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Introduction (1) 

 In case of solving linear systems by iterative methods, the 

matrix condition number must be as small as possible.  

– When the linear system matrix is ill-conditioned, iterative 

methods have a low convergence rate.  

 To reduce the condition number, special approaches and 

techniques must be used.  

– One of them consists in multiplication of the initial linear 

system matrix by the preconditioner matrix. 

MAxMb 

 

 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



4 

Introduction (2) 

 If a matrix inverse to the initial linear system matrix is used as 

a preconditioner, the system solution will result from matrix 

multiplication by a vector.  

– In this case, preconditioner search will reduce to the use of 

a direct method of solving linear systems.  

 If the preconditioner matrix is close to the inverse one, the 

new linear system will, from physical consideration, be well-

conditioned, as it will be close to the identity matrix.  
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Introduction (3) 

 To search for the inverse matrix, one can make good use of 

the matrix factor. 

– Factor search is one of the most complex stages of direct 

methods. 

 For iterative methods, to reduce the time required to search 

the solution, incomplete LU-factorization is used.  

– Incomplete factorization makes it possible to obtain the 

matrices L and U close to the factor at a significantly 

shorter time required for incomplete factorization. 
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Purposes of work 

 The purpose of the laboratory work is to demonstrate 

practical implementation of the preconditioner search method 

based on the classical ILU(p) method. 
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Objectives of work 

 Study of the ILU(p) incomplete LU-factorization method. 

 Development of serial implementation of the ILU(0) 

preconditioner searching method. 

 Analysis of the method software implementation influence on 

the matrix condition. 

 Development of serial implementation of the ILU(p) 

preconditioner searching method. 

 Analysis of the level modification influence on the matrix 

condition and ILU(p) search time. 
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Test infrastructure 

CPU Two Intel Xeon E5520 processors (4 

core, 2.27 GHz) 

RAM 16 Gb 

OS Microsoft Windows 7 

Framework Microsoft Visual Studio 2008 

Compiler, profiler, 

debugger 

Intel Parallel Studio XE 2011 

Libraries Intel® Math Kernel Library (within 

Intel® Parallel Studio XE 2011) 
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Incomplete LU-factorization (1) 

 The basis for the implementation procedure of the incomplete 

LU-factorization is the Gaussian elimination method (or the 

complete LU-factorization). 
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Incomplete LU-factorization (2) 

 Example of complete LU-factorization of a matrix 

 

 

 

 

 

 

 

 

 A complete LU-factorization of the initial matrix will result in 
additional nonzero elements.  

– In the case under consideration, one additional element has 
appeared. It is represented by a crosshatched square. 

 In the picture, matrix elements containing a zero value are shown in 
grey.  
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Incomplete LU-factorization (3) 

 The idea of ILU(0)-factorization is to eliminate all new non-

zero elements that appear in the course of decomposition, 

from the dct factor.  

– In the classical ILU(0) algorithm, the initial matrix pattern is 

used as the factor pattern. 

 In the numerical part of the algorithm, coefficients of the 

matrices L’ and U’ are computed so that the initial elements of 

the matrix A coincide with A’=L’*U’ during matrix 

multiplication. 
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Incomplete LU-factorization (4) 

 ILU(0) algorithm search pseudocode 
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Incomplete LU-factorization (5) 

 Example of the found ILU(0)-factor of the matrix A 
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Incomplete LU-factorization (6) 

 The main advantage of the ILU(0) algorithm is its running 

speed. 

 Multiplication of matrices of the obtained factor may result in 

new nonzeroes. 

 Example: 
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ILU(0) software implementation 

 For convenience, the algorithm software implementation can 

be divided into three stages.  

– First, develop the ILU(0) software implementation.  

– Second, check the algorithm for consistency.  

– In the end, develop main function of the program to enable 

experimentation and evaluate the obtained 

preconditioners. 
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Software implementation 

 Template of the function implementing ILU(0) 
/** 

 * API 

 *   int ilu0(int n, double* a,int* col,int* row,  

 *      double* luval, int* uptr) 

 *   ilu0 - matrix factorization 

 * INPUT 

 *   int    n   - matrix dimension 

 *   double * a - nonzero elements 

 *   int  * col - column indices 

 *   int  * row - row prefixes 

 * OUTPUT 

 *   double * luval - values of the resolved matrices L and U 

 *   int    * uptr - indices of diagonal elements 

 *                    in the luval array 

 * RETURN 

 *   an error code returns 

 *   0    - factorization is successful 

 *   -(n + 1) - number of row where the diagonal has 0 

 **/ 

int ilu0(int n, double * a, int * col, int * row,  

     double * luval, int * uptr); 
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Task 1 

 Develop software implementation of the ILU(0) algorithm in 

accordance with the function template. 
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Software implementation (1) 

 Start algorithm implementation. First, declare the main variables 

used in the algorithm. 

int ilu0(int n, double * a, int * col, int * row,  

     double * luval, int * uptr) 

{ 

  int j1, j2;     // border of the current row 

  int jrow;       // number of the current column 

  int k, j, jj;   // cycle counters 

  int *iw = NULL; // temporary array  

  int jw; 

  double t1; 
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Software implementation (2) 

 Among the declared variables, the pointer to the temporary 

array iw is very important.  

