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OBJECTIVES 

The objective of this lecture is to review approaches to reduce the condition number of a ma-

trix based on preconditioning. Preconditioning is important for iterative methods as it improves 

their convergence rate. 

ABSTRACT 

Preconditioning is an explicit or implicit transformation of a linear system Ax=b which makes 

this system more suitable for solution using iterative methods as it improves their convergence 

rate. This lecture describes a number of preconditioning methods, from simpler (Jacobi and 

Seidel methods) to more effective ones such as ILU(0) and ILU(p) that are based on the incom-

plete LU-factorization. It gives experimental results for a model problem. The lecture also 

demonstrates matrix condition improvement as a result of various preconditioning methods. 

GUIDELINES 

One of the key properties of the matrix A in a linear system is its condition number μA. For 

example, the condition number of a symmetric positive definite matrix is a relation of its maxi-

mum eigenvalue to its minimum one. This relation is more complex for general matrices. 

The condition number is critical for convergence of iterative methods to solve linear systems. 

If μA >> 1, the convergence rate will be low. If μA  1, the convergence rate will be high. There-

fore, to improve matrix condition, the use of special methods, i. e. matrix preconditioning will be 

required. 

Preconditioning is an explicit or implicit transformation of a linear system Ax=b which 

makes this system more suitable for solution using an iterative method. For example, explicit 

preconditioning involves multiplying the matrix A lines by the reciprocals of the matrix diagonal 

to obtain a single main diagonal.  

Another example of preconditioning is multiplying the initial system by some matrix, 1
M , 

i.e. transition to a system like bMAxM
11 

 . The matrix M is called a preconditioner 

matrix  or preconditioner. This preconditioning method may be called implicit as no explicit 

modification of the linear system takes place and the preconditioner matrix is used within the it-

erative method to correct certain algorithm steps. 

An informal requirement to the preconditioner matrix may be put as follows: M must be 

close to A (for AM
1  to be close to the unity matrix E). Please note that the selection of M=A 

gives an immediate solution bAEx
1

 , however, it has no practical sense as it requires compu-

tation of 1
A . 



Product matrix computation AM
1  generally leads to the matrix pattern modification (which 

is unacceptable for sparse systems), so the use of preconditioner requires another approach. Ad-

ditional operations are introduced into the method scheme to allow for preconditioner influence. 

For example, the initial system residual Axbr   has an obvious relation rrM   to the pre-

conditioned system residual AxMbMr
11 

 . The same is true for multiplication of a matrix 

by a vector. 

Having summarized all prerequisites of effective preconditioning, we will see that the matrix 

M: 

 must be close to A; 

 must be easy to compute; 

 must be easily invertible, i. e. allow for fast solution of systems like rMz  . 

As these three criteria are clearly controversial (as illustrated by the case when M=A), it is 

not easy to find the preconditioning method that will satisfy all of them. This lecture describes a 

number of preconditioning methods, from elementary ones like the Jacobi and Seidel methods to 

more efficient ones such as ILU(0) and ILU(p) based on incomplete LU-factorization. 

The first part of the lecture deals with elementary preconditioners. First of all, there is a rela-

tion between the basic iterative methods (Jacobi, Seidel, SOR and SSOR) and the preconcitioner. 

Any basic iterative method is nothing else but the simple iteration method applied to a system 

with the preconditioner M. Here, M is based on the iteration matrix of the respective method. 

These preconditioners satisfy two of the three requirements to them: they are easy to compute 

(as they are either submatrices or products of the matrix A submatrices) and invertible (as they 

are diagonal, triangular and a product of triangular matrices, respectively). However, they are not 

entirely in line with the third requirement, that is, they are not close to A, therefore, spectral pa-

rameters of the matrix AM
1  are only slightly improved. 

The second part of the lecture deals with preconditioners resulting from incomplete LU-

factorization. Let us describe the matrix A as A=LU R, where the matrices L and U are the low-

er and upper triangular matrices, respectively, and the residual R satisfies a number of additional 

conditions (e. g. specific R elements are equal to zero). In such a case, approximate representa-

tion of ALU is called incomplete LU-factorization of the matrix A (or ILU-factorization). If 

R=0, this will be a complete factorization or complete LU-factorization of the matrix А . In fact, 

complete factorization means solving the linear system using a direct method. However, this op-

eration is a) complex b) difficult to implement for sparse matrices. Incomplete LU-factorization 



lets obtain matrices L′ and U′ close to those obtained as a result of complete factorization. In 

such a case, incomplete LU-factorization takes much less time. 

