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Purposes of work 

 The purpose of this laboratory work is to see how linear 

systems with sparse matrices are solved using iterative 

methods via example of a stationary problem of heat diffusion 

in a rectangular plate at given temperature conditions at the 

plate edges. 
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Objectives of work (1) 

 Studying the Successive Over Relaxation method to solve 

linear systems with general matrices. 

 SOR method development to solve linear system with a 

special matrix (block five-diagonal matrix with the same 

number on each individual diagonal). 

 Development of infrastructure for mass experiments. 

 Development of a consecutive SOR method implementation 

to solve linear system with a block five-diagonal matrix. 

 Developed SOR method convergence analysis 
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Objectives of work (2) 

 Development of a so-called evident parallel implementation 

involving method modification based on Intel® Cilk Plus. 

 Evident parallel implementation scalability analysis 

 Development of a pipelined parallelization scheme based on 

Intel® Threading Building Blocks.  

 Modified parallel implementation scalability analysis 
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Test infrastructure 

CPU No. 2 Intel Xeon E5520 (2.27 GHz) 

RAM 16 Gb 

OS Microsoft Windows 7 

Framework Microsoft Visual Studio 2008 

Compiler, profiler, debugger Intel Parallel Studio XE 2011 

Libraries Intel® Threading Building Blocks 3.0 for 

Windows, Update 3 (part of Intel® Parallel 

Studio XE 2011) 

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011 



STATIONARY PROBLEM OF 

HEAT DIFFUSION IN A PLATE 
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Legend 

 𝑙1, 𝑙2 – lateral lengths of a rectangular plate. 

 

 𝑈 𝑥, 𝑦  – plate temperature in the point 𝑥, 𝑦  belonging to 

𝐺, 𝐺 = * 𝑥, 𝑦 :  𝑥 ∈ 0, 𝑙1 , 𝑦 ∈ 0, 𝑙2 +. 

 

 𝑓(𝑥, 𝑦) – total exposure of a rectangular plate to external 

sources and flows in the point (𝑥, 𝑦).  
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Problem Statement (1) 

 The stationary problem of heat diffusion in a plate is 

described by a differential Poisson equation. 

∆𝑈 = 𝑈𝑥𝑥 + 𝑈𝑦𝑦 = −𝑓 𝑥, 𝑦                                     (1) 

𝐺 = * 𝑥, 𝑦 :  𝑥 ∈ 0, 𝑙1 , 𝑦 ∈ 0, 𝑙2 + 

 

 For a complete description of a stationary process, set the 

temperature conditions at the plate edge: 

𝑈 0, 𝑦 = 𝜇1 𝑦  

𝑈 𝑙1, 𝑦 = 𝜇2 𝑦                                            (2) 
𝑈 𝑥, 0 = 𝜇3 𝑥  

𝑈 𝑥, 𝑙2 = 𝜇4(𝑥) 
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Problem Statement (2) 

 To be definite, use the following functions as 

𝑓 𝑥, 𝑦 , 𝜇1 𝑦 , 𝜇2 𝑦 , 𝜇3 𝑥 , 𝜇4 𝑥  

𝑓 𝑥, 𝑦 = 10 𝑠𝑖𝑛
𝜋𝑥

𝑙1
𝑠𝑖𝑛
𝜋𝑦

𝑙2
,                             (3) 

𝜇1 𝑦 = 𝑦 𝑙2 − 𝑦 𝑐𝑜𝑠
𝜋(𝑙2 − 𝑦)

𝑙2
𝑐𝑜𝑠
𝜋𝑦

𝑙2
,              (4) 

𝜇2 𝑦 =  −𝑦 𝑙2 − 𝑦 𝑠𝑖𝑛
𝜋 𝑙2 − 𝑦

𝑙2
,                    (5) 

𝜇3 𝑥 = 𝑥 𝑙1 − 𝑥 𝑐𝑜𝑠
𝜋 𝑙1 − 𝑥

𝑙1
𝑐𝑜𝑠
𝜋𝑥

𝑙1
,             (6) 

𝜇4 𝑥   = −𝑥 𝑙1 − 𝑥 𝑠𝑖𝑛
𝜋 𝑙1−𝑥

𝑙1
                               (7) 
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Difference scheme (1) 

 Introduce a 𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗𝑘 grid where ℎ =
𝑙1

𝑛
, 𝑘 =

𝑙2

𝑚
 within 𝐺. 

 Approximate the differential equation using a difference 

scheme (9). 

𝑈𝑖−1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖+1,𝑗

ℎ2
+
(𝑈𝑖,𝑗−1−2𝑈𝑖,𝑗 + 𝑈𝑖,𝑗+1)

𝑘2
= −𝑓𝑖,𝑗 ,   

𝑖 = 1, 𝑛 − 1, 𝑗 = 1,𝑚 − 1  

𝑈0,𝑗 = 𝜇1,𝑗 , 𝑗 = 0,𝑚                                    (8) 

𝑈𝑛,𝑗 = 𝜇2,𝑗 , 𝑗 = 0,𝑚  

𝑈𝑖,0 = 𝜇3,𝑖 , 𝑖 = 0, 𝑛  

𝑈𝑖,𝑚 = 𝜇4,𝑖 , 𝑖 = 0, 𝑛  
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Difference scheme (2) 

 Boundary conditions are solved for unknown variables at 

boundary nodes.  

 Substitute the respective unknown variables for their values. 

 Consider the first differential scheme equation (𝑖 = 1). 

 In a similar way, cases when 𝑖 = 𝑛 − 1 и 𝑖 = 2, 𝑛 − 2 can be 

considered. 
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Difference scheme (3) 

𝑈0,𝑗−2𝑈1,𝑗+𝑈2,𝑗

ℎ2
+
(𝑈1,𝑗−1−2𝑈1,𝑗+𝑈1,𝑗+1)

𝑘2
= −𝑓𝑖,𝑗 , 𝑗 = 2,𝑚 − 2  

𝑈2,𝑗

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,𝑗 +

𝑈1,𝑗−1

𝑘2
+
𝑈1,𝑗+1

𝑘2
= −𝑓𝑖,𝑗 −

1

ℎ2
𝜇1,𝑗 , 𝑗 = 2,𝑚 − 2  

 

𝑈0,1−2𝑈1,1+𝑈2,1

ℎ2
+
(𝑈1,0−2𝑈1,1+𝑈1,2)

𝑘2
= −𝑓𝑖,1, 𝑗 = 1  

𝑈2,1

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,1 +

𝑈1,2

𝑘2
= −𝑓𝑖,1 −

1

𝑘2
𝜇3,1 −

1

ℎ2
𝜇1,1, 𝑗 = 1  

𝑈0,𝑚−1−2𝑈1,𝑚−1+𝑈2,𝑚−1

ℎ2
+
(𝑈1,𝑚−2−2𝑈1,𝑚−1+𝑈1,𝑚)

𝑘2
= −𝑓𝑖,𝑗 , 𝑗 = 𝑚 − 1  

𝑈2,𝑚−1

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,𝑚−1 +

𝑈1,𝑚−2

𝑘2
= −𝑓𝑖,𝑗 −

1

ℎ2
𝜇1,𝑚−1 −

1

𝑘2
𝜇4,1

,            𝑗 = 𝑚 − 1  
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 Putting a differential system  

 Form the vector of unknowns 𝑈 as follows:  

𝑈 = (𝑈1,1, 𝑈2,1, … , 𝑈𝑛−1,1,  

        𝑈1,2, 𝑈2,2, … , 𝑈𝑛−1,2, … , 

              𝑈1,𝑚−1, 𝑈2,𝑚−1, … , 𝑈𝑛−1,𝑚−1)  

interior grid nodes are listed as they are located along the 

coordinate variation axis 𝑥. 

 Then the differential system can be put it a matrix form like  

𝐴𝑈 = 𝐹 where 𝐹  is the vector of the function 𝑓(𝑥, 𝑦) values at 

the interior nodes minus boundary condition remainders and 

the matrix 𝐴  is a block five-diagonal one. 
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 Example of such a matrix  

for 𝑛 = 5,𝑚 = 5  

(where 

𝐴 = −2
1

ℎ2
+
1

𝑘2
). 

Put the system of differential equations 

 in a matrix form (2) 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 



SOR METHOD 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 



18 

SOR method (1) 

 The linear system 𝐴𝑈 = 𝐹   resulting from a stationary heat 

transfer problem has a symmetric negative definite matrix. 

The matrix (– A) will be positive definite.  

 To solve the system (9), use numerical methods applicable to 

symmetric positive definite matrices: 

−𝐴𝑈 = −𝐹                                                        9  

 The SOR method is a stationary single-step iterative method 

of linear algebra applicable to symmetric positive definite 

matrices. 
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SOR method (2) 

 Consider a linear system (10) with a 𝑛∗𝑛 symmetric positive 

definite matrix A: 
𝐴𝑥 = 𝑏                                                       (10) 

 Represent the matrix A as a sum of three matrices: 

𝐴 = 𝐿 + 𝐷 + 𝑅                                               (11) 

Here, D is a 𝑛 ∗ 𝑛 diagonal matrix whose principal diagonal 

coincides with that of the matrix A; 

L is a 𝑛∗𝑛 lower triangular matrix. Its elements under the main 

diagonal coincide with the matrix A elements, main diagonal 

being the zero one;  
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SOR method (3) 

R is a 𝑛 ∗ 𝑛  upper triangular matrix. Its elements above the 

main diagonal coincide with the matrix A elements, main 

diagonal being the zero one;  

 Canonical form of the SOR method: 

𝐷 + 𝜔𝐿 𝑥 𝑠+1 − 𝑥 𝑠

𝜔
+ 𝐴𝑥 𝑠 = 𝑏                    (12) 

Here, 𝑥(𝑠), s the approximation obtained at 𝑠 + 1 iteration 

𝜔 is the method parameter (number). 
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SOR method (4) 

 The necessary condition of SOR convergence from any initial 

approximation  𝑥 0  to the exact solution 𝑥∗ is fulfillment of  

𝜔𝜖(1, 2). In case of the symmetric positive definite matrix A, 

this condition is sufficient.  

