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Purposes of work

Q The purpose of this work is to demonstrate acceleration of
iterative methods by the example of the Symmetric
Successive Over Relaxation method with Chebyshev’s
acceleration.
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Objectives of work

Q Studying the Successive Over Relaxation method to solve
linear systems with general matrices.

Q Development of the Successive Over Relaxation and
Symmetric Successive Over Relaxation methods to solve
linear systems with sparse matrices

Q Development of the Symmetric Successive Over Relaxation
method with Chebyshev’s acceleration

Q Development of infrastructure for mass experiments

A Development of successive implementation of the Symmetric
Over Relaxation method with Chebyshev’s acceleration to
solve linear systems with sparse matrices.

A Developed method convergence analysis
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Test infrastructure

CPU No. 2 Intel Xeon E5520 (2.27 GHZz)
RAM 16 Gb

OS Microsoft Windows 7

Framework Microsoft Visual Studio 2008

Compiler, profiler, debugger Intel Parallel Studio XE 2011

Libraries Intel® Threading Building Blocks 3.0 for
Windows, Update 3 (part of Intel® Parallel
Studio XE 2011)
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POISSON EQUATION OF
SECOND ORDER

il
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Problem Statement (1)

Consider a Poisson equation of second order:

o°u(x,y) o°u(x,y)
o 2 _ 2 _ f(X’y)
OX oy

U - scalar twice differentiable function of two variables, x and vy,
considered for a square:

{(x,y):0<x,y <1}
A Dirichlet problem is posed, which means that function values

on the boundary of the region under consideration are set:
u@,y)=u(@l,y)=0 0<y<l1
u(x,0)=u(x,1))=0 0<x<1
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Problem Statement (2)

To be definite, set the required function as follows:

u(x,y)=sin(zx)*sin(zy)

To find numerical solution of a differential problem, a uniform
square grid is introduced into the equation definition domain and
the square approximation differencing scheme is used. The grid
function v(x,y) which is the exact solution of the differencing
scheme is treated as an approximate (numerical) solution of the
Initial problem.
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SOR METHOD
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Successive Over Relaxation (SOR) method

Q Successive over relaxation method (SOR) Is written as

O

D + oL )(x® — x¥
( )( ) A
(49

where o Is the method parameter.

Convergence: o< (0,2) (required), iIf A>0, then it is sufficient

For numerical solution of mathematical physics problems
®,, ~2-0(h)

Required number of iterations when o=w__.: O(h™1)

ornt *

If w=1 (for SOR it is the same as for the Seidel method): O(h—2)

More accurate estimation
2

T - (DR + L))
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SOR —algorithm

Q With regard to A-L=R+D, let us put in a more convenient form

Dx *™ = —oLx ®™ + 1- 0)Dx V- oRx ¥ +wb
a New approximation components are computed as

a x = Z a. X(s+1) 1-w)a x* - o > aijxgs) + wb

ii
j=1+1

Q lteration matrix Gz =(D+aL) ((1- @)D - wR)
— non-symmetric!
a Total complexity of a single iteration
t,=2n%+n
Q Performance of L iterations
T,=L(2n+n).
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SSOR - symmetric method

aQ A SSOR step consists of

1. A SOR step that involves computation of x6*12) components in the
normal order

2. A SOR step that involves computation of x6*1) components in the
reverse order

Q SSOR step in a matrix form
1 (D +oL)x"¥? = (1-0)Dx - wRx ¥ +ob

2 (D +oU)x"? = (1-0)Dx Y- wLx “Y? +wb

Q Iteration matrix
Geor =(D+0U ) (1-w)D -wL)D+wL) (1- w)D - @R)

— usually more iterations than for SOR with o,

— Gggor 1S @ Symmetric one, used for Chebyshev’s acceleration
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Chebyshev’s acceleration

1)

0 Having found approximations x‘, x® ..., x'™

Q Letusfind y™ =% o x®, which is better than x(™

i=0

Q Let us write the error y™

y™ - x" = > axV - x" = > a (x" - x") = > aG'(x” = x)=p_(G)x'” - x),
Here, p,(G)=> «,G"isa polynomial in the matrix G, p,(1) =) «, =1

Q o(p,(G)) » min — the spectral radius i1s minimized.