– This array stores the value index in the CRS array for the 

current row in the nonzero positions.  

– Instead of searching for each nonzero value, multilevel 

addressing is used. 

 Create a temporary array required for fast computation and 

clear its memory. 

    iw = new int[n]; 

  memset(iw, 0, n * sizeof(int)); 
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Software implementation (3) 

 To compute the factor, copy the initial matrix values to the 

factor value array. 

 

  memcpy(luval, a, row[n] * sizeof(double)); 

 

 The factor is computed in place of the initial matrix values. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



22 

Software implementation (4) 

 The factor is computed row-by-row, upside down. 

  for(k = 0; k < n; k++) 

  { 

 Then, fill the computation speedup array for each row. 

  j1 = row[k]; 

  j2 = row[k + 1]; 

  for(j = j1; j < j2; j++) 

  { 

    iw[col[j]] = j; 

  } 
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Software implementation (5) 

 Then develop a code that updates the current row value until the diagonal 
is reached (i. e. for the lower triangle only). 

  for(j = j1; (j < j2) && (col[j] < k); j++) 

  { 

    jrow = col[j]; 

    t1 = luval[j] / luval[uptr[jrow]]; 

    luval[j] = t1; 

    for(jj = uptr[jrow]+1; jj < row[jrow + 1]; jj++) 

    { 

    jw = iw[col[jj]]; 

    if(jw != 0) 

    { 

      luval[jw] = luval[jw] - t1 * luval[jj]; 

    } 

    } 

  } 
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Software implementation (6) 

 In the end, remember the diagonal element position for the 

current row.  

  jrow = col[j]; 

  uptr[k] = j; 

  if((jrow != k) || (fabs(luval[j]) < EPSILON)) 

  { 

    break; 

  } 

 To record the index, make sure that it exists.  

– If the element does not exist, it is impossible to compute 

the factor as zero division may be expected. 
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Software implementation (7) 

 To complete row processing, empty the auxiliary array. 

    for(j = j1; j < j2; j++) 

    { 

      iw[col[j]] = 0; 

    } 

  } 

 In the end, the function must empty the memory and return the 
error code. 

    delete [] iw; 

  if(k < n) 

  return -(k+1); 

  return 0; 

} 
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Checking the algorithm for consistency 

 It is important to check the developed code for consistency.  

– The only verifiable consistency criterion is the situation 

where, upon multiplication of the obtained factor matrices, 

the initial matrix values are preserved and new values may 

appear. 

 To check the implemented algorithm for consistency, divide 

the obtained matrices L and U by independent matrices and 

then multiply them using the standard matrix multiplication 

algorithm. After that, compare the obtained values. 
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Checking the algorithm for consistency 

 Matrix resolution function template: 
/** 

 * API 

 *  void LUmatrixSeparation (crsMatrix ilu, int *uptr,  

 *                           crsMatrix &L, crsMatrix &U); 

 *  matrix resolution into the matrices L and U 

 * INPUT 

 *   crsMatrix ilu  - ilu matrices in the same structure 

 *   int    * uptr - indices of diagonal elements 

 *                    in the ilu array 

 * OUTPUT 

 *   crsMatrix &L   - separated matrix L 

 *   crsMatrix &U   - separated matrix U 

 * RETURN 

 */ 

void LUmatrixSeparation(crsMatrix ilu, int *uptr, crsMatrix 
&L, crsMatrix &U); 
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Checking the algorithm for consistency 

 Matrix pattern consistency check function template 

/** 

 * API 

 *  bool structValidation (crsMatrix &A,  crsMatrix &M);  

 *  checking the preconditioner structure for consistency 

 * INPUT 

 *   crsMatrix &A   - initial matrix 

 *   crsMatrix &M   - preconditioner 

 * OUTPUT 

 *    

 * RETURN 

 * is the structure consistent? 