 If 𝜔 = 1, the SOR method will be the same as the Seidel 

method.  

 The determine formulas to explicitly compute the next 

approximation 𝑥 𝑠+1  based on the previous one 𝑥(𝑠)  
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SOR method (5) 

𝐷 + 𝜔𝐿 𝑥 𝑠+1 − 𝑥 𝑠 + 𝜔𝐴𝑥 𝑠 = 𝜔𝑏 

𝐷𝑥 𝑠+1 +𝜔𝐿𝑥 𝑠+1 − 𝐷𝑥 𝑠 −𝜔𝐿𝑥 𝑠 + 𝜔𝐴𝑥 𝑠 = 𝜔𝑏 

𝐷𝑥 𝑠+1 = −𝜔𝐿𝑥 𝑠+1 + 𝐷𝑥 𝑠 −𝜔 𝐴 − 𝐿 𝑥 𝑠 + 𝜔𝑏 

 Given that 𝐴 − 𝐿 = 𝐷 + 𝑅, we obtain: 

𝐷𝑥 𝑠+1 = −𝜔𝐿𝑥 𝑠+1 + 1 − 𝜔 𝐷𝑥 𝑠 − 𝜔𝑅𝑥 𝑠 +𝜔𝑏       (13) 

 From (13), record explicit formulas for computation of the new 

vector 𝑥 𝑠+1 components: 

𝑎𝑖𝑖𝑥𝑖
𝑠+1 = 𝜔 𝑎𝑖𝑗𝑥𝑗

𝑠+1

𝑖−1

𝑗=1

+ 1 − 𝜔 𝑎𝑖𝑖𝑥𝑖
𝑠 − 

− 𝜔  𝑎𝑖𝑗𝑥𝑗
𝑠

𝑛

𝑗=𝑖+1

+𝜔𝑏𝑖                         (14) 
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SOR method (6) 

 As it can be seen from formula (14), to compute the 𝑖th 

component of a new approximation, all smaller index 

components are taken from the new approximation 𝑥 𝑠+1  
while all greater index components are taken from the 

previous one, 𝑥 𝑠  . 

 To implement the method, it is enough to store only one 

(current) approximation 𝑥 𝑠 , and to compute the next 

approximation 𝑥 𝑠+1 use the formula for all components in 

series and gradually renew the approximation vector. 
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SOR method (7) 

 Generalized formula for the software implementation: 

𝑎𝑖𝑖𝑥𝑖
𝑠+1 = −𝜔 𝑎𝑖𝑗𝑥𝑗

𝑠

𝑛

𝑗=1

+ 𝑎𝑖𝑖𝑥𝑖
𝑠 +𝜔𝑏𝑖             (15) 

 The SOR method convergence rate depends on the ω 

parameter selection.  

 We know that to solve linear systems of certain classes, the 

SOR method requires 𝑂 𝑛2  iterations. For a certain ω 

selection, the method will converge after 𝑂 𝑛  iterations.  

 There is no general analytical formula to compute the best 

𝜔𝑜𝑝𝑡 value. 
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SOR method (8) 

 For a linear system based on a differential scheme (8), the 

best parameter 𝜔 for the SOR method is known and, if the 

grid size ℎ and 𝑘 are the same, it is computed using (16):   

𝜔𝑜𝑝𝑡 =
2

1 + 2 𝑠𝑖𝑛
𝜋ℎ
2

                                          16  

 Minimum and maximum system matrix eigenvalues will in this 

case be: 

𝜆𝑚𝑖𝑛 =
4

ℎ2
𝑠𝑖𝑛2

𝜋

2𝑛
+
4

𝑘2
𝑠𝑖𝑛2

𝜋

2𝑚
                  (17) 

𝜆𝑚𝑖𝑛 =
4

ℎ2
𝑐𝑜𝑠2

𝜋

2𝑛
+
4

𝑘2
𝑐𝑜𝑠2

𝜋

2𝑚
                 (18) 
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Band matrix notion (1) 

 A 𝐴 matrix is a band one if all its non-zero entries are confined 

to a band comprising diagonal parallel to the main one.  

 If for the matrix 𝐴 𝑎𝑖𝑗 = 0  when  𝑖 > 𝑗 + 𝑝 and 𝑎𝑖𝑗 = 0  when  

𝑗 > 𝑖 + 𝑞, 𝑝 is the lower bandwidth and 𝑞 is the upper 

bandwidth.  

 𝑚= 𝑝 + 𝑞 + 1 is called the bandwidth of the matrix 𝐴. 
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Band matrix notion (2) 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

 Let us study some band matrix storage types 

 Let us suppose that dimension and bandwidth of the initial 

matrix 𝐴 are 𝑛 and 𝑚, respectively. 

 

 

 Band matrix type: 

 
q – upper band 

width 

m –band  

width 

p – lower band  

width 

n – matrix 

dimension 

Main diagonal 
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Band format 

 Band format is used when one can distinguish a dense band of 

a specific width consisting of nonzeroes.  

 If the initial matrix is symmetric, one may store only its lower (or 

upper) triangle. 

 Band format modifications: 

– Band row format 

– Band column format 

– mixed format 
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Band row format (1) 

 Band row format to store the initial matrix 𝐴 uses a 𝑛 ×𝑚 

array where nonzeroes of the matrix 𝐴 are stored row-wise.  

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

 Secondary diagonals are 

redefined to a 𝑛 size by 

adding zeroes at their 

beginning for the lower 

triangle and at their end for the 

upper one. 

row-wise  

storage 
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Band row format (2) 

 Example of a matrix stored in the band row format: 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

Matrix 𝐴 Storage structure: 

(𝑛 = 6, 𝑞 = 2, 𝑝 = 1,𝑚 = 4) Matrix 

1 0 2    

3 4 5 0   

 6 7 8 9  

  10 11 0 12 

   0 13 14 

    15 16 
 

 

0 1 0 2 

3 4 5 0 

6 7 8 9 

10 11 0 12 

0 13 14 0 

15 16 0 0 
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Band column format (1) 

 To store the initial matrix 𝐴 band column format uses a array 

𝑛 ×𝑚 with each line 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

containing column nonzeroes of 

the matrix 𝐴.  

 Secondary diagonals are 

redefined to a 𝑛 size by 

adding zeroes at their 

beginning for the upper 

triangle and at their end for the 

lower one. 

column-wise  

storage 
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Band column format (2) 

 The initial matrix element 𝑎𝑖𝑗  is stored in an element of the 

array 𝐴,𝑖 − 𝑗 + 𝑞 + 1, 𝑗-, where is the upper band width of the 

matrix 𝐴.  

 Example of a matrix stored in the band column format: 
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Матрица A Структура хранения: 

(𝑛 = 6, 𝑞 = 2, 𝑝 = 1,𝑚 = 4) Matrix 

1 0 2    

3 4 5 0   

 6 7 8 9  

  10 11 0 12 

   0 13 14 

    15 16 
. 

 

0 0 2 0 9 12 

0 0 5 8 0 1
 

1 4 7 11 13 16 

3 6 10 0 16 0 

 

Matrix A Storage structure: 
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Diagonal format (1) 

 Diagonal storage format is used when all matrix nonzeroes ar 

located on different diagonals that are not densely spaced. 

 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

n – matrix 

dimension 
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Diagonal format (2) 

 To implement the matrix storage, two arrays are used. 

 Matrix nonzeroes are stored in the  𝑛×𝑚  Matrix array, where 

𝑛 is the initial matrix dimension and 𝑚 is the number of 

nonzero diagonals.   

 Secondary diagonals are redefined to the common size by 

adding zeroes like in case with the band format.  

 In addition, a 𝑚  Index array of integers will be stored to 

indicate for each diagonal the values of shift from the main 

diagonal, positive indices for the upper triangle and negative 

indices for the lower one.  
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Diagonal format (3) 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 

 Example of a matrix stored in the diagonal format: 

Матрица 𝐴 

(𝑛 = 6, 𝑚 = 3) 

Структура хранения: 

1  2    

3 4  0   

 6 7  9  

  10 11  12 

   0 13  

    15 16 
 

Matrix 

 

 

 

 

 

0 1 2 

3 4 0 

6 7 9 

10 11 12 

0 

 0 

15 16 0 

Index 

 

–1 0 2 

 

Matrix A Storage structure: 
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Profile format (1) 

 Profile format is used to store a matrix when the matrix has a 

wide band with a great number of zeroes inside. The matrix 

does not have a pronounced structure, but its nonzeroes are 

concentrated close to its main diagonal.  

 Let us see how the profile format is applied to the 𝑛 × 𝑛 
symmetric matrix 𝐴. 

 For each row 𝑖 of the matrix 𝐴, determine the first nonzero 

shift from the main diagonal.  

