

 Нижегородский государственный университет им. Н.И. Лобачевского

Parallel numerical methods

Laboratory Work

Solving Sparse Linear Systems by Iterative

Methods: Problem of Heat Diffusion in a Plate

Supported by Intel

K.A. Barkalov

Software Department

2

Contents

 Purpose and objectives of work

 Stationary problem of heat diffusion in a plate

 Computation scheme

 SOR method

 Band matrix storage formats

 Software implementation and its efficiency analysis

– Consecutive version

– Parallel Intel® Cilk Plus-based version

– Parallel implementation of the Intel® TBB-based pipelined

method scheme

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

3

Purposes of work

 The purpose of this laboratory work is to see how linear

systems with sparse matrices are solved using iterative

methods via example of a stationary problem of heat diffusion

in a rectangular plate at given temperature conditions at the

plate edges.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

4

Objectives of work (1)

 Studying the Successive Over Relaxation method to solve

linear systems with general matrices.

 SOR method development to solve linear system with a

special matrix (block five-diagonal matrix with the same

number on each individual diagonal).

 Development of infrastructure for mass experiments.

 Development of a consecutive SOR method implementation

to solve linear system with a block five-diagonal matrix.

 Developed SOR method convergence analysis

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

5

Objectives of work (2)

 Development of a so-called evident parallel implementation

involving method modification based on Intel® Cilk Plus.

 Evident parallel implementation scalability analysis

 Development of a pipelined parallelization scheme based on

Intel® Threading Building Blocks.

 Modified parallel implementation scalability analysis

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

6

Test infrastructure

CPU No. 2 Intel Xeon E5520 (2.27 GHz)

RAM 16 Gb

OS Microsoft Windows 7

Framework Microsoft Visual Studio 2008

Compiler, profiler, debugger Intel Parallel Studio XE 2011

Libraries Intel® Threading Building Blocks 3.0 for

Windows, Update 3 (part of Intel® Parallel

Studio XE 2011)

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

STATIONARY PROBLEM OF

HEAT DIFFUSION IN A PLATE

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

8

Legend

 𝑙1, 𝑙2 – lateral lengths of a rectangular plate.

 𝑈 𝑥, 𝑦 – plate temperature in the point 𝑥, 𝑦 belonging to

𝐺, 𝐺 = * 𝑥, 𝑦 : 𝑥 ∈ 0, 𝑙1 , 𝑦 ∈ 0, 𝑙2 +.

 𝑓(𝑥, 𝑦) – total exposure of a rectangular plate to external

sources and flows in the point (𝑥, 𝑦).

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

9

Problem Statement (1)

 The stationary problem of heat diffusion in a plate is

described by a differential Poisson equation.

∆𝑈 = 𝑈𝑥𝑥 + 𝑈𝑦𝑦 = −𝑓 𝑥, 𝑦 (1)

𝐺 = * 𝑥, 𝑦 : 𝑥 ∈ 0, 𝑙1 , 𝑦 ∈ 0, 𝑙2 +

 For a complete description of a stationary process, set the

temperature conditions at the plate edge:

𝑈 0, 𝑦 = 𝜇1 𝑦

𝑈 𝑙1, 𝑦 = 𝜇2 𝑦 (2)
𝑈 𝑥, 0 = 𝜇3 𝑥

𝑈 𝑥, 𝑙2 = 𝜇4(𝑥)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

10

Problem Statement (2)

 To be definite, use the following functions as

𝑓 𝑥, 𝑦 , 𝜇1 𝑦 , 𝜇2 𝑦 , 𝜇3 𝑥 , 𝜇4 𝑥

𝑓 𝑥, 𝑦 = 10 𝑠𝑖𝑛
𝜋𝑥

𝑙1
𝑠𝑖𝑛
𝜋𝑦

𝑙2
, (3)

𝜇1 𝑦 = 𝑦 𝑙2 − 𝑦 𝑐𝑜𝑠
𝜋(𝑙2 − 𝑦)

𝑙2
𝑐𝑜𝑠
𝜋𝑦

𝑙2
, (4)

𝜇2 𝑦 = −𝑦 𝑙2 − 𝑦 𝑠𝑖𝑛
𝜋 𝑙2 − 𝑦

𝑙2
, (5)

𝜇3 𝑥 = 𝑥 𝑙1 − 𝑥 𝑐𝑜𝑠
𝜋 𝑙1 − 𝑥

𝑙1
𝑐𝑜𝑠
𝜋𝑥

𝑙1
, (6)

𝜇4 𝑥 = −𝑥 𝑙1 − 𝑥 𝑠𝑖𝑛
𝜋 𝑙1−𝑥

𝑙1
 (7)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

COMPUTATION SCHEME

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

12

Difference scheme (1)

 Introduce a 𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗𝑘 grid where ℎ =
𝑙1

𝑛
, 𝑘 =

𝑙2

𝑚
 within 𝐺.

 Approximate the differential equation using a difference

scheme (9).

𝑈𝑖−1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖+1,𝑗

ℎ2
+
(𝑈𝑖,𝑗−1−2𝑈𝑖,𝑗 + 𝑈𝑖,𝑗+1)

𝑘2
= −𝑓𝑖,𝑗 ,

𝑖 = 1, 𝑛 − 1, 𝑗 = 1,𝑚 − 1

𝑈0,𝑗 = 𝜇1,𝑗 , 𝑗 = 0,𝑚 (8)

𝑈𝑛,𝑗 = 𝜇2,𝑗 , 𝑗 = 0,𝑚

𝑈𝑖,0 = 𝜇3,𝑖 , 𝑖 = 0, 𝑛

𝑈𝑖,𝑚 = 𝜇4,𝑖 , 𝑖 = 0, 𝑛

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

13

Difference scheme (2)

 Boundary conditions are solved for unknown variables at

boundary nodes.

 Substitute the respective unknown variables for their values.

 Consider the first differential scheme equation (𝑖 = 1).

 In a similar way, cases when 𝑖 = 𝑛 − 1 и 𝑖 = 2, 𝑛 − 2 can be

considered.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

14

Difference scheme (3)

𝑈0,𝑗−2𝑈1,𝑗+𝑈2,𝑗

ℎ2
+
(𝑈1,𝑗−1−2𝑈1,𝑗+𝑈1,𝑗+1)

𝑘2
= −𝑓𝑖,𝑗 , 𝑗 = 2,𝑚 − 2

𝑈2,𝑗

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,𝑗 +

𝑈1,𝑗−1

𝑘2
+
𝑈1,𝑗+1

𝑘2
= −𝑓𝑖,𝑗 −

1

ℎ2
𝜇1,𝑗 , 𝑗 = 2,𝑚 − 2

𝑈0,1−2𝑈1,1+𝑈2,1

ℎ2
+
(𝑈1,0−2𝑈1,1+𝑈1,2)

𝑘2
= −𝑓𝑖,1, 𝑗 = 1

𝑈2,1

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,1 +

𝑈1,2

𝑘2
= −𝑓𝑖,1 −

1

𝑘2
𝜇3,1 −

1

ℎ2
𝜇1,1, 𝑗 = 1

𝑈0,𝑚−1−2𝑈1,𝑚−1+𝑈2,𝑚−1

ℎ2
+
(𝑈1,𝑚−2−2𝑈1,𝑚−1+𝑈1,𝑚)

𝑘2
= −𝑓𝑖,𝑗 , 𝑗 = 𝑚 − 1

𝑈2,𝑚−1

ℎ2
− 2

1

ℎ2
+
1

𝑘2
𝑈1,𝑚−1 +

𝑈1,𝑚−2

𝑘2
= −𝑓𝑖,𝑗 −

1

ℎ2
𝜇1,𝑚−1 −

1

𝑘2
𝜇4,1

, 𝑗 = 𝑚 − 1

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

15

 Putting a differential system

 Form the vector of unknowns 𝑈 as follows:

𝑈 = (𝑈1,1, 𝑈2,1, … , 𝑈𝑛−1,1,

 𝑈1,2, 𝑈2,2, … , 𝑈𝑛−1,2, … ,

 𝑈1,𝑚−1, 𝑈2,𝑚−1, … , 𝑈𝑛−1,𝑚−1)

interior grid nodes are listed as they are located along the

coordinate variation axis 𝑥.

 Then the differential system can be put it a matrix form like

𝐴𝑈 = 𝐹 where 𝐹 is the vector of the function 𝑓(𝑥, 𝑦) values at

the interior nodes minus boundary condition remainders and

the matrix 𝐴 is a block five-diagonal one.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

16

 Example of such a matrix

for 𝑛 = 5,𝑚 = 5

(where

𝐴 = −2
1

ℎ2
+
1

𝑘2
).

Put the system of differential equations

 in a matrix form (2)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

SOR METHOD

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

18

SOR method (1)

 The linear system 𝐴𝑈 = 𝐹 resulting from a stationary heat

transfer problem has a symmetric negative definite matrix.

The matrix (– A) will be positive definite.

