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Problem statement

Q Let us consider a system of n linear equations that looks as follows:

a, X, +apX, +..+a, X, =Db
a,X, +a,Xx, +..+a, X =Db,
a . X, +a,X, +..+a_ X =Db,
Q This system can be represented as a matrix
Ax=Db

0 A=(a;) is a nxn real matrix; A is a sparse matrix; b and X are vectors
consisting of n elements; the exact system solution is x".

0 An iterative method generates a sequence of vectors x®eRM,
s=0,1,2,..., where x® is an approximate system solution.
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Convergence of Iterative Methods

Q Iterative method is convergent if
vV XOeRM lim

=0
S—> ®©

Q For iterative methods, the following is true

,(© H

x %

o4 < (p(us,))

where z8=x6)-x" is the next approximation error,
@ Is a function, ¢—0 when c—x.
U=/ Amin 1S the condition number.
Example for the conjugate gradient method
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ldea of Preconditioning

Q u,=1— the convergence rate is high (A is well-conditioned)
Q u,>>1— the convergence rate is low(A is ill-conditioned)

a The idea of preconditioning lies in converting an ill-conditioned
system
Ax=Db
to a well-conditioned one
M-1Ax=M-1b.
Here, M Is a preconditioner.

a M-A is not computed explicitly as M~'A is very likely to be a dense
matrix

Qa Corrective steps allowing for preconditioning are added to the
Iterative method.
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Requirements to the Preconditioner

1. M must be close to A (M~'A is well-conditioned)
2. M must be easy to compute;

3. M must allow for fast solution of systems such as
Mz=r
In relation to an unknown vector z.
Example 1.
Let M=A. Then requirements 1 and 2 are satisfied.

Requirement 3 is not satisfied. Az=r is the same problem as the initial
one.

Example 2.

Let M=diag(A). Then requirements 2 and 3 are satisfied.
Requirement 1 may not be satisfied
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Preconditioning Types

Ax=Db Is the initial system
1. Left preconditioning
M-1Ax=M-h.
2. Right preconditioning
AM-1u=b, where x=M-u.
3. Split preconditioning
Let us present the preconditioneras M =M M,

4. Then
M 'AM 'u=M b ,where x=M ;'u

R

‘Ll, Nizhny Novgorod, 2014 Preconditioning Methods



Basic Preconditioners

a Let us remember the basic iterative methods that include Jacobi,
Seidel and over relaxation (SOR and SSOR) methods.

a All the methods above are particular cases of the simple iteration
method. D Loy © 46
where A=M-Nand G=M ‘N=M (M -A)=E-M A

a Simple iteration method (*) for the system

(E-G)x=c
that may be formulated as follows
M7Ax =M b

a Asaresult, the Jacobi, Seidel, SOR and SSOR methods are
equivalent to the simple iteration method with a preconditioner.
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Basic Preconditioners

Therefore, the following preconditioners are obtained:
1. M,=D (Jacobi)

may be explicitly applied to the system - multiply by D1
2. M, =D+L (Gauss-Seidel)

3. M :1(D+a)|_)

SOR
0

4. M., = a)(zl— a))(D+a)L)D_1(D+a)R)
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SSOR-preconditioning

How to select w?

Q Parameter selection for the preconditioner is not as critical as for the
SSOR method: o=1

aQ Symmetric Gauss-Seidel preconditioner

O

M., =(D+L)D (D +R)
Q Use of preconditioner, i.e. system solution

M Z=r

SGS

IS as complex as multiplying a matrix by vector.
Q Upon the whole, M Is better than A, but is still insufficient.
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SGS-Preconditioning — Example

Numerical solution of Poisson Equation for a 5x5 grid
Matrix A: size n=25 (n? = 625), number of non-zeroes nz = 105,
Condition number cond(A)= 20.7

* »
* & " *
* % W *
LR *
* * *

»
I'I H l o ©
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SGS-Preconditioning — Example

Symmetric Gauss-Seidel preconditioner

M, =(D+L)D (D +R)

Initial system: cond(A)=20.7;

Poisson equation for a 40 x 40 grid
Matrix size 1600 x 1600.

Initial system:cond(A)=989;
Mqss: cond(M-1A )=210.
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ILU(O)-Preconditioning

Q Let A4 be a sparse matrix
NAA)={(1,): ;20 }
Q Let A factorization has been found in the form of
A=LU-R
L and U are lower (with a single diagonal) and upper triangular matri
Ces;
NAL) v NAU) = NAA);
r; =0 forall (1,)) e NAA).
Then ILU(0) is a preconditioner for M=LU=~A.

