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Introduction (1) 

 Let us consider a system of n linear equations like  

 

 

 

 

 As a matrix, the system may be represented as follows  

    Axb 

 A(aij) is a n×n real matrix; A is a sparse matrix; b and x are vectors 

consisting of n elements. 
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Introduction (2) 

 Methods of solving linear systems may be classified as direct 

and iterative.  

 Both types have their advantages and disadvantages.  

– The use of direct methods leads to system matrix filling in 

the course of factorization which may cause inefficient 

memory usage.  

– The use of iterative methods that do not lead to matrix 

filling may sometimes lead to a low convergence rate. 

 The purpose of this laboratory works is to study iterative 

methods of solving linear systems. 
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Introduction (3) 

 An iterative method generates a sequence of vectors x(s)Rm, 

s0,1,2,… where x(s) is an approximate system solution.  

 Method convergence is convergence of the sequence x(s) to the 

exact system solution from any initial approximation.  

 Convergence rate is determined by the number of approximations 

performed by the method until the stop criterion is met. 

 In practice, convergence is not the only important thing. In the 

course of computing, computational error is inevitable. A method is 

numerically stable if the computational error tends to zero when 

при уменьшении погрешности вычислений. 

 The convergence and numerical stability of iterative methods are 

the main issues solved as part of iterative method quality study. 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



6 

Introduction (4) 

 Most methods converge quickly if the matrix is well-

conditioned or has few eigenvalues.  

 Otherwise, due to computational error accumulation, a 

method that converges in theory may diverge in reality.  

 To overcome poor matrix conditioning, system 

preconditioning is used, i.e. conversion to a linear system with 

the same solution and a better matrix by multiplying the 

system by a special matrix. 
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Purposes of work 

 The purpose of this laboratory work is to demonstrate 

practical implementation of the biconjugate gradient method 

for linear systems with sparse matrices 
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Objectives of work 

 Study of the biconjugate gradient method for dense matrices 

 Modification of the biconjugate gradient method for sparse 

matrices 

 Development of the biconjugate gradient method software 

implementation for sparse matrices 

 Developed method convergence analysis 

 Development of the consecutive implementation of the 

biconjugate gradient method 

 Developed method convergence analysis 
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Test infrastructure 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 

CPU Two Intel Xeon E5520 processors (4 

core, 2.27 GHz) 

RAM 16 Gb 

OS Microsoft Windows 7 

Framework Microsoft Visual Studio 2008 

Compiler, profiler, 

debugger 

Intel® Parallel Studio XE 2011 

Libraries Intel® Math Kernel Library (within 

Intel® Parallel Studio XE 2011) 
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Biconjugate gradient method (1) 

 The biconjugate gradient method is a generalization of the 
conjugate gradient method which is intended for linear systems with 
some arbitraty nonsingular matrix. 

 At * A is known to be a symmetric positive definite matrix.  

 Therefore, it is possible to proceed to solution of a new system 
equivalent to the initial one: 

At * A x = At * b 

 This system can be solved by the conjugate gradient method, 
though it is not easy to do it in practice, as the  
At * A product substantially increases the matrix condition. 

 Based on the relation, one can obtain an algorithm free from the 
disadvantages of the At * A x system solution.  

– For this purpose, the sequence of residuals and directions from 
the conjugate gradient method and the respective biconjugates 
are used. 
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Biconjugate gradient method (2) 

 Biconjugate gradient algorithm 
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Consecutive implementation  

of the biconjugate gradient method 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 
12 



13 

Project creation (1) 

 For convenience, let us divide the biconjugate gradient 

method implementation into several projects. A total of three 

projects will be required: 

– parser is the project containing implementation of 

functionality that enables reading of systems from files and 

a number of operations required for memory allocation and 

data initialization. 

– routine is the project containing some mathematic 

operations such as multiplication of matrices and vectors 

and checking the solution for correctness. 

– BiCG is the project containing the biconjugate gradient 

method implementation and the program main function. 
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Project creation (2) 

 Create the following set of files in the parser project : 

– readMTX.h, readMTX.cpp –files to declare and implement 

functions required for reading matrices from the file 

– routines.h, routines.cpp – files to declare and implement 

auxiliary functions required for reading matrices from the 

file and print the read data from the file 

– type.h – file to declare the involved structures of data and 

invariables 

– util.h, util.cpp – files to declare and implement the set of 

functions to distinguish, initialize and delete data for CRS 

matrices. 
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Project creation (3) 

 Create the following set of files in the routine project: 

– sparseMatrixOperation.h, sparseMatrixOperation.cpp – 

files to declare and implement sparse operations with CRS 

matrices. 

– timer.hpp, timer.cpp – files to declare and implement time 

measurement functions. 

– validation.h, validation.cpp – files to declare and 

implement functions that check the obtained solutions for 

correctness. 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



16 

Project creation (4) 

 Create the following set of files in the BiCG project : 

– BiCG.h, BiCG.cpp – file to contain various 

implementations of the biconjugate gradient method. 

– main.cpp – file to contain implementation of the main 

program function. 
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Project creation (5) 

 Determine relationship between the projects.  

 Routine depends on parser and BiCG depends on both 

routine and parser. 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



18 

Involved data structures 

 For sparse matrix representation, use the CRS (Column Row 
Storage) format. 