 To solve the system (9), use numerical methods applicable to

symmetric positive definite matrices:

−𝐴𝑈 = −𝐹 9

 The SOR method is a stationary single-step iterative method

of linear algebra applicable to symmetric positive definite

matrices.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

19

SOR method (2)

 Consider a linear system (10) with a 𝑛∗𝑛 symmetric positive

definite matrix A:
𝐴𝑥 = 𝑏 (10)

 Represent the matrix A as a sum of three matrices:

𝐴 = 𝐿 + 𝐷 + 𝑅 (11)

Here, D is a 𝑛 ∗ 𝑛 diagonal matrix whose principal diagonal

coincides with that of the matrix A;

L is a 𝑛∗𝑛 lower triangular matrix. Its elements under the main

diagonal coincide with the matrix A elements, main diagonal

being the zero one;

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

20

SOR method (3)

R is a 𝑛 ∗ 𝑛 upper triangular matrix. Its elements above the

main diagonal coincide with the matrix A elements, main

diagonal being the zero one;

 Canonical form of the SOR method:

𝐷 + 𝜔𝐿 𝑥 𝑠+1 − 𝑥 𝑠

𝜔
+ 𝐴𝑥 𝑠 = 𝑏 (12)

Here, 𝑥(𝑠), s the approximation obtained at 𝑠 + 1 iteration

𝜔 is the method parameter (number).

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

21

SOR method (4)

 The necessary condition of SOR convergence from any initial

approximation 𝑥 0 to the exact solution 𝑥∗ is fulfillment of

𝜔𝜖(1, 2). In case of the symmetric positive definite matrix A,

this condition is sufficient.

 If 𝜔 = 1, the SOR method will be the same as the Seidel

method.

 The determine formulas to explicitly compute the next

approximation 𝑥 𝑠+1 based on the previous one 𝑥(𝑠)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

22

SOR method (5)

𝐷 + 𝜔𝐿 𝑥 𝑠+1 − 𝑥 𝑠 + 𝜔𝐴𝑥 𝑠 = 𝜔𝑏

𝐷𝑥 𝑠+1 +𝜔𝐿𝑥 𝑠+1 − 𝐷𝑥 𝑠 −𝜔𝐿𝑥 𝑠 + 𝜔𝐴𝑥 𝑠 = 𝜔𝑏

𝐷𝑥 𝑠+1 = −𝜔𝐿𝑥 𝑠+1 + 𝐷𝑥 𝑠 −𝜔 𝐴 − 𝐿 𝑥 𝑠 + 𝜔𝑏

 Given that 𝐴 − 𝐿 = 𝐷 + 𝑅, we obtain:

𝐷𝑥 𝑠+1 = −𝜔𝐿𝑥 𝑠+1 + 1 − 𝜔 𝐷𝑥 𝑠 − 𝜔𝑅𝑥 𝑠 +𝜔𝑏 (13)

 From (13), record explicit formulas for computation of the new

vector 𝑥 𝑠+1 components:

𝑎𝑖𝑖𝑥𝑖
𝑠+1 = 𝜔 𝑎𝑖𝑗𝑥𝑗

𝑠+1

𝑖−1

𝑗=1

+ 1 − 𝜔 𝑎𝑖𝑖𝑥𝑖
𝑠 −

− 𝜔 𝑎𝑖𝑗𝑥𝑗
𝑠

𝑛

𝑗=𝑖+1

+𝜔𝑏𝑖 (14)

 Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

23

SOR method (6)

 As it can be seen from formula (14), to compute the 𝑖th

component of a new approximation, all smaller index

components are taken from the new approximation 𝑥 𝑠+1
while all greater index components are taken from the

previous one, 𝑥 𝑠 .

 To implement the method, it is enough to store only one

(current) approximation 𝑥 𝑠 , and to compute the next

approximation 𝑥 𝑠+1 use the formula for all components in

series and gradually renew the approximation vector.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

24

SOR method (7)

 Generalized formula for the software implementation:

𝑎𝑖𝑖𝑥𝑖
𝑠+1 = −𝜔 𝑎𝑖𝑗𝑥𝑗

𝑠

𝑛

𝑗=1

+ 𝑎𝑖𝑖𝑥𝑖
𝑠 +𝜔𝑏𝑖 (15)

 The SOR method convergence rate depends on the ω

parameter selection.

 We know that to solve linear systems of certain classes, the

SOR method requires 𝑂 𝑛2 iterations. For a certain ω

selection, the method will converge after 𝑂 𝑛 iterations.

 There is no general analytical formula to compute the best

𝜔𝑜𝑝𝑡 value.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

25

SOR method (8)

 For a linear system based on a differential scheme (8), the

best parameter 𝜔 for the SOR method is known and, if the

grid size ℎ and 𝑘 are the same, it is computed using (16):

𝜔𝑜𝑝𝑡 =
2

1 + 2 𝑠𝑖𝑛
𝜋ℎ
2

 16

 Minimum and maximum system matrix eigenvalues will in this

case be:

𝜆𝑚𝑖𝑛 =
4

ℎ2
𝑠𝑖𝑛2

𝜋

2𝑛
+
4

𝑘2
𝑠𝑖𝑛2

𝜋

2𝑚
 (17)

𝜆𝑚𝑖𝑛 =
4

ℎ2
𝑐𝑜𝑠2

𝜋

2𝑛
+
4

𝑘2
𝑐𝑜𝑠2

𝜋

2𝑚
 (18)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

BAND MATRIX STORAGE

FORMATS

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

27

Band matrix notion (1)

 A 𝐴 matrix is a band one if all its non-zero entries are confined

to a band comprising diagonal parallel to the main one.

 If for the matrix 𝐴 𝑎𝑖𝑗 = 0 when 𝑖 > 𝑗 + 𝑝 and 𝑎𝑖𝑗 = 0 when

𝑗 > 𝑖 + 𝑞, 𝑝 is the lower bandwidth and 𝑞 is the upper

bandwidth.

 𝑚= 𝑝 + 𝑞 + 1 is called the bandwidth of the matrix 𝐴.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

28

Band matrix notion (2)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 Let us study some band matrix storage types

 Let us suppose that dimension and bandwidth of the initial

matrix 𝐴 are 𝑛 and 𝑚, respectively.

 Band matrix type:

q – upper band

width

m –band

width

p – lower band

width

n – matrix

dimension

Main diagonal

29

Band format

 Band format is used when one can distinguish a dense band of

a specific width consisting of nonzeroes.

 If the initial matrix is symmetric, one may store only its lower (or

upper) triangle.

 Band format modifications:

– Band row format

– Band column format

– mixed format

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

30

Band row format (1)

 Band row format to store the initial matrix 𝐴 uses a 𝑛 ×𝑚

array where nonzeroes of the matrix 𝐴 are stored row-wise.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 Secondary diagonals are

redefined to a 𝑛 size by

adding zeroes at their

beginning for the lower

triangle and at their end for the

upper one.

row-wise

storage

31

Band row format (2)

 Example of a matrix stored in the band row format:

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Matrix 𝐴 Storage structure:

(𝑛 = 6, 𝑞 = 2, 𝑝 = 1,𝑚 = 4) Matrix

1 0 2

3 4 5 0

 6 7 8 9

 10 11 0 12

 0 13 14

 15 16

0 1 0 2

3 4 5 0

6 7 8 9

10 11 0 12

0 13 14 0

15 16 0 0

32

Band column format (1)

 To store the initial matrix 𝐴 band column format uses a array

𝑛 ×𝑚 with each line

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

containing column nonzeroes of

the matrix 𝐴.

 Secondary diagonals are

redefined to a 𝑛 size by

adding zeroes at their

beginning for the upper

triangle and at their end for the

lower one.

column-wise

storage

33

Band column format (2)

 The initial matrix element 𝑎𝑖𝑗 is stored in an element of the

array 𝐴,𝑖 − 𝑗 + 𝑞 + 1, 𝑗-, where is the upper band width of the

matrix 𝐴.

 Example of a matrix stored in the band column format:

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Матрица A Структура хранения:

(𝑛 = 6, 𝑞 = 2, 𝑝 = 1,𝑚 = 4) Matrix

1 0 2

3 4 5 0

 6 7 8 9

 10 11 0 12

 0 13 14

 15 16
.

0 0 2 0 9 12

0 0 5 8 0 1

1 4 7 11 13 16

3 6 10 0 16 0

Matrix A Storage structure:

34

Diagonal format (1)

 Diagonal storage format is used when all matrix nonzeroes ar

located on different diagonals that are not densely spaced.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

n – matrix

dimension

35

Diagonal format (2)

 To implement the matrix storage, two arrays are used.

 Matrix nonzeroes are stored in the 𝑛×𝑚 Matrix array, where

𝑛 is the initial matrix dimension and 𝑚 is the number of

nonzero diagonals.

 Secondary diagonals are redefined to the common size by

adding zeroes like in case with the band format.