 */ 

bool structValidation   (crsMatrix &A,  crsMatrix &M) 
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Checking the algorithm for consistency 

 Matrix value consistency check function template 

/** 

 * API 

 *  double MatrixCompare (crsMatrix &A,  crsMatrix &M); 

 *  computation of degree of matrix difference 

 * INPUT 

 *   crsMatrix &A   - initial matrix 

 *   crsMatrix &M   - preconditioner 

 * OUTPUT 

 *    

 * RETURN 

 *  degree of difference 

 */ 

double MatrixCompare (crsMatrix &A, crsMatrix &M) 
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Task 2 

 Implement preconditioner check for consistency by 

implementing the declared funtions. 
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Checking the algorithm for consistency (1) 

 Implement the matrix resolution function. The function accepts 

the matrix and diagonal element index array, returns and  

void LUmatrixSeparation(crsMatrix ilu, int 

*uptr, crsMatrix &L, crsMatrix &U) 

{ 

 Declare the required variables. 

  int countL, countU; 

  int i, j, s, f, k; 

  double *val; 

  int    *col; 

  countU = 0; 
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Checking the algorithm for consistency (2) 

 First of all, count the number of elements in the matrices and 

  for(i = 0; i < ilu.N; i++) 

  { 

    countU += (ilu.RowIndex[i+1] - uptr[i]); 

  } 

  countL = ilu.NZ + ilu.N - countU; 

 Then memory has to be allocated to matrices.  

  InitializeMatrix(ilu.N, countL, L); 

  InitializeMatrix(ilu.N, countU, U); 
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Checking the algorithm for consistency (3) 

 Upon memory allocation, fill the matrix arrays using arrays of the accepted matrix. 
  k = 0; 

  val = L.Value;  col = L.Col; 

  L.RowIndex[0] = k; 

  for(i = 0; i < ilu.N; i++) 

  { 

    s = ilu.RowIndex[i]; 

    f = uptr[i]; 

    for(j = s; j < f; j++) 

    { 

      val[k] = ilu.Value[j]; 

      col[k] = ilu.Col[j]; 

      k++; 

    } 

    val[k] = 1.0; col[k] = i; 

    k++; 

    L.RowIndex[i + 1] = k; 

  } 
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Checking the algorithm for consistency (4) 

 In the end, values fill the matrix. 
  k = 0; 

  val = U.Value; 

  col = U.Col; 

  U.RowIndex[0] = k; 

  for(i = 0; i < ilu.N; i++) 

  { 

    s = uptr[i]; 

    f = ilu.RowIndex[i + 1]; 

    for(j = s; j < f; j++) 

    { 

      val[k] = ilu.Value[j]; 

      col[k] = ilu.Col[j]; 

      k++; 

    } 

    U.RowIndex[i + 1] = k; 

  } 

} 
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Checking the algorithm for consistency (5) 

 For the purpose of matrix multiplication, one can use the 

algorithm implemented in the course of the laboratory work on 

Sparse Matrix Multiplication. 
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Checking the algorithm for consistency (6) 

 Implement the matrix pattern consistency check function 

  bool structValidation   (crsMatrix &A,  crsMatrix &M) 

 Declare the required variables. 
  int i, j, fA, fM; 

  i = 0; 

  j = 0; 

  int k;   

 Perform minimum consistency checks 
  if(A.N != M.N) 

  { 

    return false; 

  } 

  

  if(M.NZ <= A.NZ) 

  { 

    return false; 

  } 
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Checking the algorithm for consistency (7) 

 For each row, check that the initial column index array is included into the new one. To speed up 
the check, remember that index arrays are continuous. 

  for(k = 0; k < A.N; k++) 

  { 

    i  = M.RowIndex[k]; fM = M.RowIndex[k + 1]; 

    j  = A.RowIndex[k]; fA = A.RowIndex[k + 1]; 

    while((i < fM) && (j<fA)) 

    { 

      if(M.Col[i] != A.Col[j]) i++; 

      else  

      { 

        j++; 

        i++; 

      } 

    } 

    if((i == fM) && (j != fA)) 

      return false; 

  } 

  return true; 

} 
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Checking the algorithm for consistency (8) 

 After checking matrix patterns, matrix nonzero values also 

have to be compared.  

 Matrix values are compared in the same way as matrix 

patterns. 

 For comparison purposes it is proposed to find the maximum 

difference modulus for the corresponding matrix elements. 
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Main function implementation (1) 

 The necessary functionality has been implemented, so it can 

be incorporated in the main program function. 
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Main function implementation (2) 

 First, accept the resolved matrix name using command line 

arguments. 

int main(int argc, char **argv) 

{ 

  // review of parameters 

  char *matrixName; 

  ParseArgv(argc, argv, matrixName); 
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Main function implementation (3) 

 Then, declare the necessary variables to store matrices and 
concomitant structures. 

   crsMatrix readA; 

  crsMatrix *matA; 

  crsMatrix lu; 

  crsMatrix L; 

  crsMatrix U; 

  crsMatrix M; 

  int *uptr; 

  int typeOfMatrix; 

  int error; 

  double diff; 

 Create a respective timer. 