𝛽𝑖 = 𝑖 − 𝑗𝑚𝑖𝑛(𝑖),  

where 𝑗𝑚𝑖𝑛(𝑖) is the minimum number of column or row  𝑖 for 

which 𝑎𝑖𝑗 ≠ 0.  
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Profile format (2) 

 Shell of the matrix 𝐴 is a set of elements 𝑎𝑖𝑗, for which 

0 <  𝑖 − 𝑗 ≤ 𝛽𝑖. In the 𝑖th matrix row, elements with row indices 

from 𝑗𝑚𝑖𝑛𝑖 to 𝑖−1, a total of 𝛽𝑖 elements, belong to the shell. 

Diagonal elements are not included into the shell.  

 Profile of the matrix 𝐴 is the number of elements in the shell: 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 = 𝛽𝑖

𝑛

𝑖=1
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 Matrix example: 

 

 

 

 

 

 

 

 

 

𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 = 11 

𝑎11        
 

 𝑎22 𝑎23      
 

𝑎32 𝑎33  𝑎35  𝑎37   
 

  𝑎44     
 

 

 𝑎53  0  𝑎57  𝑎58 
 

    𝑎66   

  𝑎73  𝑎75  𝑎77   

   𝑎84  𝑎85   𝑎88 

 

 

Элементы 
оболочки  

𝑛 = 8 

 1 =  2 =  4 =  6 = 0   3 = 1   5 = 2   7 =  8 = 4 

Profile format (3) 
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Shell 

elements 
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Profile format (4) 

 To store a symmetric matrix in a profile format, two arrays are 

required.  

 All elements of the matrix shell including zeroes arranged in 

rows are stored in the Matrix  array size 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 +  𝑛. The 

diagonal element for this row is placed at its end.  

 In addition, the 𝑛 Index array will be stored to contain indices 

of diagonal matrix elements in the Matrix array. Thus, if 𝑖
≥ 1 elements of the 𝑖 th row of the matrix 𝐴 are stored in the 

Matrix array from Index[i – 1] + 1 to Index[i]. 
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Profile format (5) 
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 Example of a matrix stored in the profile format: 

Matrix 𝐴  

 

1 2     

2 3  4   

  5 6 7 8 

 4 6 9   

  7  10  

  8  11 12 

Storage structure: 

Matrix 

 

1 2 3 5 4 6 9 7  0 10 8 0 11 12 

              

0 2 3 6 9 13 
Index 
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Profile format (6) 

 Profile storage scheme modification for a non-symmetric 

matrix with a symmetric pattern requires four arrays: 

– The 𝑛 di array contains diagonal elements.  

– The 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 (𝐴) au and al arrays contain off-diagonal 

elements of the upper triangle in the column-wise manner 

and lower triangle elements in the row-wise manner, 

respectively. 

– The auxiliary 𝑛 Index array contains row indices in the au 

and al arrays. 
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Format used to solve the problem (1) 

 For the purposes of work, the row format of the symmetrical 

matrix storage (−𝐴) will be used.  

 Both the upper and lower triangles will be stored, as one of 

the basic SOR operations is multiplication of a matrix row by 

the vector of unknowns𝑈.  

 Additional array Index will contain elements −𝑛 + 1,−1, 0, 1, 𝑛
− 1.  

 Add 𝑛 − 1 zeroes to the vector of unknowns at the beginning 

and the end: 

𝑈 = 𝑈1,0, 𝑈2,0, … , 𝑈𝑛−1,0, 𝑈1,1, … , 𝑈𝑛−1,𝑚−1, 𝑈1,𝑚, 𝑈2,𝑚, … , 𝑈𝑛−1,𝑚 , 

𝑈𝑖,0 = 𝑈𝑖,𝑚 = 0, 𝑖 = 1, 𝑛 − 1 
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Format used to solve the problem (2) 

 Example of use of the selected storage format: 
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Матрица 𝐴 

(𝑛 = 4, 𝑚 = 3) 

Структура хранения: 

50 -16  -9   

-16 50 -16  -9  

 -16 50   -9 

-9   50 -16  

 -9  -16 50 -16 

  -9  -16 50 

о 

Matrix 

 

 

 

 

0 0 50 -16 -9 

0 -16 50 -16 -9 

0 -16 50 0 -9 

-9 0 50 -16 0 

-9 -16 50 -16 0 

-9 -16 50 0 0 
 

Index    

 

-3 -1 0 1 3 

 

Matrix A Storage structure: 



SOFTWARE IMPLEMENTATION 
Consecutive version 
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Project creation (1) 

 Run Microsoft Visual Studio 2008 

 From the File menu, select New→Project…. 

 From the New Project, select Win32 from the Project types 

pane and Win32 Console Application from the Templates 

pane; enter ВandOverRelaxation in the Solution field, enter 

01_BandOR_seqv in the Name field, enter 

c:\ParallelCalculus\ (path to the folder with laboratory 

works). Press OK. 

 From the Win32 Application Wizard dialog, press Next and 

click Empty Project. Press Finish. 
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Project creation (2) 

 From the Solution Explorer, execute Add→New Item in the 

Source Files folder. In the selection tree, select Code; select 

C++ File (.cpp) in the templates on the right, enter main in 

the Name field. Press Add. 

 In a similar way, add BandOverRelax.cpp, 

PoissonDecision.cpp and Utilities.cpp.  

 From the Solution Explorer, execute Add→New Item in the 

Header Files folder. In the selection tree, select Code; select 

Header File (.h) in the templates on the right, enter 

BandOverRelax in the Name field. Press Add. 
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Project creation (3) 

 In a similar way, add PoissonDecision.h and Utilities.h.  
 

 BandOverRelax.h and BandOverRelax.cpp will store 

prototypes and implementations of functions necessary for 

the SOR method. 

 PoissonDecision.h and PoissonDecision.cpp will contain 

prototypes and implementations of functions determining the 

right-hand part and boundary conditions of the differential 

equation and the functions of solving differential equations. 

 Utilities.h and Utilities.cpp will contain prototypes and 

implementations of auxiliary functions. 
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Connection to the Intel® Math Kernel Library (1) 

 To check for correctness the solution obtained using the SOR 

method, use the linear system solution functions from the 

MKL library. 

 Library connection: 

– Open Tools → Options and select Projects and 

Solutions→VC++ Directories.  

– In the drop-down menu, first select Include Files, add a 

new entry containing the path to MLK library header files 

(e. g. C:\Program Files (x86)\Intel\ComposerXE-

2011\mkl\include),  
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Connection to the Intel® Math Kernel Library (2) 

– Then select Library Files and add the path to the library 

files: 

• To assemble a 32-bit application, enter the path to the static library 

for the ia-32 platform (e. g. C:\Program Files 

(x86)\Intel\ComposerXE-2011\mkl\lib\ia32) 

• To assemble a 64-bit application, enter the path to the static library 

for the 64-bit platform (e. g. C:\Program Files 

(x86)\Intel\ComposerXE-2011\mkl\lib\intel64). 
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Connection to the Intel® Math Kernel Library (3) 

– From Configuration Properties in the 

Linker→Input→Additional Dependencies tab, enter the 

following static libraries:  

• for a 32-bit application, they are mkl_core.lib, mkl_intel_c.lib, 

mkl_Consecutive.lib.  

• for z 64-bit application, they are mkl_core.lib, 

mkl_Consecutive.lib, mkl_intel_lp64.lib, mkl_blas95_lp64.lib.  
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Elementary function (1) 

//SOR method accuracy 

#define EPSILON 0.00001 

 

int main(int argc, char* argv[]) { 

  int n, m;      //grid parameters  

  int StepCount; //number of steps performed by the SOR method 

  int size;      //linear system dimension 

  // variables to store the computing function runtimes 

  double time, MKLtime; 

  // set accuracy of the SOR method as a stop criterion 

  double Accuracy = EPSILON; 

  double ORAccuracy;   //attainable SOR accuracy 

  double* Decision;    //solution found using the SOR method 

  double *DecisionMKL; //exact system solution found using MKL 

  // difference between the exact solution and the solution  

  // found using the SOR method (in norm) 

  double ExcAccuracy; 

  // variables to save the results in a file 

  char* FileName = "sparseOR_res.csv"; FILE* file; 

  // continued in the following slide 
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Elementary function (2) 

//1. Reading the command line parameters 

  if ((argc > 2) && (argc < 6)) { 

    n = atoi(argv[1]); 

    m = atoi(argv[2]); 

    if (argc >= 4) { 

      Accuracy = atof(argv[3]); 

      if (argc == 5) 

        FileName = argv[4]; 

    } 

  } 

  else { 

    printf("Invalid input parameters\n"); 

    return 1; 

  } 

  if ((n < 0) || (m < 0) || (Accuracy < 0)) { 

    printf("Incorrect arguments of main\n"); 

    return 1; 

  } 

// continued in the following slide 
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Elementary function (3) 

  size = (n - 1)*(m - 1); 

   

  //2. Memory allocation to arrays  

  //Decision and DecisionMKL of the size dimension  

  

  //3. Calling the function of solving linear systems by the SOR 

method,  

  printf("OverRelaxation:\ntime = %.15f\n", time); 

  printf("Accuracy = %.15f, stepCount = %d\n", ORAccuracy, StepCount); 

  

  //4. Solution verification:  

  //  4.1. Finding the exact system solution using MKL 

  //  4.2. Comparison of Decision and DecisionMKL 

  MKLtime = СomputeDecisionMKL(n, m, DecisionMKL); 