Q p, (G) can be obtained using Chebyshev’s polynomials T, (x)
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Chebyshev’s acceleration (2)

Q p,(G)=u,T,(G/p), where u, =1/T (1/p),
T.,(x)1s a Chebyshev’s polynomial, o is the spectral radius of the matrix
G.

Q Chebyshev’s polynomials
T,(x)=1 T, (x)=x T_(x)=2xT_,(x)-T_,(x)

0 Three-term relation enables only three vectors y™), y(m-1) y(M-2}tg be used,
but not all vectors x(™, 0<i<m.
Aa The following relations may be derived

2u_ G 2 2 1
y™ = Hm 2y Hm y " 4 Hm " [ _ J
lum—l P :um—z PH m-1 PH m-1 /um—2
QO Requirementsto G: 4, e[—p,p]

. SOR is not applicable, but SSOR may be used
W
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| Chebyshev’s acceleration (3)

Q Thus, Chebyshev’s method acceleration x“™ =6x® +¢

consists In:

(0)

— Setyo =1,u, = p,y(o) = X y(l) =6x Y +c.

— Compute the following for m=2, 3, ...

-1

2 1 m Zlum m-— lum m-
H o :[ B ] y( ) :—(Gy( 1)-|-C)——y( 2)
,O,U m-1 :um—z p,u m-1 lum—2

a There is no need to explicitly compute G and c; iteration will have
two stages

_ 2 B
1) y = Gy (m= +C 2) y(m) = Hm y — ’u—m y(m—2)
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SOFTWARE IMPLEMENTATION

Sequential version

il
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Project creation (1)

A Run Microsoft Visual Studio 2008
A From the File menu, select New—Project....

A From the New Project, select Win32 from the Project types
pane and Win32 Console Application from the Templates
pane; enter BandOverRelaxation in the Solution name field,
enter c:\ParallelCalculus\ (path to the folder with laboratory
works). Press OK.

A From the Win32 Application Wizard dialog, press Next and
click Empty Project. Press Finish.
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Project creation (2)

A From the WIin32 Application Wizard dialog, press Next (or select
Application Settings in the tree on the left) and click Empty
Project. Press Finish.

a From the Solution Explorer, execute Add—New Item in the
Source Files folder. In the selection tree, select Code; select C++
File (.cpp) in the templates on the right, enter main in the Name
field. Press Add.

A From the Solution Explorer, execute Add—New ltem in the
Header Files folder. In the selection tree, select Code; select
Header File (.h) in the templates on the right, enter SOR in the

Name field. Press Add. This file will contain prototypes of functions

required for implementation of the Successive Over Relaxation
method.
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Project creation (3)

a Similarly, add the following files to the project:

A SOR.c that will contain implementation of functions required
for the Successive Over Relaxation method.

A SSOR.h that will contain prototypes of functions required for
method implementation

A SSOR.c that will contain implementation of functions indicated
In the SSOR.h header file

A ChebSSOR.h to contain prototypes of functions required to
Implement the Symmetric Successive Over Relaxation
method with Chebyshev’s acceleration
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Project creation (4)

a MatrixVectorOperations.h that will contain prototypes of
auxiliary functions to handle vectors and matrices

a MatrixVectorOperations.c that will contain implementations
of auxiliary functions

A mklMatrixOperations.h where some functions from the MLK
library will be used to form the matrix for the Poission
equation.

A mkIMatrixOperations.c that will store implementation of

functions indicated in the mkiMatrixOperations.h header file.
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Project creation (5)

A Norms.h that will store prototypes of functions required to find
norms of vectors

A Norms.c that will store implementation of functions indicated
In the mkIMatrixOperations.h header file.

a Consts.h that will store several invariables such as algorithm
accuracy.
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Connection to the Intel® Math Kernel Library (1)

a To form the linear system matrix, we shall use some of the
MLK library functions.