  Stopwatch *time = createStopwatch(); 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



42 

Main function implementation (4) 

 Read the matrix from the file. 

  printf("read matrix (%s) \n", matrixName); 

  time->start(); 

  error = ReadMatrixFromFile(matrixName, 

&(readA.N), &(readA.NZ), 

  &(readA.Col), &(readA.RowIndex), &(readA.Value), 

  &(typeOfMatrix)); 

  

  if(error != ILU_OK) 

  { 

  printf("error read matrix %d\n", error); 

  return error; 

  } 
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Main function implementation (5) 

 If the matrix is symmetric and specified only by the upper triangle, the 
algorithm will not work.  

– In this case, to ensure algorithm operability, the lower triangle must be 
added to the matrix. 

  if(typeOfMatrix == UPPER_TRIANGULAR) 

  { 

    matA = UpTriangleMatrixToFullSymmetricMatrix(&readA); 

  }  

  else  

  { 

    matA = &readA; 

  } 

  time->stop(); 

  printf("read matrix from file time: %f\n", time->             

                                             getElapsed()); 

  

  uptr = new int [matA->N]; 
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Main function implementation (6) 

 Having read the initial matrix, create a matrix to store the computed factor. 

  time->reset(); 

  time->start(); 

  InitializeMatrix(matA->N, matA->NZ, lu); 

  memcpy(lu.RowIndex, matA->RowIndex,  

         (matA->N + 1) * sizeof(int)); 

 Everything is ready to call the factor computation function. 

  error = ilu0(matA->N, matA->Value, matA->Col,  

               matA->RowIndex, lu.Value, uptr); 

  time->stop(); 

 To analyze runtime-related algorithm efficiency, derive the factor 
computing time.  

  printf("ILU factorization time: %f\n", time->  

                                           getElapsed()); 
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Main function implementation (7) 

 In the end, the developed algorithm must be checked for 

consistency 

 

  // checking ILU for consistency 

  // matrix resolution into L and U 

  LUmatrixSeparation(lu, uptr, L, U); 

  

  // matrix multiplication 

  ProductSparseMatrix(L, U, M); 
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Main function implementation (8) 

  // checking the obtained matrix structure for 
consistency 

  if(!structValidation(*matA, M)) 

  { 

    printf("invalid struct of matrix M \n"); 

    return -2; 

  } 

  

  // computing difference of values 

  diff = MatrixCompare(*matA, M); 

  

  printf("distinction value of matrix %f \n", diff); 

  

  return 0; 

} 
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ILU(0) algorithm implementation run analysis 

 Run the developed ILU(0) software implementation. 

 

 

 

 

 

 The run results prove that the time required to search for the 

factor is short indeed.  

 The algorithm runs in a consistent manner. 
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Time and consistency of ILU(0) implementation 

running for symmetric matrix sample 

Matrix 

matrix 

dimension factor search time error 

bcsstk01 48 0,000018 0,00000 

bcsstk05 153 0,000117 0,00000 

bcsstk10 1 086 0,000642 0,00000 

bcsstk13 2 003 0,005276 0,00156 

parabolic_fem 525 825 0,090491 0,00000 

tmt_sym 726 713 0,090719 0,00000 
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Time and consistency of ILU(0) implementation 

running for non-symmetric matrix sample 

Matrix 

matrix 

dimension factor search time Error 

fs_541_1 541 0,000066 0,00000 

ex22 839 0,000929 0,00000 

sherman2 1 080 0,000812 0,00000 

cage10 11 397 0,003938 0,00000 
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ILU(0) algorithm implementation run analysis  

 As you can see from these tables, the algorithm runtime is 

very short even for large matrices.  

 However, short runtimes do not always mean good algorithm 

performance.  

 Evaluate quality of the obtained preconditioner.  

– For this purpose, compute condition numbers for the matrix 

without preconditioner and the preconditioned one.  

 To compute condition numbers, you can use the respective 

MKL functionality. 
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ILU(0) algorithm implementation run analysis  

 To start with, implement the auxiliary functionality.  

 The first function to be developed is conversion of a sparse 

matrix into a dense one.  
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ILU(0) algorithm implementation run analysis 

/** 

 * API 

 *   double * CRStoGeneral(crsMatrix A) 

 *   matrix conversion from CRS to dense format 

 * INPUT 

 *   crsMatrix A - matrix in a CRS format 

 * OUTPUT 

 *    

 * RETURN 

 *   matrix in a dense form 

 **/ 

double * CRStoGeneral(crsMatrix A) 
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ILU(0) algorithm implementation run analysis 

double * CRStoGeneral(crsMatrix A) 

{ 

  int i, j, s, f; 

  double * mat; 

  mat = new double[A.N * A.N]; 

  memset(mat, 0, A.N * A.N * sizeof(double)); 

  for(i = 0; i < A.N; i++) 

  { 

    s = A.RowIndex[i]; 

    f = A.RowIndex[i + 1]; 

    for(j = s; j < f; j++) 

    { 

      mat[i * A.N + A.Col[j]] = A.Value[j]; 

    } 

  } 

  return mat; 

} 
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ILU(0) algorithm implementation run analysis 

 In MKL, the condition number is approximated.  