  ExcAccuracy = СompareDecisions(Decision, DecisionMKL, size); 

  printf("MKL:\ntime = %.15f\n", MKLtime); 

  printf("OR and MKL comparison = %.15f\n", ExcAccuracy); 

  // continued in the following slide 
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Elementary function (4) 

//5. Results filing   

  file = fopen(FileName, "a+"); 

  if (file) { 

    fprintf(file, "%d;%d;%.15f;%.15f;%.15f;%d;%.15f\n",  

                   n, m, Accuracy, ORAccuracy, ExcAccuracy,  

                   StepCount, time); 

  } 

  fclose(file); 

 

  //6. Memory release for Decision and DecisionMKL arrays 

  

  return 0; 

} 
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Auxiliary functions 

 Utilities.h will contain prototypes and Utilities.cpp will 

contain implementation of memory allocation and release 

functions. 
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//Memory allocation 

void InitializeVector(double** Vector, int size); 

void InitializeVector(int ** Matrix, int size);  

 

// memory release 

void FreeVector(double** Vector); 

void FreeVector(int** Vector); 
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Auxiliary functions. Differential equation 

description (1) 

#define _USE_MATH_DEFINES 

#include "math.h" 

 

#define LEFT_BOUND  10.0  

#define RIGHT_BOUND 10.0 

 

// Function of right-hand part computation for partial differential 

equations  

double f(double x, double y) { 

  return  10*sin(M_PI*x/LEFT_BOUND)*sin(M_PI*y/RIGHT_BOUND); 

} 
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 PoissonDecision.h will contain prototypes and 

PoissonDecision.cpp will contain implementation of functions 

describing the right-hand part and boundary conditions of the 

differential equation: 



58 

Auxiliary functions. Differential equation 

description (2) 
// Function of BC computation at the left side of the rectangle 

double mu1(double y) { 

  return  y*(RIGHT_BOUND - y)*cos(M_PI*(RIGHT_BOUND - y)/  

       RIGHT_BOUND)*cos(M_PI*y/RIGHT_BOUND); 

} 
 

// Function of BC computation at the right side of the rectangle 

double mu2(double y) { 

  return  -y*(RIGHT_BOUND - y)*sin(M_PI*(RIGHT_BOUND - y)/RIGHT_BOUND); 

} 
 

// Function of BC computation at the lower side of the rectangle 

double mu3(double x) { 

  return x*(LEFT_BOUND - x)*cos(M_PI*(LEFT_BOUND - x)/     

       LEFT_BOUND)*cos(M_PI*x/ LEFT_BOUND); 

} 
 

// Function of BC computation at the upper side of the rectangle 

double mu4(double x) { 

  return -x*(LEFT_BOUND - x)*sin(M_PI*(LEFT_BOUND - x)/ LEFT_BOUND); 

} 
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Auxiliary functions. Linear system initialization 

(1) 

 Utilities.h will contain prototypes and Utilities.cpp will 

contain implementation of functions forming the right-hand 

matrix and vector of the linear system based on a difference 

scheme in the selected format. 
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// matrix initialization for a grid (n, m) 

void CreateDUMatrix(int n, int m, double** Matrix, int** Index) { 

  // matrix dimension, band width  

  int size = (n - 1)*(m - 1), bandWidth = 5; 

  // matrix elements 

  double hsqr = (double)n*n/LEFT_BOUND/ LEFT_BOUND; // 1/h 

  double ksqr = (double)m*m/RIGHT_BOUND/RIGHT_BOUND;// 1/k 

  double A = 2*(hsqr + ksqr); 

 
  //1. Memory allocation 

  InitializeVector(Matrix, size*bandWidth); 

  InitializeVector(Index, bandWidth); 

  // continued in the following slide 
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Auxiliary functions. Linear system initialization 

(2) 
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  //2. Index array initialization 

  (*Index)[0] = -n + 1; (*Index)[1] = -1; (*Index)[2] = 0;     

  (*Index)[3] = 1; (*Index)[4] = n - 1; 

   

  //3. Initialization of the matrix (-А) based on a differential scheme 

  for (int i = 0; i < size; i++) { 

    if (i >= n - 1) (*Matrix)[i*bandWidth] = -ksqr; 

    else  (*Matrix)[i*bandWidth] = 0.0; 

    i 

    else  (*Matrix)[i*bandWidth + 1] = 0.0; 

    (*Matrix)[i*bandWidth + 2] = A; 

    if ((i + 1) % (n - 1) != 0) (*Matrix)[i*bandWidth + 3] = -hsqr; 

    else  (*Matrix)[i*bandWidth + 3] = 0.0; 

    if (i < (n - 1)*(m - 2)) (*Matrix)[i*bandWidth + 4] = -ksqr; 

    else  (*Matrix)[i*bandWidth + 4] = 0.0;     

  } 

} 
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Auxiliary functions. Linear system initialization 

(3) 
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// vector initialization for a grid (n, m) 

void CreateDUVector(int n, int m, double** Vector) { 

  // auxiliary variables 

  double h = LEFT_BOUND/(double)n; 

  double k = RIGHT_BOUND/(double)m; 

  double hsqr = (double)n*n/LEFT_BOUND/LEFT_BOUND; 

  double ksqr = (double)m*m/RIGHT_BOUND/RIGHT_BOUND; 

  

  //1. Memory allocation 

  InitializeVector(Vector, (n - 1)*(m - 1)); 

  

  //2. Initialization of the linear system left part based on a differential 

scheme 

  for(int j = 0; j < m - 1; j++) { 

    for(int i = 0; i < n - 1; i++) 

      (*Vector)[j*(n - 1) + i] = f((double)(i + 1)*h,  

                                   (double)(j + 1)*k); 

    (*Vector)[j*(n - 1)]         += hsqr*mu1((double)(j + 1)*k); 

    (*Vector)[j*(n - 1) + n - 2] += hsqr*mu2((double)(j + 1)*k); 

  } 

  // continued in the following slide 
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Auxiliary functions. Linear system initialization 

(4) 
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  for (int i =0; i < n - 1; i++) { 

    (*Vector)[i] += ksqr*mu3((double)(i + 1)*h); 

    (*Vector)[(m - 2)*(n - 1) + i] += ksqr*mu4((double)(i + 1)*h); 

  } 

} 

 Implement CreateMKLMatrix() that enables initialization of 

the matrix (– 𝐴) based on a differential scheme (8) from the 

(𝑛,𝑚) grid in the format used by the MKL library (the upper 

triangle will be stored in a column-wise way). 

// matrix initialization for MKL 

void CreateMKLMatrix(int n, int m, double** Matrix); 



63 

Auxiliary functions. Obtaining the exact system 

solution (1) 
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// finding the exact system solution using MKL 

#include "mkl_lapack.h" 

 

double СomputeDecisionMKL(int n, int m, double* Decision) { 

  double *Matrix, *Vector; //system matrix and vector  

  int size = (n - 1) * (m - 1); 

  // auxiliary variables for MKL functions 

  char uplo = 'U'; //consider the matrix as an upper triangular one 
  int kd = n - 1;  //number of top diagonals 

  int ldab = n;    //first matrix dimension 

  int info = 0;    //output parameter, error code 

  int nrhs = 1;    //number of right-hand parts 

  double time;     //runtime 

 

  //1. Matrix and right-hand vector initialization 

  CreateMKLMatrix(n, m, &Matrix); 

  CreateDUVector(n, m, &Vector); 

   

  // continued in the following slide 
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Auxiliary functions. Obtaining the exact system 

solution (2) 

 //2. Solving the system 

  clock_t start = clock(); 

  dpbtrf(&uplo, &size, &kd, Matrix, &ldab, &info); 

  dpbtrs(&uplo, &size, &kd, &nrhs, Matrix, &ldab, Vector, &size, 

&info); 

  time = (double)(clock() - start) / CLOCKS_PER_SEC; 

   

  //3. Memorization 

  memcpy(Decision, Vector, sizeof(double)*size); 

   

  //4. Memory release 

  FreeVector(&Matrix); 

  FreeVector(&Vector); 

  

  return time; 

} 
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Auxiliary functions. Obtaining the exact system 

solution (3) 

 Implement CompareDecisions() that enable finding the norm 

of difference between the solution found using the SOR 

method and the exact solution obtained by the MKL (the 

vector norm can be defined as 𝑥∞ =𝑚𝑎𝑥𝑖
𝑥
𝑖).  
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// comparison of solutions 

double СompareDecisions(double* ORResult, double* MKLDecision,  

       int size); 
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Auxiliary functions. Calling the Successive Over 

Relaxation method (1) 

 ComputeDecision() will compute an approximated decision of 

the differential equation using the SOR method within a (𝑛, 𝑚) 

grid. Place the function implementation in 

PoissonDecision.cpp and declare the respective prototype 

in PoissonDecision.h. 
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// approximated differential equation solution computation for a grid (n, m)  

// obtained solution is stored in the Decision vector 

// function returns the method runtime 

double СomputeDecision(int n, int m, double* Decision, 

    double Accuracy, double &ORAccuracy,  

    int &StepCount) { 

  // matrix, vector, solution 

  double* Matrix, *Vector, *Result;  

  int* Index; 

  int size = (n - 1)*(m - 1);     //system dimension 

  int ResSize = size + 2*(n - 1); // augmented vector dimension 

  // continued in the following slide 
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Auxiliary functions. Calling the Successive Over 

Relaxation method (2) 

 int bandWidth = 5; // band width 

 

  // variables to measure time 

  clock_t start, finish;  

  double time; 

  // SOR method parameters 

  double WParam; 

  double step = n/LEFT_BOUND > m/RIGHT_BOUND) ? 