Q The requirements above do not provide for a unique determination of
ILU(0).
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ILU(O)-Preconditioning

a Constructive definition of ILU(0) : Perform LU—factorization of A
zeroing all filling elements in L and U outside N A) at the same

time.
Q LU-factorization (method of Gaussian elimination)
fori=2,...,ndo
for k=1,...,1-1do
& = Ay
for j=k+1,..., ndo
aj; = ajj — Ay * Ay
end |
end K
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Memory State

- - -Access without modification

oy
,

!

!

£ __ Access with modification

————— NO access

Access to the matrix lines: effective for sparse matrices in CRS format
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ILU(O)-Factorization - Algorithm

fori=2,...,ndo
for k=1,..., i1 and if (i,k)eNZ(A) do
Ay = BBy,
for j=k+1,..., nand if (i,)) eNZ(A) do
djj = ajj; — Aj*a
end i
end k

Q If the matrix A is symmetric positive definite, then ILU(0) transforms
to 1C(0): this is incomplete Cholesky factorization.
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ILU(O)-Factorization — Example 1

Let us consider factorization of the matrix A
(4 -1 -1 0|
-1 4 0 -1
-1 0 4 -1
0 -1 -1 4
and perform a complete LU-factorization

1 T4 -1 -1

~0.25 1 3.75 -0.25
A=LU =

~0.25 —0.067 1 3.733

0 -0.0267 -0286 1]
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ILU(O)-Factorization — Example 1

Incomplete factorization A ~ IL * U

1 ] 4
-025 1

L = U =
-025 0 1
| 0 -0.267 -0.267 1 i

Incomplete factorization residue

0 0 0
0 0 -0
A-IL*IU =
0 -025 0
0 0 0

3.75 0
3.75

o o O o
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ILU(O)-factorization — Example 2

Numerical solution of Poisson equation for a 5x5 grid
Matrix A: size n=25 (n? = 625), number of nonzeroes nz = 105,
Condition number cond(A)= 20.7

* »
* & " *
* % W *
LR *
* * *

»
I'I H l o ©
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ILU(O)-Factorization — Example 2

L

Perform a complete LU-factorization
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ILU(O)-Factorization — Example 2

Perform ILU(0)-factorization of A~IL*I1U
IL
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ILU(O)-Factorization — Example 2

ILU(O)-factorization residual
A—IL*I1U

Initial system: cond(A)=20.7;
MLu(): cond(M—*A)=3.6.

Poisson equation for a 40 x 40 grid
Matrix size 1600 x 1600.

Initial system:cond(A)=989;
MLu(): cond(M~1A )=143.
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Filling Control. ILU(p)-Factorization

a A more exact ILU-factorization can be obtained by allowing a certain
degree of factor filling

- for matrices with a regular structure p additional diagonals may be
filled;

- generalization for matrices with an irregular structure via the filling
level concept.

Q Initial I filling level value
(0, ecrn a; # 0wm 1= ],

Iij =9

Loo, HHa4ye.
Q At the I-th step of Gaussian elimination

I, = min{ 1,1, +1, +1}
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ILU(p)-Factorization - Algorithm

a [ILU(p) strategy is to zero all elements whose filling level exceeds p.

for1=2,....ndo
fork=1,...,i—1andif a;+#0do
ay = ay/
i, - i, — Qi * Q;,
update filling levels for a,, :
for i-th line: if I;; > p then a;; =0 |, = min{ |
end K
end |

+1, +1}

i ’Iik

Q The algorithm may be divided into two parts: symbolic (L and U
patterns) and numeric (L and U values)
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ILU(p)-Factorization - Example

Numerical solution of Poisson equation for a 5x5 grid
Perform ILU(1)-factorization of A~L*IU
IL U
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ILU(p)-Factorization - Example

ILU(1)-factorization residual

A-IL*IU

Initial system: cond(A)=20.7;
Mggs: cond(M-1A )=5.1.
MLu(): cond(M—*A)=3.6.
M u@): cond(M—*A )=1.5.

Poisson Equation for a 40 x 40 grid
Matrix size 1600 x 1600.

Initial system:cond(A)=989;
Mggs: cond(M—21A )=210.
MLu(): cond(M*A )=143.
MLu(): cond(M*A )=54.
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Conclusion

a As part of this lecture, we have reviewed the following:

— Concept of preconditioning
— Requirements to preconditioners
— Preconditioning types

— Basic preconditioners

« Jacobi (J), Gauss-Seidel (GS)
« SOR, SSOR, SGS

— Partial LU-factorization

» General Pattern
* ILU(0), factorization without filling
* [LU(0), factorization with filling control

— Experimental results
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