 In addition, a 𝑚 Index array of integers will be stored to

indicate for each diagonal the values of shift from the main

diagonal, positive indices for the upper triangle and negative

indices for the lower one.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

36

Diagonal format (3)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 Example of a matrix stored in the diagonal format:

Матрица 𝐴

(𝑛 = 6, 𝑚 = 3)

Структура хранения:

1 2

3 4 0

 6 7 9

 10 11 12

 0 13

 15 16

Matrix

0 1 2

3 4 0

6 7 9

10 11 12

0

 0

15 16 0

Index

–1 0 2

Matrix A Storage structure:

37

Profile format (1)

 Profile format is used to store a matrix when the matrix has a

wide band with a great number of zeroes inside. The matrix

does not have a pronounced structure, but its nonzeroes are

concentrated close to its main diagonal.

 Let us see how the profile format is applied to the 𝑛 × 𝑛
symmetric matrix 𝐴.

 For each row 𝑖 of the matrix 𝐴, determine the first nonzero

shift from the main diagonal.

𝛽𝑖 = 𝑖 − 𝑗𝑚𝑖𝑛(𝑖),

where 𝑗𝑚𝑖𝑛(𝑖) is the minimum number of column or row 𝑖 for

which 𝑎𝑖𝑗 ≠ 0.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

38

Profile format (2)

 Shell of the matrix 𝐴 is a set of elements 𝑎𝑖𝑗, for which

0 < 𝑖 − 𝑗 ≤ 𝛽𝑖. In the 𝑖th matrix row, elements with row indices

from 𝑗𝑚𝑖𝑛𝑖 to 𝑖−1, a total of 𝛽𝑖 elements, belong to the shell.

Diagonal elements are not included into the shell.

 Profile of the matrix 𝐴 is the number of elements in the shell:

𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 = 𝛽𝑖

𝑛

𝑖=1

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

39

 Matrix example:

𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 = 11

𝑎11

 𝑎22 𝑎23

𝑎32 𝑎33 𝑎35 𝑎37

 𝑎44

 𝑎53 0 𝑎57 𝑎58

 𝑎66

 𝑎73 𝑎75 𝑎77

 𝑎84 𝑎85 𝑎88

Элементы
оболочки

𝑛 = 8

 1 = 2 = 4 = 6 = 0 3 = 1 5 = 2 7 = 8 = 4

Profile format (3)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Shell

elements

40

Profile format (4)

 To store a symmetric matrix in a profile format, two arrays are

required.

 All elements of the matrix shell including zeroes arranged in

rows are stored in the Matrix array size 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝐴 + 𝑛. The

diagonal element for this row is placed at its end.

 In addition, the 𝑛 Index array will be stored to contain indices

of diagonal matrix elements in the Matrix array. Thus, if 𝑖
≥ 1 elements of the 𝑖 th row of the matrix 𝐴 are stored in the

Matrix array from Index[i – 1] + 1 to Index[i].

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

41

Profile format (5)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 Example of a matrix stored in the profile format:

Matrix 𝐴

1 2

2 3 4

 5 6 7 8

 4 6 9

 7 10

 8 11 12

Storage structure:

Matrix

1 2 3 5 4 6 9 7 0 10 8 0 11 12

0 2 3 6 9 13
Index

42

Profile format (6)

 Profile storage scheme modification for a non-symmetric

matrix with a symmetric pattern requires four arrays:

– The 𝑛 di array contains diagonal elements.

– The 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 (𝐴) au and al arrays contain off-diagonal

elements of the upper triangle in the column-wise manner

and lower triangle elements in the row-wise manner,

respectively.

– The auxiliary 𝑛 Index array contains row indices in the au

and al arrays.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

43

Format used to solve the problem (1)

 For the purposes of work, the row format of the symmetrical

matrix storage (−𝐴) will be used.

 Both the upper and lower triangles will be stored, as one of

the basic SOR operations is multiplication of a matrix row by

the vector of unknowns𝑈.

 Additional array Index will contain elements −𝑛 + 1,−1, 0, 1, 𝑛
− 1.

 Add 𝑛 − 1 zeroes to the vector of unknowns at the beginning

and the end:

𝑈 = 𝑈1,0, 𝑈2,0, … , 𝑈𝑛−1,0, 𝑈1,1, … , 𝑈𝑛−1,𝑚−1, 𝑈1,𝑚, 𝑈2,𝑚, … , 𝑈𝑛−1,𝑚 ,

𝑈𝑖,0 = 𝑈𝑖,𝑚 = 0, 𝑖 = 1, 𝑛 − 1

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

44

Format used to solve the problem (2)

 Example of use of the selected storage format:

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Матрица 𝐴

(𝑛 = 4, 𝑚 = 3)

Структура хранения:

50 -16 -9

-16 50 -16 -9

 -16 50 -9

-9 50 -16

 -9 -16 50 -16

 -9 -16 50

о

Matrix

0 0 50 -16 -9

0 -16 50 -16 -9

0 -16 50 0 -9

-9 0 50 -16 0

-9 -16 50 -16 0

-9 -16 50 0 0

Index

-3 -1 0 1 3

Matrix A Storage structure:

SOFTWARE IMPLEMENTATION
Consecutive version

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

46

Project creation (1)

 Run Microsoft Visual Studio 2008

 From the File menu, select New→Project….

 From the New Project, select Win32 from the Project types

pane and Win32 Console Application from the Templates

pane; enter ВandOverRelaxation in the Solution field, enter

01_BandOR_seqv in the Name field, enter

c:\ParallelCalculus\ (path to the folder with laboratory

works). Press OK.

 From the Win32 Application Wizard dialog, press Next and

click Empty Project. Press Finish.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

47

Project creation (2)

 From the Solution Explorer, execute Add→New Item in the

Source Files folder. In the selection tree, select Code; select

C++ File (.cpp) in the templates on the right, enter main in

the Name field. Press Add.

 In a similar way, add BandOverRelax.cpp,

PoissonDecision.cpp and Utilities.cpp.

 From the Solution Explorer, execute Add→New Item in the

Header Files folder. In the selection tree, select Code; select

Header File (.h) in the templates on the right, enter

BandOverRelax in the Name field. Press Add.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

48

Project creation (3)

 In a similar way, add PoissonDecision.h and Utilities.h.

 BandOverRelax.h and BandOverRelax.cpp will store

prototypes and implementations of functions necessary for

the SOR method.

 PoissonDecision.h and PoissonDecision.cpp will contain

prototypes and implementations of functions determining the

right-hand part and boundary conditions of the differential

equation and the functions of solving differential equations.

 Utilities.h and Utilities.cpp will contain prototypes and

implementations of auxiliary functions.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

49

Connection to the Intel® Math Kernel Library (1)

 To check for correctness the solution obtained using the SOR

method, use the linear system solution functions from the

MKL library.

 Library connection:

– Open Tools → Options and select Projects and

Solutions→VC++ Directories.

– In the drop-down menu, first select Include Files, add a

new entry containing the path to MLK library header files

(e. g. C:\Program Files (x86)\Intel\ComposerXE-

2011\mkl\include),

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

50

Connection to the Intel® Math Kernel Library (2)

– Then select Library Files and add the path to the library

files:

• To assemble a 32-bit application, enter the path to the static library

for the ia-32 platform (e. g. C:\Program Files

(x86)\Intel\ComposerXE-2011\mkl\lib\ia32)

• To assemble a 64-bit application, enter the path to the static library

for the 64-bit platform (e. g. C:\Program Files

(x86)\Intel\ComposerXE-2011\mkl\lib\intel64).

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

51

Connection to the Intel® Math Kernel Library (3)

– From Configuration Properties in the

Linker→Input→Additional Dependencies tab, enter the

following static libraries:

• for a 32-bit application, they are mkl_core.lib, mkl_intel_c.lib,

mkl_Consecutive.lib.

• for z 64-bit application, they are mkl_core.lib,

mkl_Consecutive.lib, mkl_intel_lp64.lib, mkl_blas95_lp64.lib.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

52

Elementary function (1)

//SOR method accuracy

#define EPSILON 0.00001

int main(int argc, char* argv[]) {

 int n, m; //grid parameters

 int StepCount; //number of steps performed by the SOR method

 int size; //linear system dimension

 // variables to store the computing function runtimes

 double time, MKLtime;

 // set accuracy of the SOR method as a stop criterion

 double Accuracy = EPSILON;

 double ORAccuracy; //attainable SOR accuracy

 double* Decision; //solution found using the SOR method

 double *DecisionMKL; //exact system solution found using MKL

 // difference between the exact solution and the solution

 // found using the SOR method (in norm)

 double ExcAccuracy;

 // variables to save the results in a file

 char* FileName = "sparseOR_res.csv"; FILE* file;

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

53

Elementary function (2)

//1. Reading the command line parameters

 if ((argc > 2) && (argc < 6)) {

 n = atoi(argv[1]);

 m = atoi(argv[2]);

 if (argc >= 4) {

 Accuracy = atof(argv[3]);

 if (argc == 5)

 FileName = argv[4];

 }

 }

 else {

 printf("Invalid input parameters\n");

 return 1;

 }

 if ((n < 0) || (m < 0) || (Accuracy < 0)) {

 printf("Incorrect arguments of main\n");

 return 1;