Q Library connection:

— Open Tools — Options and select Projects and
Solutions—VC++ Directories.

— In the drop-down menu, first select Include Files, add a
new entry containing the path to MLK library header files

(e. g. C:\Program Files (x86)\InteN\ComposerXE-
2011\mkl\include),
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Connection to the Intel® Math Kernel Library (2)

— Then select Library Files and add the path to the library
files:

« To assemble a 32-bit application, enter the path to the static library
for the ia-32 platform (e. g. C:\Program Files
(x86)\Intel\ComposerXE-2011\mk\lib\ia32)

« To assemble a 64-bit application, enter the path to the static library
for the 64-bit platform (e. g. C:\Program Files
(x86)\Inte\ComposerXE-2011\mkN\lib\intel64).
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Connection to the Intel® Math Kernel Library (3)

— From Configuration Properties in the
Linker—Input—Additional Dependencies tab, enter the
following static libraries:

« for a 32-bit application, they are mkl_core.lib, mkl_intel c.lib,
mkl_sequential.lib.

« for z 64-bit application, they are mkl_core.lib, mkl_sequential.lib,
mkl_intel Ip64.lib, mkl_blas95 Ip64.lib.
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Elementary function (1)

void main(int argc, char* argv([])
{ // tested matrix file .mtx
char* fileName;
//
// found using one of the tested methods
double excAccuracy;
// computing functions performance time
double time;
// linear system dimension
int size;
// number of computing function iterations
int stepCount;
// maximum number of iterations
int stepMax;
// matrix file opening error

int error;
// continued in the following slide

l-l
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Elementary function (2)
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Elementary function (3)

// Poisson equation solution vector
double* poissonVector;
stepMax = 100000;
1if ((argc > 2) && (argc <= 06))
{

omega = atof(argv[4d]):;
if (atoi(argv[l]) == 1) // test matrices from
// .mtx file
{ fileName = argv[3];

crsM.Col=crsM.RowIndex=NULL;
// read the matrix
error = ReadMatrixFromFile (fileName,
&crsM.N, &crsM.Col,
&crsM.RowIndex, &crsM.Value, &crsM.NZ);
// complete the matrix
getFullMatrixFromUpperTriangular (&crshM,

&crsMFull) ;
size = crsM.N;
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Elementary function (4)

l-l

bVector =

method

(double*)malloc (size
*sizeof (double));
xVector = (double*)malloc(size *
sizeof (double)) ;
unitVector = (double*)malloc(size *
sizeof (double)) ;
// form the single vector of exact solution
UnitVector (xVector, size);
UnitVector (unitVector, size);
// compute the right-side vector of the linear system
MultiplicateMV (&crsMFull, xVector, bVector);
memset (xVector, 0, size * sizeof (double)):;
stepCount = stepMax;
1if (atoi(argv([2]) == 1)
{// call the function of solving linear systems by the SOR

time = SORSolve (&crsMFull, bVector,
xVector, stepMax, EPSILON, omega,

TSI § SN EN Sﬁiag iste-p-Ge-u-n-‘E"
EEE 77
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Elementary function (5)

// compute the difference between the obtained and
// exact solution
excAccuracy = NormInfinityToUnit (xVector,
size) ;
// print computation results
printf ("%s; %s; %d; %d; %e; %Se; %.4f;
$d\n", fileName, " ", size,
stepCount, time, excAccuracy, omega,
flag);
}
else 1if (atoi(argv[2]) == 2)
{
// call the function of solving linear systems by
// Symmetric Successive Over Relaxation
time = SymmetricSorSolve (&crsMFull,
bVector, xVector, stepMax, EPSILON,
omega, unitVector, &flag,

&stepCount) ;
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Elementary function (6)

// compute the difference between the obtained and exact solution

excAccuracy = NormInfinityToUnit (xVector, size);