 For computation purposes, the matrix norm is used.  

– One can use either 1-norm or infinite norm. 

– For the purposes of this laboratory work, the infinite matrix 

norm will be used. 
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ILU(0) algorithm implementation run analysis 

/** 

 * API 

 *   double MatrixNormI(double* Matrix, int size) 

 *   infinite matrix norm 

 * INPUT 

 *   double* Matrix - matrix in a dense form 

 *   int     size   - matrix dimension 

 * OUTPUT 

 * RETURN 

 *   infinite matrix norm 

 **/ 

double MatrixNormI(double* Matrix, int size) 

{ 

  double norm = 0.0; 

  double sum; 

  for (int i = 0; i < size; i++) 

  { 

    sum = 0.0; 

    for (int j = 0; j < size; j++)  

      sum += fabs(Matrix[i*size + j]); 

    if (sum > norm) norm = sum; 

  } 

  return norm; 

} 
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ILU(0) algorithm implementation run analysis 

 Using the functional for matrix conversion and norm calculation, 
one can compute the initial matrix condition number. 

/** 

 * API 

 *   double getConditionNumber(crsMatrix A) 

 *   condition number evaluation 

 * INPUT 

 *   crsMatrix A - matrix in a CRS format 

 * OUTPUT 

 *    

 * RETURN 

 *   condition number  

 **/ 

double getConditionNumber(crsMatrix A) 
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ILU(0) algorithm implementation run analysis 

 First, declare the necessary set of variables. 
  // auxiliary variables 

  double *Matrix; 

  int* Size = &(A.N); 

  int* ipiv = new int [A.N]; 

  double* ANorm;  

  double* work = new double [A.N*4]; 

  int* iwork = new int [A.N]; 

  int lda = A.N; 

  int* Lda = &lda; 

  int info = 0; 

  int *Info = &info; 

  double rcond; 

  double* Rcond = &rcond; 

  // norms and condition numbers 

  double norm, cond = -1.0; 
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ILU(0) algorithm implementation run analysis 

 Second, convert the matrix from sparse into dense. 
  // make the matrix dense 

  Matrix = CRStoGeneral(A); 

 In the end, call the condition number evaluation algorithm implemented in MLK. 
  // compute the norm 

  norm = MatrixNormI(Matrix, A.N); 

  //РLU factorization 

  dgetrf(Size,Size,Matrix,Lda,ipiv,Info); 

  // condition number 1 norm 

  ANorm = &norm; 

  dgecon("O",Size,Matrix,Lda,ANorm,Rcond,work,iwork,Info); 

  cond = 1.0/(rcond); 

   

  delete [] Matrix; 

  delete [] ipiv; 

  delete [] work; 

  delete [] iwork; 

  return cond; 
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ILU(0) algorithm implementation run analysis 

 The condition number for a preconditioned matrix is computed 

in a similar way.  

 The only difference is that the initial matrix has to be 

multiplied by the matrix inverse to A’ = L’ U’. 

 One can solve two triangular systems instead of finding the 

inverse matrix A’. This functionality is implemented in 

mkl_dcsrsm. 
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Task 3 

 Implement the preconditioned matrix condition number 

search. 
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Comparison of condition numbers  

for symmetric and non-symmetric matrices 

Matrix 

matrix 

dimension 

Matrix 

condition 

number А 

Matrix condition 

number  

condition 

numbers ratio 

bcsstk01 48 1597600 231583 6,90 

bcsstk05 153 35319 5869 6,02 

bcsstk10 1 086 1318823 1499780 0,88 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 

Matrix 

matrix 

dimension 

Matrix 

condition 

number, А 

Matrix condition 

number, M^-1 * А 

condition 

numbers ratio 

fs_541_1 541 1060 1 1060,00 

ex22 839 61837 18969 3,26 

sherman2 1 080 1,68E+12 3869118 434334,24 



ILU(P) SOFTWARE 

IMPLEMENTATION 
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An approach to ILU(p) matrix pattern search 

 When the preconditioner quality is poor, it may be improved.  

 One of the ways to improve the ILU algorithm quality is to 

construct a factor which is closed to the matrix factor (i. e. a 

certain factor filling is allowable compared to ILU(0)).  