 }

// continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

54

Elementary function (3)

 size = (n - 1)*(m - 1);

 //2. Memory allocation to arrays

 //Decision and DecisionMKL of the size dimension

 //3. Calling the function of solving linear systems by the SOR

method,

 printf("OverRelaxation:\ntime = %.15f\n", time);

 printf("Accuracy = %.15f, stepCount = %d\n", ORAccuracy, StepCount);

 //4. Solution verification:

 // 4.1. Finding the exact system solution using MKL

 // 4.2. Comparison of Decision and DecisionMKL

 MKLtime = СomputeDecisionMKL(n, m, DecisionMKL);

 ExcAccuracy = СompareDecisions(Decision, DecisionMKL, size);

 printf("MKL:\ntime = %.15f\n", MKLtime);

 printf("OR and MKL comparison = %.15f\n", ExcAccuracy);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

55

Elementary function (4)

//5. Results filing

 file = fopen(FileName, "a+");

 if (file) {

 fprintf(file, "%d;%d;%.15f;%.15f;%.15f;%d;%.15f\n",

 n, m, Accuracy, ORAccuracy, ExcAccuracy,

 StepCount, time);

 }

 fclose(file);

 //6. Memory release for Decision and DecisionMKL arrays

 return 0;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

56

Auxiliary functions

 Utilities.h will contain prototypes and Utilities.cpp will

contain implementation of memory allocation and release

functions.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

//Memory allocation

void InitializeVector(double** Vector, int size);

void InitializeVector(int ** Matrix, int size);

// memory release

void FreeVector(double** Vector);

void FreeVector(int** Vector);

57

Auxiliary functions. Differential equation

description (1)

#define _USE_MATH_DEFINES

#include "math.h"

#define LEFT_BOUND 10.0

#define RIGHT_BOUND 10.0

// Function of right-hand part computation for partial differential

equations

double f(double x, double y) {

 return 10*sin(M_PI*x/LEFT_BOUND)*sin(M_PI*y/RIGHT_BOUND);

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 PoissonDecision.h will contain prototypes and

PoissonDecision.cpp will contain implementation of functions

describing the right-hand part and boundary conditions of the

differential equation:

58

Auxiliary functions. Differential equation

description (2)
// Function of BC computation at the left side of the rectangle

double mu1(double y) {

 return y*(RIGHT_BOUND - y)*cos(M_PI*(RIGHT_BOUND - y)/

 RIGHT_BOUND)*cos(M_PI*y/RIGHT_BOUND);

}

// Function of BC computation at the right side of the rectangle

double mu2(double y) {

 return -y*(RIGHT_BOUND - y)*sin(M_PI*(RIGHT_BOUND - y)/RIGHT_BOUND);

}

// Function of BC computation at the lower side of the rectangle

double mu3(double x) {

 return x*(LEFT_BOUND - x)*cos(M_PI*(LEFT_BOUND - x)/

 LEFT_BOUND)*cos(M_PI*x/ LEFT_BOUND);

}

// Function of BC computation at the upper side of the rectangle

double mu4(double x) {

 return -x*(LEFT_BOUND - x)*sin(M_PI*(LEFT_BOUND - x)/ LEFT_BOUND);

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

59

Auxiliary functions. Linear system initialization

(1)

 Utilities.h will contain prototypes and Utilities.cpp will

contain implementation of functions forming the right-hand

matrix and vector of the linear system based on a difference

scheme in the selected format.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// matrix initialization for a grid (n, m)

void CreateDUMatrix(int n, int m, double** Matrix, int** Index) {

 // matrix dimension, band width

 int size = (n - 1)*(m - 1), bandWidth = 5;

 // matrix elements

 double hsqr = (double)n*n/LEFT_BOUND/ LEFT_BOUND; // 1/h

 double ksqr = (double)m*m/RIGHT_BOUND/RIGHT_BOUND;// 1/k

 double A = 2*(hsqr + ksqr);

 //1. Memory allocation

 InitializeVector(Matrix, size*bandWidth);

 InitializeVector(Index, bandWidth);

 // continued in the following slide

60

Auxiliary functions. Linear system initialization

(2)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 //2. Index array initialization

 (*Index)[0] = -n + 1; (*Index)[1] = -1; (*Index)[2] = 0;

 (*Index)[3] = 1; (*Index)[4] = n - 1;

 //3. Initialization of the matrix (-А) based on a differential scheme

 for (int i = 0; i < size; i++) {

 if (i >= n - 1) (*Matrix)[i*bandWidth] = -ksqr;

 else (*Matrix)[i*bandWidth] = 0.0;

 i

 else (*Matrix)[i*bandWidth + 1] = 0.0;

 (*Matrix)[i*bandWidth + 2] = A;

 if ((i + 1) % (n - 1) != 0) (*Matrix)[i*bandWidth + 3] = -hsqr;

 else (*Matrix)[i*bandWidth + 3] = 0.0;

 if (i < (n - 1)*(m - 2)) (*Matrix)[i*bandWidth + 4] = -ksqr;

 else (*Matrix)[i*bandWidth + 4] = 0.0;

 }

}

61

Auxiliary functions. Linear system initialization

(3)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// vector initialization for a grid (n, m)

void CreateDUVector(int n, int m, double** Vector) {

 // auxiliary variables

 double h = LEFT_BOUND/(double)n;

 double k = RIGHT_BOUND/(double)m;

 double hsqr = (double)n*n/LEFT_BOUND/LEFT_BOUND;

 double ksqr = (double)m*m/RIGHT_BOUND/RIGHT_BOUND;

 //1. Memory allocation

 InitializeVector(Vector, (n - 1)*(m - 1));

 //2. Initialization of the linear system left part based on a differential

scheme

 for(int j = 0; j < m - 1; j++) {

 for(int i = 0; i < n - 1; i++)

 (*Vector)[j*(n - 1) + i] = f((double)(i + 1)*h,

 (double)(j + 1)*k);

 (*Vector)[j*(n - 1)] += hsqr*mu1((double)(j + 1)*k);

 (*Vector)[j*(n - 1) + n - 2] += hsqr*mu2((double)(j + 1)*k);

 }

 // continued in the following slide

62

Auxiliary functions. Linear system initialization

(4)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 for (int i =0; i < n - 1; i++) {

 (*Vector)[i] += ksqr*mu3((double)(i + 1)*h);

 (*Vector)[(m - 2)*(n - 1) + i] += ksqr*mu4((double)(i + 1)*h);

 }

}

 Implement CreateMKLMatrix() that enables initialization of

the matrix (– 𝐴) based on a differential scheme (8) from the

(𝑛,𝑚) grid in the format used by the MKL library (the upper

triangle will be stored in a column-wise way).

// matrix initialization for MKL

void CreateMKLMatrix(int n, int m, double** Matrix);

63

Auxiliary functions. Obtaining the exact system

solution (1)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// finding the exact system solution using MKL

#include "mkl_lapack.h"

double СomputeDecisionMKL(int n, int m, double* Decision) {

 double *Matrix, *Vector; //system matrix and vector

 int size = (n - 1) * (m - 1);

 // auxiliary variables for MKL functions

 char uplo = 'U'; //consider the matrix as an upper triangular one
 int kd = n - 1; //number of top diagonals

 int ldab = n; //first matrix dimension

 int info = 0; //output parameter, error code

 int nrhs = 1; //number of right-hand parts

 double time; //runtime

 //1. Matrix and right-hand vector initialization

 CreateMKLMatrix(n, m, &Matrix);

 CreateDUVector(n, m, &Vector);

 // continued in the following slide

64

Auxiliary functions. Obtaining the exact system

solution (2)

 //2. Solving the system

 clock_t start = clock();

 dpbtrf(&uplo, &size, &kd, Matrix, &ldab, &info);

 dpbtrs(&uplo, &size, &kd, &nrhs, Matrix, &ldab, Vector, &size,

&info);

 time = (double)(clock() - start) / CLOCKS_PER_SEC;

 //3. Memorization

 memcpy(Decision, Vector, sizeof(double)*size);

 //4. Memory release

 FreeVector(&Matrix);

 FreeVector(&Vector);

 return time;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

65

Auxiliary functions. Obtaining the exact system

solution (3)

 Implement CompareDecisions() that enable finding the norm

of difference between the solution found using the SOR

method and the exact solution obtained by the MKL (the

vector norm can be defined as 𝑥∞ =𝑚𝑎𝑥𝑖
𝑥
𝑖).

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// comparison of solutions

double СompareDecisions(double* ORResult, double* MKLDecision,

 int size);

66

Auxiliary functions. Calling the Successive Over

Relaxation method (1)

 ComputeDecision() will compute an approximated decision of

the differential equation using the SOR method within a (𝑛, 𝑚)

grid. Place the function implementation in

PoissonDecision.cpp and declare the respective prototype

in PoissonDecision.h.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// approximated differential equation solution computation for a grid (n, m)

// obtained solution is stored in the Decision vector

// function returns the method runtime

double СomputeDecision(int n, int m, double* Decision,

 double Accuracy, double &ORAccuracy,

 int &StepCount) {

 // matrix, vector, solution

 double* Matrix, *Vector, *Result;

 int* Index;

 int size = (n - 1)*(m - 1); //system dimension

 int ResSize = size + 2*(n - 1); // augmented vector dimension

 // continued in the following slide

67

Auxiliary functions. Calling the Successive Over

Relaxation method (2)

 int bandWidth = 5; // band width

 // variables to measure time

 clock_t start, finish;

 double time;

 // SOR method parameters

 double WParam;

 double step = n/LEFT_BOUND > m/RIGHT_BOUND) ?