         (double) LEFT_BOUND /n : (double) RIGHT_BOUND /m; 

  //1. System initialization 

  CreateDUMatrix(n, m, &Matrix, &Index); 

  CreateDUVector(n, m, &Vector); 

   

  //2. Method initialization 

  InitializeVector(&Result, ResSize); 

  GetFirstApproximation(&Result, ResSize); 

  WParam = GetWParam(step); 

 

  // continued in the following slide 
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Auxiliary functions. Calling the Successive Over 

Relaxation method (3) 

 //3. Approximated solution computation using the successive over 

  // relaxation method 

  start = clock(); 

  ORAccuracy = BandOverRelaxation(Matrix, Vector, &Result, Index, size, 

         bandWidth, WParam, Accuracy,  

                                  &stepCount); 

  finish = clock(); 

  time = (double)(finish - start)/CLOCKS_PER_SEC;  

  // solution saving 

  memcpy(Decision, Result + n - 1, sizeof(double)*size); 

   

  //4. Memory release 

  FreeVector(&Matrix); 

  FreeVector(&Index); 

  FreeVector(&Vector); 

  FreeVector(&Vector); 

  

  return time; 

} 
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Implementation of the Successive Over 

Relaxation method (1) 

 Implement the SOR method as applicable to the block five-

diagonal matrix. Place prototypes of the respective functions 

in BandOverRelax.h and their implementation - in 

BandOverRelax.cpp. 
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#define N_MAX 50000 //maximum allowable number of steps 

 

// setting zero approximation for the SOR method 

void GetFirstApproximation(double** Result, int size) { 

  for(int i = 0; i < size; i++) 

    Result[i] = 0.0; 

} 

  

// setting the SOR method parameter depending on the grid size 

double GetWParam(double Step) { 

  return 2 / (1 + 2*sin(M_PI*Step/2)); 

} 
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Implementation of the Successive Over 

Relaxation method (2) 

//SOR method for band matrices 

// function returns the attainable system solution accuracy 

double BandOverRelaxation(double* Matrix, double* Vector,  

             double** Result, int* Index, int size,  

                          int bandWidth, double WParam,  

             double Accuracy, int &StepCount) { 

  // auxiliary variables 

  double CurrError; //attainable accuracy for the iteration 

  double sum, TempError; 

  int ii, index = Index[bandWidth - 1], bandHalf = (bandWidth - 1)/2; 

  StepCount = 0; 

  

  do { 

    CurrError = -1.0; 

    for(int i = index; i < size + index; i++) { 

      ii = i - index; 

      TempError = (*Result)[i]; 

      sum = 0.0; 

 

  // continued in the following slide 
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Implementation of the Successive Over 

Relaxation method (3) 

for (int j = 0; j < bandWidth; j++) 

        sum += Matrix[ii*bandWidth + j] * (*Result)[i + Index[j]]; 

      (*Result)[i] = (Vector[ii] - sum) * WParam /  

              Matrix[ii*bandWidth + bandHalf] + (*Result)[i]; 

      TempError = fabs((*Result)[i] - TempError); 

      if (TempError > CurrError) CurrError = TempError;  

    } 

    StepCount++; 

  } 

  while ((CurrError > Accuracy)&&(StepCount < N_MAX)); 

  return CurrError; 

} 
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Project compilation and application run 

 Add missing functions to the software implementation; include 

necessary header files. 

 Having developed the software implementation, build the 

project by executing Build→Rebuild 01_BandOR_seqv and 

check the application for consistent running. 

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011 
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Method convergence analysis (1) 

 To analyze the implemented SOR method, let us consider a 

system resulting from a differential equation with a predefined 

known solution and boundary conditions. 

 Study temperature variation in a plate with lateral lengths 

𝑙1=𝑙2 = 1. Let the function 𝑢 𝑥, 𝑦 = 𝑥2𝑦 + 𝑦2𝑥 be the heat 

diffusion equation solution Then, the equation (1) will look as 

follows: 

∆𝑈 = −𝑓 𝑥, 𝑦 = 2 𝑥 + 𝑦                              (19) 
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Method convergence analysis (2) 

 Boundary conditions (2) will satisfy the following equations: 

𝑈 0, 𝑦 = 𝜇1 𝑦 = 0                                   20  
𝑈 𝑙1, 𝑦 = 𝜇2 𝑦 = 𝑙1(𝑙1 + 𝑦

2) 
𝑈 𝑥, 0 = 𝜇3 𝑥 = 0 

𝑈 𝑥, 𝑙2 = 𝜇4 𝑥 = 𝑙2(𝑙2 + 𝑥
2) 

 Replace implementation of functions corresponding to setting 

functions 𝑓, 𝜇1,  𝜇2 , 𝜇3 , 𝜇4 in the program code. 
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Method convergence analysis (3) 

 In PoissonDecision.cpp, implement the FunkU() function 

that returns the solution fucntion value at a certain point: 

 

 In Utilities.cpp, implement the CheckDecision() function that 

makes it possible to find the residual norm of a solution 

obtained using a certain method with a predetermined 

solution. 
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// exact solution of a differential equation 

double FuncU(double x, double y);            

// solution accuracy verification 

double CheckDecision(double* Decision, int n, int m) 
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Method convergence analysis (4) 

 Experimental 

results with 

various 

accuracy: 
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𝑛,𝑚 𝜀 Numb

er of 

steps 

Attainable 

accuracy 

Allowed difference 

from the exact 

solution 

10 0,001 20 0,000467 0,000383 

50 0,001 101 0,000723 0,000380 

100 0,001 201 0,000703 0,000455 

500 0,001 1001 0,000461 0,000671 

1000 0,001 2001 0,000380 0,000844 

10 0,0001 22 0,000078 0,000107 

50 0,0001 104 0,000075 0,000268 

100 0,0001 204 0,000084 0,000360 

500 0,0001 1004 0,000080 0,000535 

1000 0,0001 2004 0,000085 0,000624 

10 0,00001 26 0,0000099 0,000013 

50 0,00001 115 0,0000095 0,000058 

100 0,00001 219 0,0000098 0,000131 

500 0,00001 1016 0,0000097 0,000393 

1000 0,00001 2036 0,0000099 0,000382 
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Method convergence analysis (5) 

 The method quickly converges to a solution. This effect may 

be partially explained by simplicity of the right-hand function 

and boundary conditions.  

 The norm of difference from the exact solution for all the 

above cases has an order of at least 10−4.  

 For the selected functions, a single-order decrease of the 

required accuracy 𝜀 given a fixed grid size has an insignificant 

influence on the number of method iterations. 
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SOFTWARE IMPLEMENTATION 
Parallel Intel® Cilk Plus-based version 
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Project creation 

 From BandOverRelaxation, create a new project entitled 

02_BandOR_cilk.  

 Create empty files main.cpp, PoissonDecision.h, 

PoissonDecision.cpp, BandOverRelax.h, 

BandOverRelax.cpp, Utilities.h, Utilities.cpp and copy to 

these files the code from the respective files of 

01_BandOR_seq. 

 Connect Cilk Plus. For this purpose, open Configuration 

Properties and select С\С++→Language to make sure that 

the value of the Disable Intel Cilk Plus Keywords For Serial 

Semantics field is “No”. 
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main() function modification (1) 

int main(int argc, char* argv[]) { 

  ... 

  int NumThreads; //number of threads 

   

  //1. Reading the command line parameters 

  if ((argc > 2) && (argc < 7)) { 

    n = atoi(argv[1]); 

    m = atoi(argv[2]); 

    NumThreads = atoi(argv[3]); 

    if (argc >= 5) { 

      Accuracy = atof(argv[4]); 

      if (argc == 6) 

        FileName = argv[6]; 

    } 

  } 

   

  ... 

  // continued in the following slide 
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main() function modification (2) 

  ...  

  //3. Calling the function of solving linear systems by the SOR method 

  time = СomputeDecision(n, m, Decision, NumThreads, 

                 Accuracy, ORAccuracy, StepCount);  

  //5. Results filing   

  file = fopen(FileName, "a+"); 

  if (file) 

  { 

    fprintf(file, "%d;%d;%.15f;%.15f;%.15f;%d;%.15f;%d\n", 

                   n, m, Accuracy, ORAccuracy, ExcAccuracy, 

                   StepCount, time, NumThreads); 

  } 

  fclose(file); 

  ... 

} 
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ComputeDecision() function modification 

#include "cilk/cilk_api.h" 

 

double СomputeDecision(...) { 

  ... 

  WParam = GetWParam(step); 

   

  // set the number of threads 

  char nt[3];   

  itoa(NumThreads, nt, 10); 

  __cilkrts_set_param("nworkers", nt); 

   

  //calling the successive over relaxation method 

  start = clock(); 

  ORAccuracy = BandOverRelaxationCilk(Matrix, Vector, Result, Index,  

     size, bandWidth, WParam, Accuracy, StepCount); 

  finish = clock(); 

  time = (double)(finish - start)/CLOCKS_PER_SEC;  

  ... 

} 
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BandOverRelaxation() function modification (1) 

 We will obtain the SOR method modification for cycle 

parallelization within the iteration. Computation will result in 

mixed approximations whose elements have been obtained 

using mixed new and old components without keeping strictly 

to the method formula (14). 