 Let us study one of these algorithms, the ILU(p) factorization 

method based on the idea of p filling level. 
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An approach to ILU(p) matrix pattern search 

 The classical ILU(p) searching algorithm pseudocode 
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An approach to ILU(p) matrix pattern search 

 In practice, implementation of this algorithm is very inefficient.  

– The algorithm must compute all elements of the complete 

factor and only after that reject elements whose filling level 

exceeds p.  

– The algorithm does not let asses the required memory 

before its completion.  

– The array with levels must be stored either for all 

elements or in the dynamic data structures. 
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An approach to ILU(p) matrix pattern search 

 Hysom D. and Pothen A. proposed an ILU(p) algorithm 

modification free from the mentioned disadvantages.  

– The algorithm provides for accurate calculation of 

nonzeroes in the row and row structure without storing all 

the information about levels. 
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An approach to ILU(p) matrix pattern search 

 For incomplete LU-factorization, use the matrix graph.  

 Based on the matrix graph, an exclusive tree is formed.  

– The easiest way to form an exclusive tree is graph 

traversal without reentering the nodes. 

 To obtain ILU(p) all the exclusive tree nodes whose height 

exceed p are rejected.  

 The reduced exclusive tree lets construct the matrix factor row 

pattern. The pattern results from merging the patterns of rows 

that correspond to the exclusive tree nodes. 
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An approach to ILU(p) matrix pattern search 

 Let us illustrate the algorithm by an example. 

 

 

 

 

 

 

 The element added as a result of ILU(1) factor pattern search 

is cross-hatched. 
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An approach to ILU(p) matrix pattern search 

 Exclusive tree-based row structure search algorithm 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



70 

Software implementation of the ILU(p) symbolic 

phase  

/** 

 * API 

 *   int symbolicILUp(int p, int n, int * col, int * row,  

 *                    int * lucol, int * lurow,  

                      double * &luval, 

 *                    int * uptr, int &countL, int &countU); 

 *   ILU(p) symbolic phase 

 * INPUT 

 *   int    n     - matrix dimension 

 *   matrix A 

 *   int  * col   - column indices of the matrix a 

 *   int  * row   - row prefixes of the matrix a 

 *   matrix LU pattern 

 *   int  * &lucol - column indices of the matrix lu 

 *   int  * &lurow - row prefixes of the matrix lu 

 *   double * &luval - matrix values 

 *   int  * uptr  - indices of diagonal elements 

 *                  in the luval array 

 * OUTPUT 

 *   double * luval - values of the resolved matrices L and U 

 *   int &countL    - L matrix dimension 

 *   int &countU    - U matrix dimension 

 * RETURN 

 *   an error code returns 

 **/ 

int symbolicILUp(int p, int n, int * col, int * row,  

                 int * &lucol, int * &lurow,  

                 double * &luval, 

                 int * uptr, int &countL, int &countU); 
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Task 4 

 Implement the symbolic ILU(p) factor search. 
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Software implementation of the ILU(p) symbolic 

phase (1) 

 Proceed to implementation of the symbolic part of the algorithm. 
int symbolicILUp(int p, int n, int * col, int * row,  

                 int * &lucol, int * &lurow, double * 
&luval, 

                 int * uptr, int &countL, int &countU) 

{ 

 Start implementation by declaring the necessary variables. 
  int i, j, h, s, f;   // cycle counters  

  int jcol;            // and temporary variables 

  int * len; 

  int * visited; 

  len = new int[n]; 

  adj = new int[n]; 

  visited = new int[n]; 

  countL = 0; 

  countU = 0; 
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Software implementation of the ILU(p) symbolic 

phase (2) 

 For computational convenience, calculate the number of added 
nonzeroes in the adj array for each row. 

  int * adj; 

 The algorithm requires a queue. We will use the queue 
implementation from STL. 

  queue<int> Q; 

 To ensure algorithm consistency, initialize the values of the 
revisited nodes array and the number of added nodes.  

