 Iterative process 

 

 Convergence 

– ||G||<1 (necessary);                     (sufficient). 

–   
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Fixed Point Iteration Method 

 A special case is 

  

where 0 is the method parameter. 

 Computation of the next approximation: 

 

 where r(s) is a residual of the sth approximation to the solution. 

 Component-wise representation of the method 

 

 

 Complexity estimation for L iterations of the method 

    T1=L(2n2+2n). 
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Fixed Point Iteration  Convergence 

 If the A matrix is symmetric and positive determined, and 

(0,max), the method converges to the exact system solution 

from any initial approximation. 

 Best value of the parameter  

 

 For fixed point iteration with the best parameter value, the 

following is true 

 

where A is the condition number of the matrix A, 

    z(s)x(s)–x* is the next approximation error, 

    Amax/min is the spectral number.  
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Fixed Point Iteration  Parallel Algorithm 

 Iterations are accomplished in a sequence 

 Computations performed as part of a single iteration are 

parallelized by means of: 

– Basic computation according to the selected method that consists 

in multiplication of the matrix A by the vector x(s), 

– Additional computation (scalar multiplication and addition of 

vectors) that are less complex.  

 Algorithms of parallel matrix multiplication by a vector may also 

be used 
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Fixed Point Iteration  Parallel Algorithm 

 Estimated complexity of the parallel operation Ax(s) in case of 

horizontal band division of the matrix A is 

 

 

 where n is the vector length, p is the number of flows,  – 

contingency 

 Less complex computations are subject to single threading  

 Total complexity estimation of the parallel fixed point iteration 

method is 

 

 

 where L is the number of method iterations. 
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Jacobi and Seidel Methods 

 Let us come round to solution of the system  Axb 

 with the symmetric positive definite matrix A. 

 Let us represent the matrix as AL+D+R, where 

 D, L, R – diagonal,  

strict lower triangular 

    strict upper triangular 

    parts of the matrix A. 

 Jacobi method 

 

 Seidel method 
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Jacobi and Seidel Methods – Convergence  

 Let us write down the methods in a component-wise manner 

– Jacobi method 

 

– Seidel method  

 

 Method convergence 

– Jacobi method: A>0, strict diagonal dominance 

– Seidel method: A>0 

 Transition matrices 

– Jacobi method: GJac = D−1(L + R) = D−1A  E 

– Seidel method: GGS = (D+L)−1 R = (D+L)−1 A  E 
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Successive Over Relaxation Method (SOR) 

 Successive over relaxation method (SOR) is written as 
 

 

 where  is the method parameter. 

 Convergence: (0,2) (required), if А>0, then it is sufficient 

 For numerical solution of mathematical physics problems 

 

 Required number of iterations when opt : O(h1)  

when 1 (SOR and Seidel method show the same): O(h2) 

 More exact estimation   
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SOR  Algorithm 

 With regard to ALR+D, let us put it into a more convenient form 

 

 New approximation components are computed as 

 

 

 Transition matrix 

– Non-symmetric! 

 Total complexity of a single iteration   

    t1=2n2+n 

 Performance of L iterations  

    T1=L(2n2+n). 
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SSOR  symmetric method 

 A SSOR step consists of: 

1. A SOR step that involves computation of x(s+1/2) in the normal order; 

2. A SOR step that involves computation of x(s+1) in the reverse order. 

 SSOR step in a matrix form 

1.   

2.   

 Transition matrix 

 

–  usually more iterations than for SOR with opt 

– GSSOR – symmetric, used for Chebyshev’s acceleration. 
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Chebyshev's Acceleration 

 Having found approximations 
 

 Let us find                            which is better than x(m) 
 

 Let us write the error y(m) 

 

 

where   is a polynomial in the matrix G,  
 

                              the spectral radius is minimized. 
 

           can be obtained using Chebyshev’s polynomials Tm(x) 
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Chebyshev's Acceleration 

                               , where                        , Tm(x) is a Chebyshev’s 

polynomial,  is the spectral radius of the matrix G. 