// print computation results
printf ("%s; %s; %d; %d; %e; %Se; %.4f;
$d\n", fileName, " ", size,
stepCount, time, excAccuracy, omega,
flag);
}
else 1f (atoi(argv[2]) == 3)
{
// ro parameters for Chebyshev’s accelerations
ro = atof (argv([5]);
// call the function of solving linear systems by
// Symmetric Successive Over Relaxation
// with Chebyshev’s acceleration
time = ChebSSOR (&crsMFull, DbVector,
xVector, ro,stepMax, EPSILON, omega,
unitVector, &flag, &stepCount);

l-l
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Elementary function (7)

time = ChebSSOR (&crsMFull, bVector,

xVector, ro,stepMax, EPSILON, omega,
unitVector, &flag, &stepCount);

// compute the difference between the obtained and

// exact solution

excAccuracy = NormInfinityToUnit (xVector,

crsMFull.N) ;
// print computation results

printf ("%s; %$s; %d; %d; %e; %e; $.4f; %d;
$f\n", fileName, " ", size,
stepCount, time, excAccuracy, omega,
flag, ro);

}

FreeMatrix (&crsM) ;

FreeMatrix (&crsMFull) ;
free (bVector) ;

free (xVector) ;

}
[n)
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Elementary function (8)

else // solve the Poisson equation

{

// obtain the partition number

nMesh = atoi(argvi[3]);
// compute the problem dimension
size = nMesh * nMesh;

// form the upper triangle of the linear system matrix
PoissonMatrix (&crsM, nMesh) ;
// restore the complete linear system matrix by its
// by its upper triangle
getFullMatrixFromUpperTriangular (&crsM,
&crsMFull) ;
bVector = (double*)malloc(size *
sizeof (double)) ;
xVector = (double*)malloc(size *
sizeof (double));
poissonVector = (double*)malloc(size *
sizeof (double)) ;
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Elementary function (9)

poissonVector = (double*)malloc(size *
sizeof (double)) ;
// compute the exact problem solution
VectorV (nMesh, poissonVector);

// based on the exact problem solution find the vector
// of the right-hand sides

MultiplicateMV (&crsMFull, poissonVector,
bVector) ;
memset (xVector, 0, size * sizeof (double));

// 1f the omega relaxation parameter is equal to zero
// compute the best omega value

1f (omega == 0)
{
omega = PoissonOmega (nMesh) ;
}
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Elementary function (10)

// call the function of solving linear systems by
// SOR method
time = SORSolve (&crsMFull, bVector,
xVector, stepMax, EPSILON,
omega, poissonVector, &flag,
&stepCount) ;
excAccuracy = NormInfinity(poissonVector,
xVector, size);
printf ("%s; %s; %d; %d; %e; %Se; %.4f%;
&d\n", " ", " ", size, stepCount,
time, excAccuracy, omega, flag);
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Elementary function (11)

else 1f (atoil(argv([2]) == 2)
{
// call the function of solving linear systems by
// Symmetric Successive Over Relaxation
time = SymmetricSorSolve (&crsMFull,
bVector, xVector, stepMax, EPSILON,
omega, polssonVector, &flag,
&stepCount) ;
excAccuracy = NormInfinity(polssonVector,
xVector, size);
printf ("%s; %s; %d; %d; %e; %Se; %.4f;
$*d\n", ™ ", " ", size, stepCount, time,
excAccuracy, omega, flag);
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Elementary function (12)

else

{
ro = atof(argv[5]); /call the function of solving
linear systems by
// Symmetric Successive Over Relaxation
// with Chebyshev’s acceleration
time = ChebSSOR (&crsMFull, DbVector,
xVector, ro, stepMax, EPSILON,
omega, poissonVector, &flag,
&stepCount) ;
excAccuracy = NormInfinity (poissonVector,
xVector, size);
printf ("%s; %s; %d; %d; %e; %e; %.4f; %d;
sf\n", ™ ", " ", size, stepCount,
time, excAccuracy, omega, flag, ro);
} // free the memory
FreeMatrix (&crsM); FreeMatrix (&crsMFull) ;
free (bVector); free(xVector);