 (double) LEFT_BOUND /n : (double) RIGHT_BOUND /m;

 //1. System initialization

 CreateDUMatrix(n, m, &Matrix, &Index);

 CreateDUVector(n, m, &Vector);

 //2. Method initialization

 InitializeVector(&Result, ResSize);

 GetFirstApproximation(&Result, ResSize);

 WParam = GetWParam(step);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

68

Auxiliary functions. Calling the Successive Over

Relaxation method (3)

 //3. Approximated solution computation using the successive over

 // relaxation method

 start = clock();

 ORAccuracy = BandOverRelaxation(Matrix, Vector, &Result, Index, size,

 bandWidth, WParam, Accuracy,

 &stepCount);

 finish = clock();

 time = (double)(finish - start)/CLOCKS_PER_SEC;

 // solution saving

 memcpy(Decision, Result + n - 1, sizeof(double)*size);

 //4. Memory release

 FreeVector(&Matrix);

 FreeVector(&Index);

 FreeVector(&Vector);

 FreeVector(&Vector);

 return time;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

69

Implementation of the Successive Over

Relaxation method (1)

 Implement the SOR method as applicable to the block five-

diagonal matrix. Place prototypes of the respective functions

in BandOverRelax.h and their implementation - in

BandOverRelax.cpp.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

#define N_MAX 50000 //maximum allowable number of steps

// setting zero approximation for the SOR method

void GetFirstApproximation(double** Result, int size) {

 for(int i = 0; i < size; i++)

 Result[i] = 0.0;

}

// setting the SOR method parameter depending on the grid size

double GetWParam(double Step) {

 return 2 / (1 + 2*sin(M_PI*Step/2));

}

70

Implementation of the Successive Over

Relaxation method (2)

//SOR method for band matrices

// function returns the attainable system solution accuracy

double BandOverRelaxation(double* Matrix, double* Vector,

 double** Result, int* Index, int size,

 int bandWidth, double WParam,

 double Accuracy, int &StepCount) {

 // auxiliary variables

 double CurrError; //attainable accuracy for the iteration

 double sum, TempError;

 int ii, index = Index[bandWidth - 1], bandHalf = (bandWidth - 1)/2;

 StepCount = 0;

 do {

 CurrError = -1.0;

 for(int i = index; i < size + index; i++) {

 ii = i - index;

 TempError = (*Result)[i];

 sum = 0.0;

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

71

Implementation of the Successive Over

Relaxation method (3)

for (int j = 0; j < bandWidth; j++)

 sum += Matrix[ii*bandWidth + j] * (*Result)[i + Index[j]];

 (*Result)[i] = (Vector[ii] - sum) * WParam /

 Matrix[ii*bandWidth + bandHalf] + (*Result)[i];

 TempError = fabs((*Result)[i] - TempError);

 if (TempError > CurrError) CurrError = TempError;

 }

 StepCount++;

 }

 while ((CurrError > Accuracy)&&(StepCount < N_MAX));

 return CurrError;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

72

Project compilation and application run

 Add missing functions to the software implementation; include

necessary header files.

 Having developed the software implementation, build the

project by executing Build→Rebuild 01_BandOR_seqv and

check the application for consistent running.

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

73

Method convergence analysis (1)

 To analyze the implemented SOR method, let us consider a

system resulting from a differential equation with a predefined

known solution and boundary conditions.

 Study temperature variation in a plate with lateral lengths

𝑙1=𝑙2 = 1. Let the function 𝑢 𝑥, 𝑦 = 𝑥2𝑦 + 𝑦2𝑥 be the heat

diffusion equation solution Then, the equation (1) will look as

follows:

∆𝑈 = −𝑓 𝑥, 𝑦 = 2 𝑥 + 𝑦 (19)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

74

Method convergence analysis (2)

 Boundary conditions (2) will satisfy the following equations:

𝑈 0, 𝑦 = 𝜇1 𝑦 = 0 20
𝑈 𝑙1, 𝑦 = 𝜇2 𝑦 = 𝑙1(𝑙1 + 𝑦

2)
𝑈 𝑥, 0 = 𝜇3 𝑥 = 0

𝑈 𝑥, 𝑙2 = 𝜇4 𝑥 = 𝑙2(𝑙2 + 𝑥
2)

 Replace implementation of functions corresponding to setting

functions 𝑓, 𝜇1, 𝜇2 , 𝜇3 , 𝜇4 in the program code.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

75

Method convergence analysis (3)

 In PoissonDecision.cpp, implement the FunkU() function

that returns the solution fucntion value at a certain point:

 In Utilities.cpp, implement the CheckDecision() function that

makes it possible to find the residual norm of a solution

obtained using a certain method with a predetermined

solution.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

// exact solution of a differential equation

double FuncU(double x, double y);

// solution accuracy verification

double CheckDecision(double* Decision, int n, int m)

76

Method convergence analysis (4)

 Experimental

results with

various

accuracy:

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

𝑛,𝑚 𝜀 Numb

er of

steps

Attainable

accuracy

Allowed difference

from the exact

solution

10 0,001 20 0,000467 0,000383

50 0,001 101 0,000723 0,000380

100 0,001 201 0,000703 0,000455

500 0,001 1001 0,000461 0,000671

1000 0,001 2001 0,000380 0,000844

10 0,0001 22 0,000078 0,000107

50 0,0001 104 0,000075 0,000268

100 0,0001 204 0,000084 0,000360

500 0,0001 1004 0,000080 0,000535

1000 0,0001 2004 0,000085 0,000624

10 0,00001 26 0,0000099 0,000013

50 0,00001 115 0,0000095 0,000058

100 0,00001 219 0,0000098 0,000131

500 0,00001 1016 0,0000097 0,000393

1000 0,00001 2036 0,0000099 0,000382

77

Method convergence analysis (5)

 The method quickly converges to a solution. This effect may

be partially explained by simplicity of the right-hand function

and boundary conditions.

 The norm of difference from the exact solution for all the

above cases has an order of at least 10−4.

 For the selected functions, a single-order decrease of the

required accuracy 𝜀 given a fixed grid size has an insignificant

influence on the number of method iterations.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

SOFTWARE IMPLEMENTATION
Parallel Intel® Cilk Plus-based version

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

79

Project creation

 From BandOverRelaxation, create a new project entitled

02_BandOR_cilk.

 Create empty files main.cpp, PoissonDecision.h,

PoissonDecision.cpp, BandOverRelax.h,

BandOverRelax.cpp, Utilities.h, Utilities.cpp and copy to

these files the code from the respective files of

01_BandOR_seq.

 Connect Cilk Plus. For this purpose, open Configuration

Properties and select С\С++→Language to make sure that

the value of the Disable Intel Cilk Plus Keywords For Serial

Semantics field is “No”.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

80

main() function modification (1)

int main(int argc, char* argv[]) {

 ...

 int NumThreads; //number of threads

 //1. Reading the command line parameters

 if ((argc > 2) && (argc < 7)) {

 n = atoi(argv[1]);

 m = atoi(argv[2]);

 NumThreads = atoi(argv[3]);

 if (argc >= 5) {

 Accuracy = atof(argv[4]);

 if (argc == 6)

 FileName = argv[6];

 }

 }

 ...

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

81

main() function modification (2)

 ...

 //3. Calling the function of solving linear systems by the SOR method

 time = СomputeDecision(n, m, Decision, NumThreads,

 Accuracy, ORAccuracy, StepCount);

 //5. Results filing

 file = fopen(FileName, "a+");

 if (file)

 {

 fprintf(file, "%d;%d;%.15f;%.15f;%.15f;%d;%.15f;%d\n",

 n, m, Accuracy, ORAccuracy, ExcAccuracy,

 StepCount, time, NumThreads);

 }

 fclose(file);

 ...

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

82

ComputeDecision() function modification

#include "cilk/cilk_api.h"

double СomputeDecision(...) {

 ...

 WParam = GetWParam(step);

 // set the number of threads

 char nt[3];

 itoa(NumThreads, nt, 10);

 __cilkrts_set_param("nworkers", nt);

 //calling the successive over relaxation method

 start = clock();

 ORAccuracy = BandOverRelaxationCilk(Matrix, Vector, Result, Index,

 size, bandWidth, WParam, Accuracy, StepCount);

 finish = clock();

 time = (double)(finish - start)/CLOCKS_PER_SEC;

 ...

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

83

BandOverRelaxation() function modification (1)

 We will obtain the SOR method modification for cycle

parallelization within the iteration. Computation will result in

mixed approximations whose elements have been obtained

using mixed new and old components without keeping strictly

to the method formula (14).