 Chebyshev’s polynomials 

 

 Three-term relation enables only three vectors y(m), y(m1), y(m2) to be 

used, but not all vectors x(m), 0im. 

 The following relations may be derived 

 

 

 Requirements to G: i[,] 

– SOR is not applicable, but SSOR may be used 
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Chebyshev's Acceleration 

 Therefore, for this method, Chebyshev's acceleration 

consists in: 

– Set           ,           ,                ,                       . 

– Compute the following for m2, 3, …  

 

 

 

  There is no need to expressly compute G and c; iteration will have 

two stages: 

1)                              2) 
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Results – sparse matrices 

 The University of Florida Sparse Matrix Collection 

http://www.cise.ufl.edu/research/sparse/matrices/  

 Parameters of the matrices involved 

 

 

 

 

 

 All matrices are symmetric positive definite.  
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Name n nz A 

mesh1em6 48 306 6.1 

bcsstk04 132 3648 2.3106 

bcsstk05 153 2423 1.4104 

bcsstk09 1083 18437 9.5103 

chem97ZtZ 2541 7361 2.5102 
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Results – Sparse Matrices 

 Matrix portrait 

 bcsstk05 

 Exact solution 

 

 Right-hand member 

 

 System 

 Axb  
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Results – Sparse Matrices 

 The best  and  values are difficult to compute analytically, so 

they were determined experimentally. 

 Method precision is 106. 

 The table shows the number of iterations s. 
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Problem 

name 

SOR SOR-Cheb 

 s   s 

mesh1em6 1.9 146 1.9 0.9 35 

bcsstk04 1.9 341 1.09 0.99 229 

bcsstk05 1.87 986 1.0 0.998 251 

bcsstk09 1.95 885 1.11 0.999 537 

chem97ZtZ 1.9 144 1.9 0.9 125 
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Results – Poisson's Equation 

 Linear system appears as a result of PDE discretization 

 Test problem with a foregone exact solution may be defined 

                                  is known for this type of problems 

 

                       is known for this type of problems 

 

 

 The linear system matrix has a five-diagonal portrait  
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Results – Poisson's Equation 

 Linear system portrait 

for Poisson’s equation 
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Results – Poisson's Equation 

 Method parameters: 0.99, 10–6. 
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n nz/n  
s 

SOR SSOR SSOR-Cheb 

10000 4,9106 1.9397 286 342 53 

22500 9,8106 1.9592 428 512 65 

40000 3,1107 1.9692 569 682 72 

62500 1,2107 1.9753 711 852 123 

90000 6,1108 1.9793 853 1022 91 

122500 3,3108 1.9823 995 1192 85 

160000 1,9108 1.9845 1137 1362 97 

202500 1,2108 1.9862 1278 1532 143 

250000 7,9109 1.9875 1420 1702 276 
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SOR  Parallel Algorithm 

 Iterations are performed in a sequence 

 The next approximation components are also computed in a 

sequence 

 Computation of specific components of the next 

approximation can be parallelized 

– Basic computation consist in calculation of                   and 

 

 For calculation purposes, known parallel summing algorithms will 

be used.   
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SOR  Parallel Algorithm 

 Complexity estimation for parallel summing is 

 

 

 n – sum length, p – number of flows,  – contingency 

 

 Complexity estimation for a single iteration is 

 

 Total parallel SOR complexity estimation 
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Results – SOR, Dense Matrices 

 Acceleration in relation to the single-flow version 
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Conclusion 

 The lecture gives a review of the following: 

– Notion of iterative methods 

– Fixed point iteration method 

– Sequential algorithm and its properties 

– Ways of parallelizing 

– Jacobi and Seidel methods 

– SOR 

– Sequential algorithm and its properties 

– Parallel algorithm 

– Chebyshev's acceleration of iterative methods 

– Experimental results 
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