– As it can be seen from the algorithm, the complete array 
initialization is required only once.  

  for(j = 0; j < n; j++) 

  { 

    visited[j] = -1; 

    adj[j] = 0; 

  } 
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Software implementation of the ILU(p) symbolic 

phase (3) 

 Then, count the number of nonzeroes for each row according to the algorithm described above. 

  for(i = 0; i < n; i++) 

  { 

    Q.push(i); len[i] = 0; visited[i] = i; 

    while(!(Q.empty())) 

    { 

      h = Q.front(); Q.pop(); 

      s = row[h];  f = row[h + 1]; 

      for(j = s; j < f; j++) { 

        jcol = col[j]; 

        if(visited[jcol] != i) { 

          visited[jcol] = i; 

          if((jcol > i) && (len[h]<p)) { 

            Q.push(jcol);  

            len[jcol] = len[h] + 1; 

          } 

          if(jcol < i) { 

            countL++;  

            adj[i]++; 

          } 

        } 

      } 

    } 

  } 
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Software implementation of the ILU(p) symbolic 

phase (4) 

 Then one can calculate nonzeroes for L and U. At the same time, one can 
calculate the values of the array resolving the factor into the matrices L 
and U.  

  for(i = 0; i < n; i++) 

  { 

    s = row[i]; 

    f = row[i + 1]; 

    for(j = s; (j < f) && (col[j] < i); j++); 

    uptr[i] = j; 

    if(col[uptr[i]] != i) 

    { 

      return -(i + 1); 

    } 

    countU += (f - j); 

    adj[i] += (f - j); 

  } 
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Software implementation of the ILU(p) symbolic 

phase (5) 

 Then allocate enough memory to store the factor. 
  if(lucol != NULL) 

  { 

    delete []lucol; 

  } 

  if(lurow != NULL) 

  { 

    delete []lurow; 

  } 

  if(luval != NULL) 

  { 

    delete []luval; 

  } 

  

  lucol = new int[countL + countU]; 

  lurow = new int[n + 1]; 

  luval = new double[countL + countU]; 
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Software implementation of the ILU(p) symbolic 

phase (6) 

 Initialize the dedicated arrays. 

  memset(luval, 0, (countL + countU) * sizeof 

(double)); 

  lurow[0] = 0; 

  for(i = 0; i < n; i++) 

  { 

    lurow[i + 1] = lurow[i] + adj[i]; 

    adj[i] = 0; 

  } 
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Software implementation of the ILU(p) symbolic 

phase (7) 

 To search for the factor structure, use the factor row pattern search algorithm for each 
row. 

  for(i = 0; i < n; i++) 

  { 

    Q.push(i); len[i] = 0; visited[i] = i; 

    while(!(Q.empty())) 

    { 

      h = Q.front(); Q.pop(); 

      s = row[h]; f = row[h + 1]; 

      for(j = s; j < f; j++) 

      { 

        jcol = col[j]; 

        if(visited[jcol] != i) { 

          visited[jcol] = i; 

          if((jcol > i) && (len[h]<p)) { 

            Q.push(jcol); 

            len[jcol] = len[h] + 1; 

          } 

          if(jcol < i) { 
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Software implementation of the ILU(p) symbolic 

phase (8) 

 It is important to note that column indices in this code area are added to the end, so 
they may not be sorted. 

            lucol[lurow[i] + adj[i]] = jcol; 

            adj[i]++; 

          } 

        } 

      } 

    } 

  

    s = uptr[i]; 

    f = row[i + 1]; 

    uptr[i] = lurow[i] + adj[i]; 

    for(j = s; j < f; j++) 

    { 

      lucol[lurow[i] + adj[i]] = col[j]; 

      adj[i]++; 

    } 

  } 
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Software implementation of the ILU(p) symbolic 

phase (9) 

 To sort the factor pattern, perform double transposition. 
  int *tCol; 

  int *tRow; 

  StructTranspose(n, lucol, lurow, tCol, tRow); 

  delete []lucol; 

  delete []lurow; 

  StructTranspose(n, tCol, tRow, lucol, lurow); 

  delete []tCol; 

  delete []tRow; 

  

  delete[] len; 

  delete[] adj; 

  

  return ILU_OK; 

} 
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Software implementation of the ILU(p) numerical 

phase 

/** 

* API 

*   int numericalILUp(int n, double * a, int * col, int * row,  

*                     int * lucol, int * lurow, int * uptr, double * luval); 

*   ILU(p) numerical phase 

* INPUT 

*   int    n     - matrix dimension 

*   double * a   - nonzero elements 

*   int  * col   - column indices of the matrix a 

*   int  * row   - row prefixes of the matrix a 

*   int  * lucol - column indices of the matrix lu 

*   int  * lurow - row prefixes of the matrix lu 

*   int  * uptr  - indices of diagonal elements 

*                  in the luval array 

* OUTPUT 

*   double * luval - values of the resolved matrices L and U 

* RETURN 

*   an error code returns 

*   0        - factorization is successful 

*   -(n + 1) - number of row where the diagonal has a 0 

**/ 

int numericalILUp(int n, double * a, int * col, int * row,  

                  int * lucol, int * lurow, int * uptr, double * luval) 
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Task 5 

 Implementation of the ILU(p) numerical part is almost similar 

to that of ILU(0). Implement this part of algorithm on your own. 
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ILU(p) algorithm implementation run analysis 

 Run the developed ILU(p) software implementation for 

several p values. 