}

return 0;

d

Nizhny Novgorod, 2014 Solving Symmetric Sparse Linear Systems Using SOR Method with Chebyshev’s Acceleration




Auxiliary functions

A Poisson.h will store prototypes and Poisson.c will store
Implementation of functions defining the right part of the
differential equation and forming the linear system matrix:

// compute the function u value
// u(x,y) = sin(PI * x) * sin(PI * vy)
// in the determination region point (x, V)
double Functionl (double x, double vy)
{
return sin(PI * x) * sin(PI * vy);

}
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Auxiliary functions. Exact vector for the Poisson
equation linear system (1)

// the function computes the exact solution, the vector v for
// digitized linear system for the Poisson equation

// the vector v can be calculated exactly as

// we know the required function

// memory 1s considered to be allocated for the vector v

// this vector V is computed for a [0,1];[0,1] square

int VectorV(int N, double *v)

{

double h;

double x, vy;

int k;

int i, j;

h = (double) ((double)l.0/(N + 1));
x = 0;

y = 0;

k = 0;

l-l

1
M L else vy
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Auxiliary functions. Exact vector for the Poisson
equation linear system (2)

if ((14 % 2) == 1)
{
y =y +h
}
else
{
y =y - h
}
v[k] = Functionl (x, Vy);
k++;
}

return 0;
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Implementation of the Successive Over

Relaxatlon

method (1)

double SORSolve(crsMatrlx* M, double* b, double* X, 1int

{

int size;

iteration, double accuracy, double w,
double* y, int* flag, int *iter)

double* prevX;
double Q;
double diagElem;

clock t
int 1,

start, finish;

m, 1;

size = M->N;

*flag =
*iter =
prevX =

memset (X

O
iteration;
(double*)malloc (size * sizeof (double));

0, size * sizeof (double));

memset (prevX, 0, size * sizeof (double));
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Implementation of the Successive Over
Relaxation method (2)

start = clock();
for(m = 0; m < iteration; m++)
{
for(i = 0; 1 < size; i++)
{
Q = 0;
for(l = M->RowIndex[1i]; 1 < M->RowIndex[1i

+ 1]; 1++)

{
if (M->Col[l] < 1)

Q += M->Valuel[l] * x[M-
>Col[1]1];
}
else if (M->Col[1l] > 1)
{
Q += M->Value[l] * prevX[M->Col[1l]];
}
else
{
diagElem = M->Value[l];
}

l-l
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Implementation of the Successive Over
Relaxation method (3)

Q = (b[i] - Q) / diagElem;
x[1] = prevX[i] + w * (Q - prevX[i]);
}

memcpy (prevX, x, size * sizeof (double));

if (NormInfinity(y, x, size) <= accuracy)

{

*flag = 1;
*1ter = m;
break;

}
}

free (prevX) ;
finish = clock();
return (double) ((finish - start) / CLOCKS PER SEC);
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Implementation of the Symmetric Successive
Over Relaxation method (1)

To solve linear systems using the SSOR method and perform mass experiments,
implement the SymmetricSORSolve() function in SSOR.c.

double SymmetricSorSolve (crsMatrix* M, double* b, doublex*
%X, 1int iteration, double accuracy,
double w, double* y, int* flag, int*
iter)

int size = M->N;
double* prevX;

double* semiX;

double Q;

double diagElem;

int i, m, 1;

clock t start, finish;

prevX = (double*)malloc(size * sizeof (double)) ;
semiX = (double*)malloc(size * sizeof (double)):;

memset (semiX, 0, size * sizeof (double))
memset (prevX, 0, size * sizeof (double)) ;

start clock () ;
*flag = 0;
*iter = iteration;
for(m = 0; m < iteration; m++)

{
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Implementation of the Symmetric Successive
Over Relaxation method (2)

First, the intermediate approximation is calculated based on the previous one and using
the computation scheme of the SOR method. This part of the program can be called the
first half iteration.