 Introduce simple changes to the BandOverRelaxation() code

and name it BandOverRelaxationCilk().

 Parallelize the cycle by vector elements using cilk_for. In this

case, the variables assuming different values for each cycle

iteration must be declared locally.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

84

BandOverRelaxation() function modification (2)

 Declare the currError variable as a reducer for the

maximization operation. This will ensure safe use of the

shared variable, reduce synchronization costs and enable its

parallel computation.

 To work with currError, use the following functions:

– set_value() to initialize the accuracy value at the beginning

of the iteration;

– get_value() to obtain the value;

 The reduction operation itself is effected by means of

cilk::max_of().

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

85

BandOverRelaxation() function modification (3)

#include "cilk/cilk.h"

#include "cilk/reducer_max.h"

double BandOverRelaxationCilk(...) {

 cilk::reducer_max<double> CurrError;

 ...

 StepCount = 0;

 do {

 CurrError.set_value(-1.0);

 cilk_for (int i = index; i < size + index; i++) {

 int ii = i - index;

 double TempError = Result[i];

 double sum = 0.0;

 for (int j = 0; j < bandWidth; j++)

 sum += Matrix[ii*bandWidth + j] * Result[i + Index[j]];

 Result[i] = (Vector[ii] - sum) * WParam /

 Matrix[ii*bandWidth + bandHalf] + Result[i];

 TempError = fabs(Result[i] - TempError);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

86

BandOverRelaxation() function modification (4)

 CurrError = cilk::max_of(TempError, CurrError);

 }

 StepCount++;

 }

 while ((CurrError.get_value() > Accuracy)&&

 (StepCount < N_MAX));

 return CurrError.get_value();

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

87

Project compilation and application run

 Modify the program code as required.

 Having developed the software implementation, build the

project by executing Build→Rebuild 02_BandOR_seqv and

check the application for consistent running.

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

88

Scalability analysis (1)

 To analyze the pipelined scheme efficiency, perform an

experiment using functions based on formulas (3) – (7) with

an accuracy of 𝜀 = 10−5.

 See the next slide for the table showing dependence of the

number of method iterations on the number of application

threads.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

89

Scalability analysis (2)

Grid size
Consecutive

version

Parallel Intel® Cilk Plus-based version

1

thread

2

threads
4 threads 6 threads 8 threads

100 2917 2917 2917 2995 3114 3136

200 5409 5409 5409 5657 6049 6172

300 7731 7731 7732 8243 8844 9023

400 9944 9944 9945 10611 11766 12126

500 12076 12076 12076 12993 14366 14896

600 14145 14145 14145 15237 17219 18120

700 16160 16160 16160 17573 19713 20836

800 18129 18129 18131 19808 22536 23848

900 20059 20059 20060 21738 25065 26494

1000 21953 21953 22031 23862 27662 29155

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

90

 The greater is the number of threads, the more iterations are

performed. The reason is that the parallel scheme does not

take into account the strict sequence of the method

approximations but builds intermediate approximations.

 See the next slide for results of a multi-thread Cilk version. T

is the runtime (in seconds), S is the acceleration as compared

to single thread operation.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Scalability analysis (3)

91

Scalability analysis (4)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

System

dimensio

n

1 thread 2 threads 4 threads 6 threads 8 threads

T T S T S T S T S

100 0,68 0,53 1,27 0,32 2,12 0,33 2,04 0,34 2,01

200 5,03 2,75 1,83 1,68 2,99 1,47 3,41 1,31 3,85

300 16,23 8,61 1,89 4,98 3,26 4,15 3,91 3,46 4,69

400 38,03 20,31 1,87 11,09 3,43 9,08 4,19 7,49 5,08

500 73,03 38,45 1,90 21,65 3,37 17,21 4,24 14,54 5,02

600 123,74 63,88 1,94 36,31 3,41 30,20 4,10 29,28 4,23

700 192,64 98,88 1,95 57,14 3,37 47,92 4,02 48,70 3,96

800 283,27 145,97 1,94 83,73 3,38 71,78 3,95 74,52 3,80

900 397,73 205,74 1,93 115,16 3,45 101,53 3,92 105,10 3,78

1000 538,16 278,87 1,93 155,83 3,45 137,41 3,92 143,02 3,76

 Нижегородский государственный университет им. Н.И. Лобачевского

93 Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

Scalability analysis (6)

 The maximum acceleration of 5 was obtained for 8 threads

when 𝑛 = 400, 𝑛 = 500. A greater grid size reduces the

acceleration to 4. The reason is an increase in the number of

iterations as the number of threads grows and an increase in

contingencies and thread synchronization costs.

 Upon the whole, the approach showed satisfactory

acceleration results, however, it requires parallel version

modification to reduce unnecessary computations.

SOFTWARE IMPLEMENTATION
Parallel implementation of the Intel® TBB-based

pipelined scheme

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

95

Project creation

 From BandOverRelaxation, create a new project entitled

03_BandOR_tbb.

 Create empty files main.cpp, PoissonDecision.h,

PoissonDecision.cpp, BandOverRelax.h,

BandOverRelax.cpp, Utilities.h, Utilities.cpp and copy to

these files the code from the respective files of

02_BandOR_seq.

 Create TaskImplementation.h and

TaskImplementation.cpp to store declaration and

implementation of problem classes that will ensure the

pipelined scheme operation.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

96

TBB library connection

 Indicate the path to the library header files (Configuration

Properties→C/C++→General→Additional Include

Directories),

 Indicate the path to the library .lib files (Configuration

Properties→Linker→General→Additional Library

Directories),

 Indicate the tbb.lib library (Configuration

Properties→Linker→Input→Additional Dependencies), to

assemble the project.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

97

TBB library initialization

 To benefit from parallelization capabilities offered by TBB,

one must have at least one active (initialized)

tbb::task_scheduler_init class instance.

 This class is intended for creation of threads and internal

structures for the thread planner.

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

98

ComputeDecision() function modification

#include "tbb/task_scheduler_init.h“

double СomputeDecision(...) {

 ...

 GetFirstApproximation(Result, ResSize);

 WParam = GetWParam(step);

 // set the number of threads

 tbb::task_scheduler_init init(NumThreads);

 start = clock();

 ORAccuracy = BandOverRelaxationTBB(Matrix, Vector, &Result, Index,

 size, bandWidth, WParam, Accuracy, StepCount, n, NumThreads);

 finish = clock();

 ...

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

99

Description of a pipelined parallelization scheme

(1)

 As you can see from (14), computing the next element 𝑥𝑖
𝑠+1

requires the elements of 𝑥 𝑠 approximation with numbers

greater than 𝑖.

 For each grid node, its upper and right neighbours in the

cross stencil will be taken from the previous approximation,

while the left and bottom ones - from the current one.

 The number of nodes to be computed at each line is equal

to 𝑛 − 1 for the (𝑛,𝑚) grid. Thus, computing 𝑥𝑖
𝑠+1 requires

computation of the previous approximation 𝑥𝑗
𝑠 elements,

𝑗 = 1, 𝑖 + 𝑛 − 1.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

100

Description of a pipelined parallelization scheme

(2)

 If for several approximations the previous approximation has

at least 𝑛 − 1 more computed elements, further

approximations may be computed in parallel and in an in-sync

manner with a difference of 𝑛 − 1 element.

 Perform parallel computations based on the Master/Worker

scheme.

– The master will coordinate computation of approximations,

distribute load among the Workers and check the method

stop criterion.

– Approximated solutions will be found directly by Workers.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

101

Description of a pipelined parallelization scheme

(3)

 The pipelined scheme will be operated iteratively. Each

iteration has three stages:

– The Master will initialize data for the current computation

step.

– Having distributed the load between the Workers, the

Master will wait for completion. The Workers will compute

a certain number of elements, each for the respective

approximation.

– The Master will verify the method stop criterion.

 The number of workers and the quantity of physical threads

may not be the same. To better balance the load, each

physical thread must take the load from several Workers.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

102

Description of a pipelined parallelization scheme

(4)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 Example of pipelined scheme organization with two physical

threads and four workers:

1
st
 thread

1
st
 thread

1
st
 thread

2
nd

 thread

2
nd

 thread

2
nd

 thread

а) initialization b) computations c) accuracy verification

Р3

Р4

М

М

Р1

Р2

М

103

Description of a pipelined parallelization scheme

(5)

 Let Chunk stand for a portion of 𝑛 −1 elements. The system

dimension is a multiple of Chunk and is equal to (𝑛 − 1) ∗ (𝑚 − 1).
Therefore, the approximation vector can be computed stepwise by

computing a multiple of Chunk elements at a time.

 Use Portion to indicate the maximum number of portions of

Chunk elements to be computed at a time. The last portion

number, 𝑚− 1, will be maxChunk.