 Introduce simple changes to the BandOverRelaxation() code 

and name it BandOverRelaxationCilk().  

 Parallelize the cycle by vector elements using cilk_for. In this 

case, the variables assuming different values for each cycle 

iteration must be declared locally.  
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BandOverRelaxation() function modification (2) 

 Declare the currError variable as a reducer for the 

maximization operation. This will ensure safe use of the 

shared variable, reduce synchronization costs and enable its 

parallel computation. 

 To work with currError, use the following functions: 

– set_value() to initialize the accuracy value at the beginning 

of the iteration; 

– get_value() to obtain the value;  

 The reduction operation itself is effected by means of 

cilk::max_of(). 
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BandOverRelaxation() function modification (3) 

#include "cilk/cilk.h" 

#include "cilk/reducer_max.h" 

 

double BandOverRelaxationCilk(...) {  

  cilk::reducer_max<double> CurrError;  

  ... 

  StepCount = 0;  

  do { 

    CurrError.set_value(-1.0); 

    cilk_for (int i = index; i < size + index; i++) { 

    int ii = i - index; 

    double TempError = Result[i]; 

    double sum = 0.0; 

    for (int j = 0; j < bandWidth; j++) 

      sum += Matrix[ii*bandWidth + j] * Result[i + Index[j]]; 

    Result[i] = (Vector[ii] - sum) * WParam /  

   Matrix[ii*bandWidth + bandHalf] + Result[i]; 

    TempError = fabs(Result[i] - TempError); 

    // continued in the following slide 
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BandOverRelaxation() function modification (4) 

      CurrError = cilk::max_of(TempError, CurrError); 

    } 

    StepCount++; 

  } 

  while ((CurrError.get_value() > Accuracy)&& 

         (StepCount < N_MAX)); 

   

  return CurrError.get_value(); 

} 
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Project compilation and application run 

 Modify the program code as required. 

 Having developed the software implementation, build the 

project by executing Build→Rebuild 02_BandOR_seqv and 

check the application for consistent running. 
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Scalability analysis (1) 

 To analyze the pipelined scheme efficiency, perform an 

experiment using functions based on formulas (3) – (7) with 

an accuracy of 𝜀 = 10−5. 

 

 See the next slide for the table showing dependence of the 

number of method iterations on the number of application 

threads. 
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Scalability analysis (2) 

Grid size 
Consecutive 

version 

Parallel Intel® Cilk Plus-based version 

1 

thread 

2 

threads 
4 threads 6 threads 8 threads 

100 2917 2917 2917 2995 3114 3136 

200 5409 5409 5409 5657 6049 6172 

300 7731 7731 7732 8243 8844 9023 

400 9944 9944 9945 10611 11766 12126 

500 12076 12076 12076 12993 14366 14896 

600 14145 14145 14145 15237 17219 18120 

700 16160 16160 16160 17573 19713 20836 

800 18129 18129 18131 19808 22536 23848 

900 20059 20059 20060 21738 25065 26494 

1000 21953 21953 22031 23862 27662 29155 
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 The greater is the number of threads, the more iterations are 

performed. The reason is that the parallel scheme does not 

take into account the strict sequence of the method 

approximations but builds intermediate approximations. 

 

 See the next slide for results of a multi-thread Cilk version. T 

is the runtime (in seconds), S is the acceleration as compared 

to single thread operation. 
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Scalability analysis (4) 
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System 

dimensio

n 

1 thread 2 threads 4 threads 6 threads 8 threads 

T T S T S T S T S 

100 0,68 0,53 1,27 0,32 2,12 0,33 2,04 0,34 2,01 

200 5,03 2,75 1,83 1,68 2,99 1,47 3,41 1,31 3,85 

300 16,23 8,61 1,89 4,98 3,26 4,15 3,91 3,46 4,69 

400 38,03 20,31 1,87 11,09 3,43 9,08 4,19 7,49 5,08 

500 73,03 38,45 1,90 21,65 3,37 17,21 4,24 14,54 5,02 

600 123,74 63,88 1,94 36,31 3,41 30,20 4,10 29,28 4,23 

700 192,64 98,88 1,95 57,14 3,37 47,92 4,02 48,70 3,96 

800 283,27 145,97 1,94 83,73 3,38 71,78 3,95 74,52 3,80 

900 397,73 205,74 1,93 115,16 3,45 101,53 3,92 105,10 3,78 

1000 538,16 278,87 1,93 155,83 3,45 137,41 3,92 143,02 3,76 



 

 Нижегородский государственный университет им. Н.И. Лобачевского 
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Scalability analysis (6) 

 The maximum acceleration of 5 was obtained for 8 threads 

when 𝑛 = 400, 𝑛 = 500. A greater grid size reduces the 

acceleration to 4. The reason is an increase in the number of 

iterations as the number of threads grows and an increase in 

contingencies and thread synchronization costs.  

 Upon the whole, the approach showed satisfactory 

acceleration results, however, it requires parallel version 

modification to reduce unnecessary computations. 



SOFTWARE IMPLEMENTATION 
Parallel implementation of the Intel® TBB-based 

pipelined scheme  

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 



95 

Project creation 

 From BandOverRelaxation, create a new project entitled 

03_BandOR_tbb.  

 Create empty files main.cpp, PoissonDecision.h, 

PoissonDecision.cpp, BandOverRelax.h, 

BandOverRelax.cpp, Utilities.h, Utilities.cpp and copy to 

these files the code from the respective files of 

02_BandOR_seq. 

 Create TaskImplementation.h and 

TaskImplementation.cpp to store declaration and 

implementation of problem classes that will ensure the 

pipelined scheme operation. 

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods 



96 

TBB library connection 

 Indicate the path to the library header files (Configuration 

Properties→C/C++→General→Additional Include 

Directories),  

 Indicate the path to the library .lib files (Configuration 

Properties→Linker→General→Additional Library 

Directories), 

 Indicate the tbb.lib library (Configuration 

Properties→Linker→Input→Additional Dependencies), to 

assemble the project. 
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TBB library initialization 

 To benefit from parallelization capabilities offered by TBB, 

one must have at least one active (initialized) 

tbb::task_scheduler_init class instance.  

 This class is intended for creation of threads and internal 

structures for the thread planner. 
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ComputeDecision() function modification 

#include "tbb/task_scheduler_init.h“ 

 

double СomputeDecision(...) {  

  ... 

  GetFirstApproximation(Result, ResSize); 

  WParam = GetWParam(step); 

   

  // set the number of threads 

  tbb::task_scheduler_init init(NumThreads); 

  

  start = clock(); 

  ORAccuracy = BandOverRelaxationTBB(Matrix, Vector, &Result, Index,  

          size, bandWidth, WParam, Accuracy, StepCount, n, NumThreads); 

  finish = clock(); 

  ... 

} 
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Description of a pipelined parallelization scheme 

(1) 

 As you can see from (14), computing the next element 𝑥𝑖
𝑠+1  

requires the elements of 𝑥 𝑠  approximation with numbers 

greater than 𝑖.  

 For each grid node, its upper and right neighbours in the 

cross stencil will be taken from the previous approximation, 

while the left and bottom ones - from the current one.  

 The number of nodes to be computed at each line is equal 

to  𝑛 − 1 for the (𝑛,𝑚) grid. Thus, computing 𝑥𝑖
𝑠+1  requires 

computation of the previous approximation 𝑥𝑗
𝑠  elements, 

𝑗 = 1, 𝑖 + 𝑛 − 1. 
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Description of a pipelined parallelization scheme 

(2) 

 If for several approximations the previous approximation has 

at least 𝑛 − 1 more computed elements, further 

approximations may be computed in parallel and in an in-sync 

manner with a difference of 𝑛 − 1 element. 

 Perform parallel computations based on the Master/Worker 

scheme.  

– The master will coordinate computation of approximations, 

distribute load among the Workers and check the method 

stop criterion.  

– Approximated solutions will be found directly by Workers.  
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Description of a pipelined parallelization scheme 

(3) 

 The pipelined scheme will be operated iteratively. Each 

iteration has three stages: 

– The Master will initialize data for the current computation 

step. 

– Having distributed the load between the Workers, the 

Master will wait for completion. The Workers will compute 

a certain number of elements, each for the respective 

approximation. 

– The Master will verify the method stop criterion.  

 The number of workers and the quantity of physical threads 

may not be the same. To better balance the load, each 

physical thread must take the load from several Workers.  
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Description of a pipelined parallelization scheme 

(4) 
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 Example of pipelined scheme organization with two physical 

threads and four workers: 
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Description of a pipelined parallelization scheme 

(5) 

 Let Chunk stand for a portion of  𝑛 −1 elements. The system 

dimension is a multiple of Chunk and is equal to (𝑛 − 1) ∗ (𝑚 − 1). 
Therefore, the approximation vector can be computed stepwise by 

computing a multiple of Chunk elements at a time.  

 Use Portion  to indicate the maximum number of portions of 

Chunk elements to be computed at a time. The last portion 

number, 𝑚− 1, will be maxChunk. 

 Each Worker has a pointer to the respective current and previous 

approximations. For the first Worker, the previous approximation 

will be the one computed by the last Worker.  
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Description of a pipelined parallelization scheme 

(6) 

 Let there be numWorkers Workers. Their computed 

approximations are stored in the WorkerResults array (sized 

numWorkers*ResSize, where ResSize is the approximation 

vector dimension).   