// First half iteration

for(i = 0; 1 < size; i++)
{
Q = 0;
for(l = M->RowIndex[i]; 1 < M->RowIndex[i

+ 1]; 1++)
{
if (M->Col[l] < 1)

Q += M->Value[l] * semiX[M-
>Col[1]1];

else 1if (M->Col[l] > 1)
Q += M->Value[l] * prevX[M->Col[1l]];

else
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Implementation of the Symmetric Successive
Over Relaxation method (3)

First, the intermediate approximation is calculated based on the previous one and using
the computation scheme of the SOR method. This part of the program can be called the

first half iteration.

// First half iteration
for(i = 0; i < size; 1i++)
{
Q = 0;
for(l = M->RowIndex[i]; 1 < M->RowIndex[i
+ 11; 1++)

{
if (M->Col[1l] < 1)
Q += M->Value[l] * semiX[M->Col[1l]];
else 1f (M->Col[1l] > i)

Q += M->Value[l] * prevX[M->Col[l]];

else

diagElem = M->Valuel[l];

}
Q = (b[i] - Q) / diagElem;
semiX[1i] = prevX[i] + w * (Q - x[i]);
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Implementation of the Symmetric Successive
Over Relaxation method (4)

Then, after the first half iteration, the next approximation is computed on the basis of the intermediate approximation. To
compute the next approximation, use the computation scheme with a reverse order of approximation vector components.

// Second half iteration
for(i = size - 1; 1 >= 0; 1i--)
{
Q= 0;
for(l = M->RowIndex[i]; 1 < M->RowIndex[i+1]; 1++)

{
if (M->Col[l] < 1)

Q += M->Value[l] * semiX[M-
>Col[1]1];

else if (M->Col[1l] > 1i)

Q += M->Value[l] * x[M->Col[1l]];
else

diagkElem = M->Valuel[l];

Q = (b[i] - Q) / diagElem;

x[1] = semiX[i] + w * (Q - semiX[i]);

}

if (NormInfinity(y, x, size) <= accuracy)
‘L" Nizhny Novgorod, 2014 Solving Symmetric Sparse Linear Systems Using SOR Method with Chebyshev’s Acceleration 46



Implementation of the Symmetric Successive
Over Relaxation method (5)

if (NormInfinity(y, x, size) <= accuracy)
{
*iter = m;
*flag = 1;
break;

}

memcpy (prevX, x, size * sizeof (double));

}

free (prevX) ;
free (semiX) ;
finish = clock();
return (double)((finish - start)/ CLOCKS_PER_SEC);
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Software implementation of the Symmetric Successive
Over Relaxation method with Chebyshev’s acceleration

Place prototypes of the respective functions in ChebSSOR.h and their implementation - in
ChebSSOR.c. To solve linear systems using the SOR method and perform mass experiments,
implement the ChebSSOR () function in ChebSSOR.c.

double ChebSSOR (crsMatrix* M, double* b, double* x,
double ro, int iteration, double accuracy,
double w, double* y, int* flag, int* iter)

long double muO, mul, muZ2;

double k1, k2, k3;

int size = M->N;

double* y0, * yl, * yl2, * y2, * tmp;
dmt i, g
clock t start, finish;

double time;

mu0 = 1;
mul = ro;

y0 = (double*) malloc(size * sizeof (double))
yl = (double*)malloc(size * sizeof (double));
yl2 = (double*)malloc(size * sizeof (double));
y2 = (double*)malloc(size * sizeof (double));
tmp = (double*)malloc(size * sizeof (double));

memset(y0, 0, size * sizeof(double));

¥
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Software implementation of the Symmetric Successive
Over Relaxation method with Chebyshev’s acceleration(2

SymmetricSorIterate (M, b, y0, yl, w);

