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OBJECTIVES 

The purpose of this laboratory work is to see how linear systems with sparse matrices are 

solved using iterative methods via example of a stationary problem of heat diffusion in a rectan-

gular plate at given temperature conditions at the plate edges. 

ABSTRACT 

The subject of this laboratory work is one of iterative methods of solving linear systems  the 

SOR method as applied to a block five-diagonal matrix. The matrix above results from solving a 

stationary problem of heat diffusion in a rectangular plate at given temperature conditions at the 

plate edges. We shall review parallel method implementations using Cilk and TBB. 

GUIDELINES 

The subject of this laboratory work is one of iterative methods of solving linear systems  the 

SOR method as applied to a block five-diagonal matrix. The matrix above results from solving a 

stationary problem of heat diffusion in a rectangular plate at given temperature conditions at the 

plate edges. 

The model problem of this laboratory work is a linear system resulting from numerical solu-

tion of the Dirichlet problem posed for Poisson equation. Poisson equation is a partial differential 

equation for an unknown function which models heat diffusion in a rectangular plate. The finite 

difference method converts the equation to the linear system Ах=b with a block diagonal sparse 

symmetric positive definite matrix. 

Within the scope of this laboratory work, it is proposed to implement the successive over-

relaxation (SOR) method for the purpose of solving Ах=b. This method is based on splitting the 

matrix A into three matrices A=L+D+R, where D is the matrix A diagonal, L is the lower and R 

is the upper triangle, respectively. The SOR method in the form of a matrix is described by 
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As A is a block diagonal matrix, it is advisable to store and process it as a band. This labora-

tory work reviews a number of band matrix formats, such as rowed, column and profile matrices. 

Having studied the formats above, it is proposed to implement the SOR method for each such 

format. To check the resulting solution for consistency, we shall compare it with the exact linear 

system solution obtained by means of dpbtrf() and dpbtrs() of the MKL LAPACK library. 

The method convergence check will confirm the implementation consistency. 



The following part of the work consists in implementing a parallel version of the SOR meth-

od based on Intel® Cilk Plus. In case of a brute-force approach to parallelization, the parallel 

program run results will not be in line with those of the sequential version. Indeed, the SOR 

method iterations are data-dependent; computation of the next solution approximation depends 

on the previous one. Thus, let us parallelize computations within a single method iteration. Com-

putation will result in mixed approximations whose elements have been obtained using mixed 

new and old components without keeping strictly to the method formula. This results in a re-

duced method convergence rate. There are experimental results confirming this. 

Therefore, a parallel computation scheme is to be developed to find the same solution as the 

sequential one does. For this purpose, let us implement a pipelined scheme of the SOR method 

using the Intel® TBB library. 

According to the method computing formulae, computation of the next element   
(   ) re-

quires approximation elements  ( ) whose numbers are greater than  . Therefore, for each grid 

node, its upper and right neighbours in the cross stencil will be taken from the previous approxi-

mation, while the left and bottom ones  from the current one. The number of nodes to be com-

puted at each line is equal to     for the grid (   ). Thus, computing   
(   ) requires compu-

tation of the previous approximation elements   
( )          . Let us use this relation to 

construct the pipelined method scheme. If for several approximations  ( )  (   )    (   ) the 

previous approximation has at least     more computed elements, further approximations may 

be computed in parallel and in an in-sync manner with a difference of     element. 

Parallel computation will be based on the Manager - Worker scheme. The Manager will co-

ordinate computation of approximations, distribute the load among the Workers and check the 

method stop criteria. Workers will find the approximate solutions. The pipelined scheme will be 

iterative, i. e. each iteration will be further divided into three stages: 

 The Manager will initialize data for the current computation step. 

 Having distributed the load between the Workers, the Manager will wait for completion. 

The Workers will compute a certain number of elements, each for the respective approx-

imation. 

 The Manager will check the method stop criterion.  

The number of Workers and physical flows of the application may not coincide. To better 

balance the load, each physical flow must take the load from several Workers.  

The experimental results show a good (up to 6 for 8 flows) speedup of a parallel version of 

the pipelined algorithm. 



RECOMMENDATIONS FOR STUDENTS  

SOR is a classical iterative method. See [1] for a detailed description of its features. A brief 

method description, including pseudocode algorithms, can be found in [2]. The parallel pro-

gramming technologies used for this laboratory work are described in [3 – 5]. 
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PRACTICE 

1. Implement the Jacobi method as applied to a block five-diagonal matrix mentioned in this la-

boratory work. Think about a possible parallelization scheme. 

2. Implement the Seidel method as applied to a block five-diagonal matrix mentioned in this la-

boratory work. Think about a possible parallelization scheme. 

3. Conduct a computational experiment having found the best pipelined scheme parameter val-

ues using Intel® TBB for test grid dimensions.  

TEST 

1. What is the purpose of initialize(…) method of tbb::task_scheduler_init? 

a. It enables setting a minimum grain size for iterative space partition in the course 

of cycle parallelization. 

b. +Activation of a tbb::task_scheduler_init object; the optional parameter also ena-

bles determining the number of threads. 

c. Enables determining the number of threads. 

2. If for a tbb::task_scheduler_init object the deactivation method terminate() is not explicit-

ly called, 

a. +the object will be deactivated when the corresponding destructor is called. 



b. the object will not be deactivated. 

c. the object will be deactivated upon completion of the parallel program section. 

3. How can one set the number of handlers in a parallel program using the capabilities of In-

tel® CilkPlus? 

a. Using __cilkrts_set_param(…) within the program. 

b. Using the CILK_NWORKERS environment variable. 

c. Using the respective Microsoft Visual Studio option. 

d. +All the above is possible. 

4. Can the Intel® CilkPlus extension to С/С++ be used in the absence of the Intel compiler? 

a. +Yes. 

b. No. 

5. Can the SOR method be considered as a direct method of solving linear systems? 

a. Yes 

b. Yes, but only for well-conditioned matrices. 

c. +No 

6. For a linear system with a SPD matrix, the SOR method will converge at 

a. +ω(0, 2) 

b. ω(2, 2) 

c. any ω value 

7. How many nonzero diagonals has the matrix of a linear system resulting from numerical 

solution of the Poisson’s equation in a two-dimensional region? 

a.   3 

b. + 5 

c.   7 

8. SOR method  

a. Can be effectively parallelized for sparse matrices of any structure 

b. + Can be effectively parallelized for large block diagonal sparse matrices 

c. Cannot be effectively parallelized for sparse matrices 