 The number of already computed portions of Chunk elements 

are stored in the PrevPos  array (sized numWorkers). The 

maximum number of portion whose elements are to be found 

at the current stage, is stored in the CurrPos array (sized 

numWorkers).  
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Pipelined parallelization scheme procedure (1) 

 Initialize WorkerResults approximations by the initial 

approximation. For each i  Worker set CurrPos[i] = 0, 

PrevPos[i] = 0. Set the number of method steps equal to 

zero. 

 Until the required accuracy is obtained: 

1. Determine the number of the current SOR method 

iteration currIter. This is the approximation with the least 

number whose computation was not completed.  

2. For all Workers, find the boundaries of elements to be 

computed at the current stage. 
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Pipelined parallelization scheme procedure (2) 

– For worker numbered k determining the currIter 

approximation: 
 

 

– For remaining workers except for the one preceding the 

kth one: 

 
 

 

* From this point on, j is the worker computing the previous approximation 
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PrevPos[k] = CurrPos[k]; 

CurrPos[k] = min(CurrPos[k] + Portion, maxChunk); 

PrevPos[i] = CurrPos[i]; 

CurrPos[i] = max(min(CurrPos[i] + Portion,  

    PrevPos[j] - 1), 0); 
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Pipelined parallelization scheme procedure (3) 

– For worker number l directly preceding the worker with the 

currIter approximation: 

• If its approximation has not been computed completely, the worker 

will compute the currIter + numWorkers - 1th approximation. 

Computation boundary: 

 

 

• Otherwise, worker l has finished computing the currIter - 1th 

approximation and can proceed to computation of the 

currIter + numWorkersth approximation. Computation boundary: 
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PrevPos[l] = CurrPos[l]; 

CurrPos[l] = max(PrevPos[j] – 1, 0); 

PrevPos[l] = 0; 

CurrPos[l] = min(Portion, PrevPos[j] - 1); 
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Pipelined parallelization scheme procedure (4) 

3. In parallel, run computation of elements for each i Worker 

from Chunk*PrevPos[i] to Chunk*CurrPos[i] – 1, wait 

for completion. 

4. If the current approximation has been computed 

completely, check the stop criterion. If the required 

accuracy has been attained, save the result and complete 

the work. 

5. Initialize the new computation stage, go to step 1. 
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Pipelined parallelization scheme procedure (5) 

Example of a 

pipelined scheme 

operation.  

if n = m = 11, 

Portion = 3, 

numWorkers = 3. 
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Pipelined parallelization scheme procedure (6) 

 The scheme restricts the correlation between the single 

portion Portion, grid size and the number of worker threads.  

 Correctness of the pipelined scheme run will be guaranteed if:  

numWorkers*Portion < n – 1  –  Portion  (21) 

 For certain grids,one can select a parameter correlation so 

that the pipelined scheme will operate under a less strict 

condition: 

numWorkers*Portion < n – 1   (22) 
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Software implementation 

 Implement the described pipelined scheme using the Intel® 

TBB task mechanism.  

 Let us suppose that the master and worker functionalities are 

implemented as separate classes of problems. 

 Declare the classes of TBB-problems in 

TaskImplementation.h having mapped the required header 

file. Set the pipelined scheme parameters in the same file. 

 

 

 Implement the execute() methods of the declared classes in 

TaskImplementation.cpp.  
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#include "tbb\task.h" 

#define THREADS_PER_WORKER 2 //number of workers per thread 

#define FIRST_PORTION 2      //first portion of computations 
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Class ensuring functionality of the worker (1) 

// tbb class - worker problem 

// computations at a certain method iteration 

class OverRelaxWorker : public tbb::task { 

public: 

  double* PrevResult;  //approximation at the previous iteration 

  double* CurrResult;  //approximation at the current iteration 

  static  double* tMatrix;    //matrix 

  static  int* tIndex;        //diagonal offset index 

  static  double* tVector;    //right-hand vector 

  static  double tWParam;     //method parameter 

  static  int tSize;          //system dimension 

  static  int tBandWidth;     //band width 

  int start;  // initial position of the portion of computations 

  int finish;      //final portion of computations 

  double CurrError;//solution accuracy at the current approximation 

  

  tbb::task* execute(); 

}; 
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Class ensuring functionality of the master (2) 

tbb::task* OverRelaxWorker::execute() { 

  int ii, j; 

  int index = tIndex[tBandWidth - 1], bandHalf = (tBandWidth - 1)/2; 

  double sum, TempError;   

   

  // computing the new approximation elements [start, finish)   

  for (int i = index + start; i < index + finish; i++) {  

    ii = i - index; 

    sum = 0.0; 

    for (j = 0; j < bandHalf; j++)  

      sum += tMatrix[ii*tBandWidth + j] * CurrResult[i + tIndex[j]]; 

    for (j = bandHalf; j < tBandWidth; j++) 

      sum += tMatrix[ii*tBandWidth + j] * PrevResult[i + tIndex[j]]; 

    CurrResult[i] = (tVector[ii] - sum) * tWParam / 

         tMatrix[ii*tBandWidth + bandHalf] + PrevResult[i]; 

    TempError = fabs(CurrResult[i] - PrevResult[i]); 

    CurrError = max(CurrError, TempError); 

  } 

  return NULL; 

} 
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Class ensuring functionality of the master (1) 

// tbb class - master problem 

// organizing parallel computations, method start and stop 

class OverRelaxMaster : public tbb::task { 

public: 

  static  double* tDecision;  //obtained solution 

  static  double tORAccuracy; //attainable accuracy 

  static  double tAccuracy;   //set accuracy of solution 

  static  int tSize;          //system dimension 

  static  int tResSize;       //solution vector dimension 

  static  int NumSteps;       //number of performed iterations 

  static  int MaxNumSteps;    //maximum number of iterations 

  static  int numWorkers;     //number of worker problems 

  static  int Chunk;    //dimension of a single portion of computations 

   

public: 

  tbb::task* execute(); 

}; 
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Class ensuring functionality of the master (2) 

#ifndef min 

#define min(a, b) ((a)<(b))?(a):(b) 

#endif 

#ifndef max 

#define max(a, b) ((a)>(b))?(a):(b) 

#endif 

  

tbb::task* OverRelaxMaster::execute() { 

  OverRelaxWorker **Workers;  //worker threads 

  tbb::task_list tasks;       //list of generated problems 

  double** workerResults;     //approximations found by workers  

  double CurrError = -1.0;    //current method accuracy 

  int *prevPos; //number of elements computed at the previous stage 

  int *currPos; //number of elements computed at the current stage 

  double *currErrorBuff;      //current error of workers 

  int portion = FIRST_PORTION;//first portion of computations 

  int currIter; //current iteration number 

  // the number of maximum portion of computations (number of layers) 

  int maxPortion = tSize / Chunk; 

  // continued in the following slide 
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Class ensuring functionality of the master (3) 

  // auxiliary variables 

  int i;     

  int refCount; 

   

  //1. Memory initialization for operation: 

  // 1.1 - auxiliary arrays 

  InitializeVector(&currPos, numWorkers); 

  InitializeVector(&prevPos, numWorkers); 

  InitializeVector(&currErrorBuff, numWorkers); 

   

  // 1.2 - workers and the array of corresponding approximations 

  Workers       = new OverRelaxWorker* [numWorkers]; 

  workerResults = new  double* [numWorkers]; 

  for(i = 0; i < numWorkers; i++) { 

    Workers[i] = new(tbb::task::allocate_child()) OverRelaxWorker; 

    InitializeVector(&(workerResults[i]), tResSize); 

    memset(workerResults[i], 0, sizeof(double) * tResSize);   

  } 

 
  // continued in the following slide 
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Class ensuring functionality of the master (4) 

  // 1.3 - initialization of approximations for the worker threads 

  for(i = 0; i < numWorkers; i++) { 

    currPos[i] = 0; 

    prevPos[i] = 0; 

    currErrorBuff[i] = -1.0; 

    Workers[i]->CurrResult = workerResults[i]; 

    Workers[i]->PrevResult = workerResults[(i+ numWorkers - 1) %  

       numWorkers]; 

  } 

  

  //2. SOR method launch 

  NumSteps = 0; 

  while(true) { 

    // 2.1 - determining the current approximation number  

    currIter = NumSteps % numWorkers; 

    // 2.2 - determining the boundary of the new portion of computations  

    // for the current approximation 

    prevPos[currIter] = currPos[currIter]; 

    currPos[currIter] = min(currPos[currIter] + portion,  maxPortion); 

    // continued in the following slide 
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Class ensuring functionality of the master (5) 

    Workers [currIter]->start  = prevPos[currIter] * Chunk; 

    Workers [currIter]->finish = currPos[currIter] * Chunk; 

     

    // recording the new problem in the list of problems 

    refCount = 1; 

    tasks.push_back(*(Workers[currIter])); 

    refCount ++; 

     

    // 2.3 - determining the boundary of the new portion of computations 

for the following  

    // computations, placing the workers in the list of problems 

    for(i = 1; i < numWorkers - 1; i++) { 

      prevPos[(currIter + i) % numWorkers] =  

                      currPos[(currIter + i) % numWorkers]; 

      // If the previous approximation resulted in less that 1 portion 

(layer)  

      // the current position will be 0. Else - next portion 

      currPos[(currIter + i) % numWorkers] = max( 

        min(currPos[(currIter + i) % numWorkers] + portion, 

            prevPos[(currIter + i - 1) % numWorkers] - 1), 0); 