*flag = 0;
start = clock();
for(i = 1; 1 < iteration; i++)
{ // Three-term recurrence for
// muO, mul, mu2
mu2 = 1.0 / (2.0/(ro * mul) - 1.0/mu0);
kl =2 * mu2 / (ro * mul);
k2 = mu2 / mu0;
muO0 = mul;
mul = mu2;
// Three-term recurrence for yo0,
//yl, y2
SymmetricSorIterate (M, b, yl, v12, w);
for(j = 0; j < size; J++)

v2[J] = k1 * y12[3] - k2 * yO0[3j];
if (NormInfinity(y, y2, size) <= accuracy)

{

*iter = 1i;
*flag = 1;
break;

}

tmp = y1;

y0 = vy1;

vl = y2;

y2 = tmp;

}
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Software implementation of the Symmetric Successive
Over Relaxation method with Chebyshev’s acceleration(3

finish = clock():;
time = (double) ((finish - start) / CLOCKS PER SEC);

memcpy (x, y2, size * sizeof (double));

free(y0);

free(yl);

free(yl2);

free(y2);

free (tmp) ;

return time;
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Project compilation and application run

a Add missing functions to the software implementation; include
necessary header files.

a Having developed the software implementation, build the
project by executing Build—Rebuild SOR and check the

application for consistent running.
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Method convergence analysis (1)

Q To analyze method convergence, first use matrices from The
University of Florida Sparse Matrix Collection:

http://www.cise.ufl.edu/research/sparse/matrices/
a All matrices are symmetric positive definite.

A The best wand p values are difficult to compute analitically
for a general matrix, so they were determined by expertiment.

O Method accuracy &=107°
Q Convergence-related results are listed in the tables below
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| Method convergence analysis (2)

Convergence of the Successive Over Relaxation method, required accuracy 0,000001

Number
of | Allowed difference
Dimensi Condition algorithm | from the exact Omega relaxation

Matrix name on number steps | solution parameter
LFAT5.mtx 14 | 1.4e+08 166 | 8.021907e-007 1.9
meshlem6.mtx 4816.1 146 | 9.922382e-007 1.9
bcsstk04.mtx 132 | 5.6e+06 34119.461812e-007 1.9
bcsstk05.mtx 153 | 3.5e+04 986 | 9.961649e-007 1.87
bcsstk06.mtx 420 | 1.2e+07 3383(9.974012e-007 1.926
bcsstk09.mtx 1083 | 3.1e+04 885|9.937784e-007 1.95
chem97ZtZ.mtx 2541 | 2.5e+2 144 | 9.068114e-007 1.9
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| Method convergence analysis (3)

Convergence of the Symmetric Successive Over Relaxation method, required accuracy

0,000001
Omega

Dimensio | Condition Number of | Allowed difference from relaxation
Matrix name n number algorithm steps | the exact solution parameter
LFAT5.mtx 14 | 1.4e+08 4263 | 9.991575e-007 1.9
meshlem6.mtx 4816.1 140 | 9.936279e-007 1.9
bcsstk04.mtx 132 | 5.6e+06 18211 9.994442e-007 1.8
bcsstk05.mtx 153 | 3.5e+04 13731 9.992477e-007 1.8
bcsstk06.mtx 420 | 1.2e+07 43181 |9.996227e-007 1.32
bcsstk09.mtx 1083 | 3.1e+04 30761 |9.996047e-007 1.1
chem97ZtZ.mtx 2541 | 2.5e+2 323 | 9.996019e-007 1.9
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Method convergence analysis (4)

Convergence of the Symmetric Successive Over Relaxation method with Chebyshev’s
acceleration, required accuracy 0,000001