 Each Worker has a pointer to the respective current and previous

approximations. For the first Worker, the previous approximation

will be the one computed by the last Worker.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

104

Description of a pipelined parallelization scheme

(6)

 Let there be numWorkers Workers. Their computed

approximations are stored in the WorkerResults array (sized

numWorkers*ResSize, where ResSize is the approximation

vector dimension).

 The number of already computed portions of Chunk elements

are stored in the PrevPos array (sized numWorkers). The

maximum number of portion whose elements are to be found

at the current stage, is stored in the CurrPos array (sized

numWorkers).

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

105

Pipelined parallelization scheme procedure (1)

 Initialize WorkerResults approximations by the initial

approximation. For each i Worker set CurrPos[i] = 0,

PrevPos[i] = 0. Set the number of method steps equal to

zero.

 Until the required accuracy is obtained:

1. Determine the number of the current SOR method

iteration currIter. This is the approximation with the least

number whose computation was not completed.

2. For all Workers, find the boundaries of elements to be

computed at the current stage.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

106

Pipelined parallelization scheme procedure (2)

– For worker numbered k determining the currIter

approximation:

– For remaining workers except for the one preceding the

kth one:

* From this point on, j is the worker computing the previous approximation

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

PrevPos[k] = CurrPos[k];

CurrPos[k] = min(CurrPos[k] + Portion, maxChunk);

PrevPos[i] = CurrPos[i];

CurrPos[i] = max(min(CurrPos[i] + Portion,

 PrevPos[j] - 1), 0);

107

Pipelined parallelization scheme procedure (3)

– For worker number l directly preceding the worker with the

currIter approximation:

• If its approximation has not been computed completely, the worker

will compute the currIter + numWorkers - 1th approximation.

Computation boundary:

• Otherwise, worker l has finished computing the currIter - 1th

approximation and can proceed to computation of the

currIter + numWorkersth approximation. Computation boundary:

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

PrevPos[l] = CurrPos[l];

CurrPos[l] = max(PrevPos[j] – 1, 0);

PrevPos[l] = 0;

CurrPos[l] = min(Portion, PrevPos[j] - 1);

108

Pipelined parallelization scheme procedure (4)

3. In parallel, run computation of elements for each i Worker

from Chunk*PrevPos[i] to Chunk*CurrPos[i] – 1, wait

for completion.

4. If the current approximation has been computed

completely, check the stop criterion. If the required

accuracy has been attained, save the result and complete

the work.

5. Initialize the new computation stage, go to step 1.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

109

Pipelined parallelization scheme procedure (5)

Example of a

pipelined scheme

operation.

if n = m = 11,

Portion = 3,

numWorkers = 3.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

 (1) 2 3

 (1)

2

3

 (1) 2

3

(1) 2 3

1, 4 (2) 3

4

1

 4 2, 5 (3)

5

2

110

Pipelined parallelization scheme procedure (6)

 The scheme restricts the correlation between the single

portion Portion, grid size and the number of worker threads.

 Correctness of the pipelined scheme run will be guaranteed if:

numWorkers*Portion < n – 1 – Portion (21)

 For certain grids,one can select a parameter correlation so

that the pipelined scheme will operate under a less strict

condition:

numWorkers*Portion < n – 1 (22)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

111

Software implementation

 Implement the described pipelined scheme using the Intel®

TBB task mechanism.

 Let us suppose that the master and worker functionalities are

implemented as separate classes of problems.

 Declare the classes of TBB-problems in

TaskImplementation.h having mapped the required header

file. Set the pipelined scheme parameters in the same file.

 Implement the execute() methods of the declared classes in

TaskImplementation.cpp.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

#include "tbb\task.h"

#define THREADS_PER_WORKER 2 //number of workers per thread

#define FIRST_PORTION 2 //first portion of computations

112

Class ensuring functionality of the worker (1)

// tbb class - worker problem

// computations at a certain method iteration

class OverRelaxWorker : public tbb::task {

public:

 double* PrevResult; //approximation at the previous iteration

 double* CurrResult; //approximation at the current iteration

 static double* tMatrix; //matrix

 static int* tIndex; //diagonal offset index

 static double* tVector; //right-hand vector

 static double tWParam; //method parameter

 static int tSize; //system dimension

 static int tBandWidth; //band width

 int start; // initial position of the portion of computations

 int finish; //final portion of computations

 double CurrError;//solution accuracy at the current approximation

 tbb::task* execute();

};

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

113

Class ensuring functionality of the master (2)

tbb::task* OverRelaxWorker::execute() {

 int ii, j;

 int index = tIndex[tBandWidth - 1], bandHalf = (tBandWidth - 1)/2;

 double sum, TempError;

 // computing the new approximation elements [start, finish)

 for (int i = index + start; i < index + finish; i++) {

 ii = i - index;

 sum = 0.0;

 for (j = 0; j < bandHalf; j++)

 sum += tMatrix[ii*tBandWidth + j] * CurrResult[i + tIndex[j]];

 for (j = bandHalf; j < tBandWidth; j++)

 sum += tMatrix[ii*tBandWidth + j] * PrevResult[i + tIndex[j]];

 CurrResult[i] = (tVector[ii] - sum) * tWParam /

 tMatrix[ii*tBandWidth + bandHalf] + PrevResult[i];

 TempError = fabs(CurrResult[i] - PrevResult[i]);

 CurrError = max(CurrError, TempError);

 }

 return NULL;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

114

Class ensuring functionality of the master (1)

// tbb class - master problem

// organizing parallel computations, method start and stop

class OverRelaxMaster : public tbb::task {

public:

 static double* tDecision; //obtained solution

 static double tORAccuracy; //attainable accuracy

 static double tAccuracy; //set accuracy of solution

 static int tSize; //system dimension

 static int tResSize; //solution vector dimension

 static int NumSteps; //number of performed iterations

 static int MaxNumSteps; //maximum number of iterations

 static int numWorkers; //number of worker problems

 static int Chunk; //dimension of a single portion of computations

public:

 tbb::task* execute();

};

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

115

Class ensuring functionality of the master (2)

#ifndef min

#define min(a, b) ((a)<(b))?(a):(b)

#endif

#ifndef max

#define max(a, b) ((a)>(b))?(a):(b)

#endif

tbb::task* OverRelaxMaster::execute() {

 OverRelaxWorker **Workers; //worker threads

 tbb::task_list tasks; //list of generated problems

 double** workerResults; //approximations found by workers

 double CurrError = -1.0; //current method accuracy

 int *prevPos; //number of elements computed at the previous stage

 int *currPos; //number of elements computed at the current stage

 double *currErrorBuff; //current error of workers

 int portion = FIRST_PORTION;//first portion of computations

 int currIter; //current iteration number

 // the number of maximum portion of computations (number of layers)

 int maxPortion = tSize / Chunk;

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

116

Class ensuring functionality of the master (3)

 // auxiliary variables

 int i;

 int refCount;

 //1. Memory initialization for operation:

 // 1.1 - auxiliary arrays

 InitializeVector(&currPos, numWorkers);

 InitializeVector(&prevPos, numWorkers);

 InitializeVector(&currErrorBuff, numWorkers);

 // 1.2 - workers and the array of corresponding approximations

 Workers = new OverRelaxWorker* [numWorkers];

 workerResults = new double* [numWorkers];

 for(i = 0; i < numWorkers; i++) {

 Workers[i] = new(tbb::task::allocate_child()) OverRelaxWorker;

 InitializeVector(&(workerResults[i]), tResSize);

 memset(workerResults[i], 0, sizeof(double) * tResSize);

 }

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

117

Class ensuring functionality of the master (4)

 // 1.3 - initialization of approximations for the worker threads

 for(i = 0; i < numWorkers; i++) {

 currPos[i] = 0;

 prevPos[i] = 0;

 currErrorBuff[i] = -1.0;

 Workers[i]->CurrResult = workerResults[i];

 Workers[i]->PrevResult = workerResults[(i+ numWorkers - 1) %

 numWorkers];

 }

 //2. SOR method launch

 NumSteps = 0;

 while(true) {

 // 2.1 - determining the current approximation number

 currIter = NumSteps % numWorkers;

 // 2.2 - determining the boundary of the new portion of computations

 // for the current approximation

 prevPos[currIter] = currPos[currIter];

 currPos[currIter] = min(currPos[currIter] + portion, maxPortion);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

118

Class ensuring functionality of the master (5)

 Workers [currIter]->start = prevPos[currIter] * Chunk;

 Workers [currIter]->finish = currPos[currIter] * Chunk;

 // recording the new problem in the list of problems

 refCount = 1;

 tasks.push_back(*(Workers[currIter]));

 refCount ++;

 // 2.3 - determining the boundary of the new portion of computations

for the following

 // computations, placing the workers in the list of problems

 for(i = 1; i < numWorkers - 1; i++) {

 prevPos[(currIter + i) % numWorkers] =

 currPos[(currIter + i) % numWorkers];

 // If the previous approximation resulted in less that 1 portion

(layer)

 // the current position will be 0. Else - next portion

 currPos[(currIter + i) % numWorkers] = max(

 min(currPos[(currIter + i) % numWorkers] + portion,

 prevPos[(currIter + i - 1) % numWorkers] - 1), 0);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