         // continued in the following slide 
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Class ensuring functionality of the master (6) 

      Workers [(currIter + i) % numWorkers]->start  =  

              prevPos[(currIter + i) % numWorkers] * Chunk; 

      Workers [(currIter + i) % numWorkers]->finish =  

              currPos[(currIter + i) % numWorkers] * Chunk; 

      tasks.push_back(*(Workers[(currIter + i) % numWorkers])); 

      refCount ++; 

    } 

     

    // 2.4 - determining the boundary of the new portion of 

computations for the last 

    // worker (the previous one as regards the current approximation) 

    // a) if the approximation vector has not been computed completely 

    if(currPos[(currIter + i) % numWorkers] != maxPortion) { 

      prevPos[(currIter + i) % numWorkers] =  

                      currPos[(currIter + i) % numWorkers]; 

      currPos[(currIter + i) % numWorkers] =  

        max(prevPos[(currIter + i - 1) % numWorkers] - 1, 0); 

    } 

     

    // continued in the following slide 
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Class ensuring functionality of the master (7) 

    // b) if the approximation vector has been computed completely 

    else { 

      prevPos[(currIter + i) % numWorkers] = 0; 

      currPos[(currIter + i) % numWorkers] = min(portion, 

             prevPos[(currIter + i - 1) % numWorkers] - 1); 

      Workers [(currIter + i) % numWorkers]->CurrError = -1.0; 

    } 

    Workers [(currIter + i) % numWorkers]->start  =  

              prevPos[(currIter + i) % numWorkers] * Chunk; 

    Workers [(currIter + i) % numWorkers]->finish =  

              currPos[(currIter + i) % numWorkers] * Chunk; 

    tasks.push_back(*(Workers[(currIter + i) % numWorkers])); 

    refCount ++; 

  

    // 2.5 - Placing the problems in the pool and solving them 

    set_ref_count(refCount); 

    spawn_and_wait_for_all(tasks); 

  

    // continued in the following slide 
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Class ensuring functionality of the master (8) 

    // 2.6 - If the current approximation has been computed completely,  

    //      check the stop criterion 

    if(currPos[currIter] == maxPortion) { 

      CurrError = Workers[currIter]->CurrError; 

      Workers[currIter]->CurrError = -1.0; 

      currErrorBuff[currIter] = -1.0; 

      // if the solution is found, store it in tDecision 

      if ((CurrError < tAccuracy) || (NumSteps > MaxNumSteps)) { 

        tORAccuracy = CurrError; 

        this->tDecision = Workers[currIter]->CurrResult; 

        NumSteps++; 

        return NULL; 

      } 

      NumSteps++; 

    } 

    // 2.7 - Identification of new problems 

    // а) remember current error of each approximation 

    for(i = 0; i < numWorkers; i++) 

      currErrorBuff[i] = Workers[i]->CurrError; 

    // continued in the following slide 
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Class ensuring functionality of the master (9) 

    // b) identify new problems 

    delete [] Workers; 

    Workers = new OverRelaxWorker * [numWorkers];  

    for(i = 0; i < numWorkers; i++) 

      Workers[i] = new(tbb::task::allocate_child())  OverRelaxWorker; 

    // с) initialize approximations for the problems 

    for(i = 0; i < numWorkers; i++) { 

      Workers[i]->CurrError = currErrorBuff[i]; 

      Workers[i]->CurrResult = workerResults[i]; 

      Workers[i]->PrevResult =  

           workerResults[(i + numWorkers - 1) % numWorkers]; 

    } 

  } 

   

  //3. Memory release 

  FreeVector(&currPos); 

  FreeVector(&prevPos); 

  FreeVector(&currErrorBuff); 

   

  // continued in the following slide 
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Class ensuring functionality of the master (10) 

  for (i = 0; i < numWorkers; i++) 

    if (workerResults[i] != tDecision) 

      FreeVector(&workerResults[i]); 

  delete [] workerResults; 

  

  return NULL; 

}  
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BandOverRelaxation() function modification (1) 

 Modify the BandOverRelaxation() function and name it 

BandOverRelaxationTBB() . 

 Before the BandOverRelaxationTBB() function, declare the 

static member variables of OverRelaxWorker and 

OverRelaxMaster classes. 
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BandOverRelaxation() function modification (2) 

double BandOverRelaxationTBB(...) {  

  // OverRelaxMaster static member variables 

  OverRelaxMaster::tAccuracy = Accuracy; 

  OverRelaxMaster::tSize = size; 

  OverRelaxMaster::tResSize = size + 2*Index[bandWidth - 1]; 

  OverRelaxMaster::MaxNumSteps = N_MAX;  

  OverRelaxMaster::tORAccuracy = -1.0; 

  OverRelaxMaster::NumSteps = 0; 

  OverRelaxMaster::Chunk = n - 1; 

  OverRelaxMaster::numWorkers = THREADS_PER_WORKER*NumThreads; 

   

  // OverRelaxWorker static member variables 

  OverRelaxWorker::tMatrix = Matrix; 

  OverRelaxWorker::tVector = Vector; 

  OverRelaxWorker::tWParam = WParam; 

  OverRelaxWorker::tIndex = Index;     

  OverRelaxWorker::tSize = size;       

  OverRelaxWorker::tBandWidth = bandWidth; 

 

  // continued in the following slide 
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BandOverRelaxation() function modification (3) 

  // SOR method start 

  OverRelaxMaster& FirstIter =  

       *new (tbb::task::allocate_root()) OverRelaxMaster(); 

  tbb::task::spawn_root_and_wait(FirstIter); 

  (*Result) = OverRelaxMaster::tDecision; 

  StepCount = OverRelaxMaster::NumSteps; 

  

  return OverRelaxMaster::tORAccuracy; 

} 
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Project compilation and application run 

 Modify the program code as required. 

 Having developed the software implementation, build the 

project by executing Build→Rebuild 03_BandOR_cilk and 

check the application for consistent running. 
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Scalability analysis (1) 

 To analyze the pipelined scheme efficiency, perform 

experiments using functions based on formulas (3) – (7) with 

the accuracy of 𝜀 = 10−5. 

 

 See the next slide for the results of running a multiple-thread 

pipelined scheme. T is the runtime (in seconds), S is the 

acceleration as compared to single thread operation. 
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Scalability analysis (2) 
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System 

dimensio

n 

1 thread 2 threads 4 threads 6 threads 8 threads 

T T S T S T S T S 

100 0,67 0,35 1,90 0,21 3,20 0,17 3,94 0,14 4,65 

200 4,98 2,57 1,94 1,45 3,43 1,08 4,59 0,90 5,52 

300 16,03 8,25 1,94 4,60 3,48 3,34 4,80 2,71 5,91 

400 37,87 19,61 1,93 10,50 3,61 7,46 5,08 6,01 6,31 

500 73,47 36,98 1,99 19,75 3,72 13,91 5,28 11,17 6,58 

600 123,42 62,83 1,96 32,96 3,74 23,10 5,34 18,53 6,66 

700 190,60 96,76 1,97 51,26 3,72 35,63 5,35 28,56 6,67 

800 280,10 141,79 1,98 74,73 3,75 51,91 5,40 41,88 6,69 

900 390,15 199,02 1,96 104,32 3,74 72,27 5,40 58,73 6,64 

1000 529,07 265,81 1,99 141,18 3,75 97,46 5,43 80,50 6,57 
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Scalability analysis (4) 

 The maximum acceleration of 6.7 was obtained for 8 threads 

when 𝑛 = 800. If the grid size 𝑛 > 300 acceleration will 

exceed 6. 

 Acceleration growth depending on the number of threads and 

grid size indicates good scalability of the proposed pipelined 

scheme. 

 The pipelined scheme requires the same number of the SOR 

method iterations as the consecutive version. 

 Additional acceleration may be ensured by fitting scheme 

parameters to a specific problem. 
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Test questions (1) 

 Deduce a linear system resulting from grid approximation of 

the heat transfer equation. What structural peculiarities does 

this matrix have? 

 Give the canonical SOR method form and approximation 

component computation formula. 

 Substantiate the SOR method convergence. Demonstrate 

dependence of the convergence rate on the method 

parameters selection. 

 What band matrix storage formats do you know? When is 

each of them used? 
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Test questions (2) 

 Why is the number of the SOR method iterations different in 

case of a multi-thread Intel® Cilk Plus-based parallel 

implementation? 

 Substantiate the necessary restrictions to the pipelined 

parallelization scheme parameters. What changes must be 

introduced to the system to relax these restrictions? 
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Added tasks (1) 

 Prove that the block five-diagonal matrix used for solving 

linear systems in the course of this laboratory work is 

negative definite. 

 Show that if the matrix 𝐴 is a negative definite, the matrix (– 𝐴) 
will be positive definite. 

 Show that the eigenvalues of the matrix in question (part of 

the linear system) are computed using formulas (17) and (18). 

It is assumed that ℎ = 𝑘. 
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Added tasks (2) 

 Implement the Jacobi method as applied to a block five-

diagonal matrix mentioned in this laboratory work. Think 

about a possible parallelization scheme. 

 Implement the Seidel method as applied to a block five-

diagonal matrix mentioned in this laboratory work. Think 

about a possible parallelization scheme. 

 Conduct a computational experiment having found the best 

pipelined scheme parameter values using Intel® TBB for test 

grid dimensions.  
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Questions 

 ??? 
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