Number
of | Allowed difference
Dimensi Condition algorithm | from the exact Relaxation
Matrix name |on number steps | solution parameter Parameter
LFAT5.mtx 14| 1.4e+08 89| 6.112398e-007 1.5 0.9779
meshlem6.mt
X 48 (6.1 35| 7.905490e-007 1.9 0.9
besstk04.mtx 132 | 5.6e+06 229 | 9.546005e-007 1.092 0.996832
bcsstk05.mtx 153 | 3.5e+04 25119.499373e-007 1.11 0.998188
bcsstk06.mtx 420 1.2e+07 730 | 8.346634e-007 1.11 0.999666
besstk09.mtx 1083 | 3.1e+04 537 9.961580e-007 1.11 0.999588
chem97ZtZ.m
tx 2541 | 2.5e+2 125| 9.711613e-007 1.9 0.9
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Method convergence analysis (5)

Convergence rate of the Successive Over Relaxation method as compared to that

of the Symmetric Successive Over Relaxation method with Chebyshev’s acceleration

SOR SOR-Cheb
Number of o, Number

Matrix name algorithm of
steps algorith
m steps
LFAT5.mtx 1.9 166| 1.5 0.9779 89
meshlem6.mtx 1.9 146| 1.9 0.9 35
bcsstk04.mtx 1.9 341(1.092 0.996832 229
bcsstk05.mtx 1.87 986|1.11 0.998188 251
bcsstk06.mtx 1.926 3383(1.11 0.999666 730
bcsstk09.mtx 1.95 885(1.11 0.999588 537
chem97ZtZ.mtx 1.9 144 1.9 0.9 125
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Method convergence analysis (6)

Some conclusions:
QAIll algorithms are convergent and ensure required accuracy
The convergence rate will depend on the matrix dimension and condition number.

UIn the general case, one can determine an approximate valued of the best relaxation
parameter for a specific matrix by experiment

UThe Symmetric Successive Over Relaxation algorithm demonstrates a lower
convergence rate than that of the Successive Over Relaxation algorithm

Q If the procedure of Chebyshev’s accelerations is followed, the required number of
iterations is reduced (from 1.5 to 3.5 times)
UParameter selection has a considerable effect on the method convergence. Exact
estimation of the iteration matrix spectral radius considerably reduces the number of
iterations to ensure the required accuracy.
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| Method convergence analysis (7)
Poisson equation

Q
Q

The linear system results from PDE discretization.
The system solution is a function that is known in advance:
u(x,y)=sin(zx)*sin(zy)

Given a function known in advance, the exact linear system solution
vector Is known

for this type of problems it is known that
(4

2
1+ 2sin(7h/2)

opt

for this type of problems it is known that )

P opt =1—7

the linear system matrix has a five-diagonal pattern
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| Method convergence analysis (8)
Poisson equation

O Method parameters: p=0.99, &=10-°.

S
" nzin @ SOR SSOR | SSOR-Cheb
10000 | 4,910° | 1.9397 286 342 53
22500 | 9.810° | 1.9592 428 512 65
40000 | 31107 | 1.9692 569 682 72
62500 | 12107 | 1.9753 711 852 123
90000 | 6.1.10° | 1.9793 853 1022 91
122500 | 3310 | 1.9823 995 1192 85
160000 | 1.9-10° | 1.9845 1137 1362 97
202500 | 1.2.10° | 1.9862 1278 1532 143
250000 | 7.9-10° | 1.9875 1420 1702 276
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Test questions

a Why is it impossible to apply the procedure of Chebyshev's
accelerations directly to the Successive Over Relaxation
method?

a Deduce a linear system resulting from grid approximation of
the heat transfer equation. What structural peculiarities does
this matrix have?

a Give the canonical SOR method form and approximation
component computation formula.

A Which sparse matrix storage formats do you know? When is
each of them used?
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Added tasks

O Compute by experiment the best relaxation parameter value for a general
matrix. What happens to the convergence rate if the parameter value is
close to the best one?

O Compute the exact spectral radius of the iteration matrix for a system of
linear equations resulting from the Poisson equation. MatLab. may be
used. How does accurate parameter selection influence the method
convergence?

O For atest matrix, observe dependence of the iteration matrix spectral
radius on the relaxation parameter. Perform a series of experiments,
record the results in a table and see what happens to the spectral radius in
the course of approximation to the best value.
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Questions

a ?7?77?
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