119

Class ensuring functionality of the master (6)

 Workers [(currIter + i) % numWorkers]->start =

 prevPos[(currIter + i) % numWorkers] * Chunk;

 Workers [(currIter + i) % numWorkers]->finish =

 currPos[(currIter + i) % numWorkers] * Chunk;

 tasks.push_back(*(Workers[(currIter + i) % numWorkers]));

 refCount ++;

 }

 // 2.4 - determining the boundary of the new portion of

computations for the last

 // worker (the previous one as regards the current approximation)

 // a) if the approximation vector has not been computed completely

 if(currPos[(currIter + i) % numWorkers] != maxPortion) {

 prevPos[(currIter + i) % numWorkers] =

 currPos[(currIter + i) % numWorkers];

 currPos[(currIter + i) % numWorkers] =

 max(prevPos[(currIter + i - 1) % numWorkers] - 1, 0);

 }

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

120

Class ensuring functionality of the master (7)

 // b) if the approximation vector has been computed completely

 else {

 prevPos[(currIter + i) % numWorkers] = 0;

 currPos[(currIter + i) % numWorkers] = min(portion,

 prevPos[(currIter + i - 1) % numWorkers] - 1);

 Workers [(currIter + i) % numWorkers]->CurrError = -1.0;

 }

 Workers [(currIter + i) % numWorkers]->start =

 prevPos[(currIter + i) % numWorkers] * Chunk;

 Workers [(currIter + i) % numWorkers]->finish =

 currPos[(currIter + i) % numWorkers] * Chunk;

 tasks.push_back(*(Workers[(currIter + i) % numWorkers]));

 refCount ++;

 // 2.5 - Placing the problems in the pool and solving them

 set_ref_count(refCount);

 spawn_and_wait_for_all(tasks);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

121

Class ensuring functionality of the master (8)

 // 2.6 - If the current approximation has been computed completely,

 // check the stop criterion

 if(currPos[currIter] == maxPortion) {

 CurrError = Workers[currIter]->CurrError;

 Workers[currIter]->CurrError = -1.0;

 currErrorBuff[currIter] = -1.0;

 // if the solution is found, store it in tDecision

 if ((CurrError < tAccuracy) || (NumSteps > MaxNumSteps)) {

 tORAccuracy = CurrError;

 this->tDecision = Workers[currIter]->CurrResult;

 NumSteps++;

 return NULL;

 }

 NumSteps++;

 }

 // 2.7 - Identification of new problems

 // а) remember current error of each approximation

 for(i = 0; i < numWorkers; i++)

 currErrorBuff[i] = Workers[i]->CurrError;

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

122

Class ensuring functionality of the master (9)

 // b) identify new problems

 delete [] Workers;

 Workers = new OverRelaxWorker * [numWorkers];

 for(i = 0; i < numWorkers; i++)

 Workers[i] = new(tbb::task::allocate_child()) OverRelaxWorker;

 // с) initialize approximations for the problems

 for(i = 0; i < numWorkers; i++) {

 Workers[i]->CurrError = currErrorBuff[i];

 Workers[i]->CurrResult = workerResults[i];

 Workers[i]->PrevResult =

 workerResults[(i + numWorkers - 1) % numWorkers];

 }

 }

 //3. Memory release

 FreeVector(&currPos);

 FreeVector(&prevPos);

 FreeVector(&currErrorBuff);

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

123

Class ensuring functionality of the master (10)

 for (i = 0; i < numWorkers; i++)

 if (workerResults[i] != tDecision)

 FreeVector(&workerResults[i]);

 delete [] workerResults;

 return NULL;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

124

BandOverRelaxation() function modification (1)

 Modify the BandOverRelaxation() function and name it

BandOverRelaxationTBB() .

 Before the BandOverRelaxationTBB() function, declare the

static member variables of OverRelaxWorker and

OverRelaxMaster classes.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

125

BandOverRelaxation() function modification (2)

double BandOverRelaxationTBB(...) {

 // OverRelaxMaster static member variables

 OverRelaxMaster::tAccuracy = Accuracy;

 OverRelaxMaster::tSize = size;

 OverRelaxMaster::tResSize = size + 2*Index[bandWidth - 1];

 OverRelaxMaster::MaxNumSteps = N_MAX;

 OverRelaxMaster::tORAccuracy = -1.0;

 OverRelaxMaster::NumSteps = 0;

 OverRelaxMaster::Chunk = n - 1;

 OverRelaxMaster::numWorkers = THREADS_PER_WORKER*NumThreads;

 // OverRelaxWorker static member variables

 OverRelaxWorker::tMatrix = Matrix;

 OverRelaxWorker::tVector = Vector;

 OverRelaxWorker::tWParam = WParam;

 OverRelaxWorker::tIndex = Index;

 OverRelaxWorker::tSize = size;

 OverRelaxWorker::tBandWidth = bandWidth;

 // continued in the following slide

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

126

BandOverRelaxation() function modification (3)

 // SOR method start

 OverRelaxMaster& FirstIter =

 *new (tbb::task::allocate_root()) OverRelaxMaster();

 tbb::task::spawn_root_and_wait(FirstIter);

 (*Result) = OverRelaxMaster::tDecision;

 StepCount = OverRelaxMaster::NumSteps;

 return OverRelaxMaster::tORAccuracy;

}

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

127

Project compilation and application run

 Modify the program code as required.

 Having developed the software implementation, build the

project by executing Build→Rebuild 03_BandOR_cilk and

check the application for consistent running.

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

128

Scalability analysis (1)

 To analyze the pipelined scheme efficiency, perform

experiments using functions based on formulas (3) – (7) with

the accuracy of 𝜀 = 10−5.

 See the next slide for the results of running a multiple-thread

pipelined scheme. T is the runtime (in seconds), S is the

acceleration as compared to single thread operation.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

129

Scalability analysis (2)

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

System

dimensio

n

1 thread 2 threads 4 threads 6 threads 8 threads

T T S T S T S T S

100 0,67 0,35 1,90 0,21 3,20 0,17 3,94 0,14 4,65

200 4,98 2,57 1,94 1,45 3,43 1,08 4,59 0,90 5,52

300 16,03 8,25 1,94 4,60 3,48 3,34 4,80 2,71 5,91

400 37,87 19,61 1,93 10,50 3,61 7,46 5,08 6,01 6,31

500 73,47 36,98 1,99 19,75 3,72 13,91 5,28 11,17 6,58

600 123,42 62,83 1,96 32,96 3,74 23,10 5,34 18,53 6,66

700 190,60 96,76 1,97 51,26 3,72 35,63 5,35 28,56 6,67

800 280,10 141,79 1,98 74,73 3,75 51,91 5,40 41,88 6,69

900 390,15 199,02 1,96 104,32 3,74 72,27 5,40 58,73 6,64

1000 529,07 265,81 1,99 141,18 3,75 97,46 5,43 80,50 6,57

 Нижегородский государственный университет им. Н.И. Лобачевского

131

Scalability analysis (4)

 The maximum acceleration of 6.7 was obtained for 8 threads

when 𝑛 = 800. If the grid size 𝑛 > 300 acceleration will

exceed 6.

 Acceleration growth depending on the number of threads and

grid size indicates good scalability of the proposed pipelined

scheme.

 The pipelined scheme requires the same number of the SOR

method iterations as the consecutive version.

 Additional acceleration may be ensured by fitting scheme

parameters to a specific problem.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

132

Test questions (1)

 Deduce a linear system resulting from grid approximation of

the heat transfer equation. What structural peculiarities does

this matrix have?

 Give the canonical SOR method form and approximation

component computation formula.

 Substantiate the SOR method convergence. Demonstrate

dependence of the convergence rate on the method

parameters selection.

 What band matrix storage formats do you know? When is

each of them used?

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

133

Test questions (2)

 Why is the number of the SOR method iterations different in

case of a multi-thread Intel® Cilk Plus-based parallel

implementation?

 Substantiate the necessary restrictions to the pipelined

parallelization scheme parameters. What changes must be

introduced to the system to relax these restrictions?

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

134

Added tasks (1)

 Prove that the block five-diagonal matrix used for solving

linear systems in the course of this laboratory work is

negative definite.

 Show that if the matrix 𝐴 is a negative definite, the matrix (– 𝐴)
will be positive definite.

 Show that the eigenvalues of the matrix in question (part of

the linear system) are computed using formulas (17) and (18).

It is assumed that ℎ = 𝑘.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

135

Added tasks (2)

 Implement the Jacobi method as applied to a block five-

diagonal matrix mentioned in this laboratory work. Think

about a possible parallelization scheme.

 Implement the Seidel method as applied to a block five-

diagonal matrix mentioned in this laboratory work. Think

about a possible parallelization scheme.

 Conduct a computational experiment having found the best

pipelined scheme parameter values using Intel® TBB for test

grid dimensions.

Nizhny Novgorod, 2011 Solving sparse linear systems by iterative methods

136

Questions

 ???

Solving sparse linear systems by iterative methods Nizhny Novgorod, 2011