Nizhny Novgorod, 2014 Preconditioner Construction by Incomplete LU-factorization 



84 

Runtime depending on the level 

for symmetric matrices 

Matrix 

matrix 

dimension p 

Symbolic 

phase 

 Numerical 

phase total time 

bcsstk01  48 0 0,000027 0,000016 0,000043 

  1 0,000077 0,000029 0,000106 

  2 0,000159 0,000040 0,000199 

  3 0,000229 0,000045 0,000274 

bcsstk05 153 0 0,0001 0,0001 0,0002 

  1 0,0005 0,0002 0,0006 

  2 0,0006 0,0001 0,0007 

  3 0,0009 0,0001 0,0010 

bcsstk10 1086 0 0,0006 0,0005 0,0011 

  1 0,0022 0,0008 0,0030 

  2 0,0046 0,0009 0,0055 

  3 0,0071 0,0010 0,0081 

bcsstk13 2003 0 0,00 0,01 0,01 

  1 0,02 0,01 0,03 

  2 0,05 0,02 0,07 

  3 0,11 0,02 0,14 

parabolic_fem  525825 0 0,17 0,08 0,26 

  1 0,51 0,18 0,68 

  2 1,28 0,26 1,55 

  3 2,35 0,37 2,72 

tmt_sym 726713 0 0,20 0,08 0,28 

  1 0,50 0,10 0,60 

  2 1,18 0,15 1,33 

  3 2,12 0,18 2,30 
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Runtime depending on the level 

for non-symmetric matrices 

Matrix 

matrix 

dimension p 

Symbolic 

phase 

 Numerical 

phase total time 

fs_541_1 541 0 0,0001 0,0001 0,0002 

    1 0,0003 0,0001 0,0004 

    2 0,0008 0,0002 0,0010 

    3 0,0018 0,0003 0,0021 

ex22 839 0 0,001 0,001 0,002 

    1 0,003 0,001 0,004 

    2 0,008 0,002 0,009 

    3 0,013 0,002 0,015 

sherman2 1080 0 0,001 0,001 0,001 

    1 0,003 0,002 0,004 

    2 0,008 0,002 0,010 

    3 0,016 0,004 0,020 

cage10 11397 0 0,005 0,004 0,009 

    1 0,026 0,016 0,042 

    2 0,142 0,059 0,201 

    3 0,509 0,182 0,692 
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ILU(p) algorithm implementation run analysis 

 The tables show that the higher is the level, the longer is the 

algorithm runtime.  

– Remaining time will be used for matrix pattern search  

 This disadvantage of the classical algorithm may be 

remedied, for example, by means of more complex algorithms 

that analyze factor using complete blocks instead of a single 

row. 
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ILU(p) performance quality for symmetric 

matrices depending on the level 

Matrix 

matrix 

dimension p 

Condition 

number A 

Condition 

number  

M-1*A 

Condition 

number 

reduction 

bcsstk01  48 0 

1597600 

231583 6,8 

    1 69385 23,0 

    2 66197 24,1 

    3 59113 27,0 

bcsstk05 153 0 

35319 

5869 6,0 

    1 3977 8,9 

    2 4287 8,2 

    3 4278 8,3 

bcsstk10 1086 0 

1318823 

1499780 0,9 

    1 123576 10,6 

    2 258998 5,1 

    3 758553 1,7 
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ILU(p) performance quality for non-symmetric 

matrices depending on the level 

Matrix 

matrix 

dimension p 

Conditio

n 

number 

A 

Condition 

number  

M-1*A 

Condition 

number 

reduction 

ex22 839 0 

61837 

18969 3,3 

    1 17808 3,5 

    2 23713 2,6 

    3 25986 2,4 

sherman2 1080 0 

1,68E+12 

3869118 434334,2 

    1 3975617 422699,3 

    2 3951175 425314,1 

    3 3932957 427284,2 
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ILU(p) algorithm implementation run analysis 

 Experimental results listed in the tables show that the level 

increase can influence the preconditioner quality in various 

ways.  

– The preconditioner quality can either gradually improve 

(see bcsstk01) or change in an unpredictable way (see 

bcsstk10).  

 The main reason is that the algorithm accounts only for the 

pattern of the obtained factor. The algorithm takes no account 

of the values rejected in the course of factorization.  

– For due account of the values added to the matrix factors, 

other euristic approached are used, such as ILUT. 
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Added tasks 

1. Implement a parallel ILU(p) algorithm version and analyze its 

scalability. 

2. Implement the ILU – ILUT modification. 

3. Implement a block modification of the ILU(p) algorithm to 

increase the algorithm efficiency for large matrices. 
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Questions 

 ??? 
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