The basis for the implementation procedure of the incomplete LU-factorization is the Gaussi-

an elimination method. In this case, for the purposes of sparse matrix LU-factorization the algo-

rithm is divided into two parts, symbolic and numeric. The symbolic part involves construction 

of L and U portraits. The numeric parts includes computation of specific values for all non-zero 

elements corresponding to the portraits. 

Two incomplete factorization methods are considered, ILU(0) and ILU(p). 

The idea of ILU(0)-factorization is to eliminate all new non-zero elements that appear in the 

course of factorization, from the factor. For the purpose of this algorithm, the initial matrix A 

pattern is used as the patterns of L′ and U′. The lower A triangle serves as the pattern of L′  while 

the upper one is used as the pattern of U′. In the numeric part, coefficients of matrices L′ and U′ 

are computed in such a way to make the matrix L′U′ coincide with A for all non-zero A elements. 

It should be noted that due to incomplete factorization multiplying L′ by U′ may lead to addition-

al non-zero elements. 

The idea of ILU(p)-factorization is that the patterns of matrices L′ and U′ obtained as a result 

of incomplete LU-factorization are closer to the patterns of L and U (i. e., a certain degree of fac-

tor filling compared to ILU(0) is allowed). The method is based on the concept of p filling level. 

In this case, p regulates factor construction precision and may be interpreted as the number of 

additional diagonals where filling is possible. So if p is equal to the matrix size, the algorithm 

will result in the complete LU-factorization. If p is equal to zero, the algorithm transforms to 

ILU(0). 

The conclusion contains experimental results for a model problem. The lecture also demon-

strates matrix condition improvement as a result of application of various preconditioning meth-

ods. 

RECOMMENDATIONS FOR STUDENTS  

A description of preconditioning methods may be found in numerous publications as such 

methods considerably improve the convergence rate of iterative methods used for solving linear 

systems. A concise summary of these methods (including pseudocode algorithms) is given in [1]. 

A detailed description of the approach itself including determination of methods, their theoretical 

justification and examples of use can be found in [4]. A brief description of preconditioning (as 

applicable to the conjugate gradient method) is given in [2, 3]. 

REFERENCES 



1. J. Dongarra et al. Templates for the solution of linear systems: building blocks for iterative 

methods. SIAM, 1994. 

2. Gene H. Golub, Charles F. Van Loan. Matrix Computations. The John Hopkins University 

Press, 1996. 

3. James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997. 

4. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003. 

PRACTICE 

1. Construct the symmetric Gauss-Seidel preconditioner. Estimate the matrix A condition 

number reduction using this preconditioner. 

2. Construct the ILU(p)-preconditioner. Estimate the matrix A condition number reduction 

using this preconditioner with various degrees of p filling. 

3. Implement a parallel version of the ILU(p)-preconditioner. Check your program scalabil-

ity. 

TEST 

1. Which property complicates the use of the matrix M as a preconditioner? 

a. + Matrix M is ill-invertible 

b. Matrix M is ill-conditioned 

c. Matrix M has complex eigenvalues 

2. Which of the following properties complicates the use of the matrix M as an explicit pre-

conditioner (i. e. complicates transition to the M
1

A system)? 

a. Matrix M
1

A will be sparse 

b.  Matrix M
1

A will be well-conditioned 

c. + Matrix M
1

A will be dense 

3. The use of the preconditioner M in an iterative method involves 

a. Computation of the matrix M
1

 and transition to the problem with the matrix 

M
1A. 

b. +Solving the system with the matrix M within each method iteration 

c. Solving the system with the matrix M within the first method iteration 

4. The Jacobi preconditioner (in the A = R+D+L assumption) is computed as 

a. + D 

b. (D+L) 

c. (D+R) 



5. The Seidel preconditioner (in the A = R+D+L assumption) is computed as 

a.     D 

b. + (D+L) 

c.    (D+R) 

6. Matriсes L and U of the ILU(0)-preconditioner have 

a. +The same portrait as the matrix A 

b.  The same portrait as the matrix A-1. 

c.  The same portrait as the matrix A
T
. 

7. The procedure of ILU(0)-preconditioner computation is based on  

a. +Gaussian elimination method 

b. Gauss-Seidel iterative method 

c. Cyclic reduction method 

8. ILU(p)-preconditioning method 

a. Does not allow filling of the matrices L and U if compared to the matrix A 

b. +Allows filling of the matrices L and U if compared to the matrix A 

c. Filling of the L and U matrices is not controlled by the method. 

 