 From parser, declare in type.h the CrsMatrix structure describing 
the matrix in the CRS format: 

 

typedef struct CrsMatrix  

{ 

  int N;             // matrix dimension (N x N) 

  int NZ;            // number of nonzeroes 

  FLOAT_TYPE* Value; // values array (dimension NZ) 

  int* Col;          // column numbers array   

                     // (NZ dimension) 

  int* RowIndex;     // row indices array  

                     // (dimension N + 1) 

} crsMatrix; 
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Main() function (1) 

 Build the main() function as follows: 

– Reading the command line arguments 

– Reading the system matrix from the file  

– Initialization of variables 

• Memory allocation 

• Setting the right-hand vector 

– Solving linear systems using the biconjugate gradient 

method 

– Computation of the system residual over the obtained 

solution. 

– Method operation data output 

– Memory release 
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Main() function (2) 

 Read command line arguments and announce the variables 
int main(int argc, char ** argv) 

{ 

  // 1. Reading the command line arguments 

  char *matrixName; 

  ParseArgv(argc, argv, matrixName); 

  

  // declaring the required variables 

  crsMatrix readA;  // read matrix 

  crsMatrix *matA;  // pointer to the matrix  

                    // used for computation  

  int typeOfMatrix; // type of the read matrix 

  int error;        //   error code returned by the functions 

  double diff;      // computation error 

  int iter;         // number of performed iterations 

  // timer used to measure  

  // algorithm part runtime 

  Stopwatch *time = createStopwatch(); 

  int i;             

  double *b;        // right-side vector 

  double *x;        // desired linear system solution 
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Main() function (3) 

 Read the matrix 
 // 2. Read the matrix from the file 

  printf("read matrix (%s) \n", matrixName); 

  time->start(); 

  error = ReadMatrixFromFile(matrixName,  

    &(readA.N), &(readA.NZ),  

    &(readA.Col), &(readA.RowIndex), &(readA.Value), 

    &(typeOfMatrix)); 

  

  if(error != BICG_OK) 

  { 

  printf("error read matrix %d\n", error); 

  return error; 

  } 
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Main() function (4) 

  // if the matrix is symmetric and  

  // defined only by the upper triangle, 

  // make it full 

  if(typeOfMatrix == UPPER_TRIANGULAR) 

  { 

    matA = UpTriangleMatrixToFullSymmetricMatrix(&readA); 

    FreeMatrix(readA); 

  }  

  else  

  { 

    matA = &readA; 

  } 

  time->stop(); 

  

  printf("read matrix from file time: %f\n",  

    time->getElapsed()); 
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Main() function (5) 

 Initialize the variables 

  // 3. Initialization of variables 

  // allocate memory to the right-hand vector and 

  // solve the linear system 

  x = new double [matA->N]; 

  b = new double [matA->N]; 

  

  // initialize the right-hand part  

  for(i = 0; i < matA->N; i++) 

  { 

    b[i] = 1.0; 

  } 
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Main() function (6) 

 In place of the highlighted “call for the function of system 

solution using BiCG”comment, call for the function with our 

method implementation will be written in the future. 

  time->reset(); 

  time->start();   

  // 4. call the function of solving linear 

systems by the BiCG method 

  time->stop(); 
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Main() function (7) 

 In the end, check the solution for correctness and free the allocated 
memory. 

 // 5. Checking the BiCG method for correctness 

  diff = diffSolution(*matA, x, b); 

  

  // 6. Method operation data output 

  printf("BiCG time: %f\n", time->getElapsed()); 

  printf("count of iteration: %d\n", iter); 

  printf("calc error: %f\n", diff); 

  // 7.  Dynamic memory release 

  FreeMatrix(*matA); 

  delete [] b; 

  delete [] x; 
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Auxiliary functions (1) 

 Let us study the auxiliary functions necessary to implement the 
method. 

 Place the functions of memory allocation and release for the matrix 
storage structure in util.h and util.cpp. 

– InitializeMatrix() – memory allocation to store a matrix in the 
CRS format.The function inputs are dimension of the matrix n 
and number of nonzeroes NZ. The outputs are a link to the 
structure of the matrix in the CRS format with initialized fields 
and allocated memory. The function returns the error code. 

int InitializeMatrix(int N, int NZ, crsMatrix 

&mtx); 

– FreeMatrix() – memory release from the matrix in the CRS 
format. The output is a link to the structure that contains the 
matrix. The function returns the error code. 

int FreeMatrix(crsMatrix &mtx); 
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Auxiliary functions (2) 

 From parser, announce the ReadMatrixFromFile() function, 

which reads the matrix from the file in the mtx format and 

stores it in the SRC format, in readMTX.h and implement it in 

readMatrix.сpp. As an input, the function will accept 

matrixName - name of the file containing the matrix. The 

function outputs are the matrix dimension n, pointers to 

initialized arrays column, row, val describing the matrix. The 

function returns the error code. 

int ReadMatrixFromFile(char* matrixName,  

  int* n, int** column, int** row,  

  FLOAT_TYPE** val); 
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mtx format 

 The mtx file is a matrix in coordinate representation.  

– The file contains such matrix parameters as the number of 

rows, columns and nonzeroes. 

– Then, row-by-row, the parameters of matrix nonzeroes are 

listed such as the respective row, column and value.  

– Row and column numbering starts from 1. 

– If the matrix is symmetric, the file can contain only its upper 

or lower triangle. 

– Comment fields start with %. 
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Task 1 

 Implement the abovementioned functions dealing with 

matrices in the CRS format and read them from file. 
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Auxiliary functions (3) 

 Implement matrix-vector operations of the biconjugate 

gradient method.  

 From routine, declare and implement the functions in 

sparseMatrixOperation.h and sparseMatrixOperation.cpp, 

respectively. 
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Auxiliary functions (4) 

 MatrixVectorMult() – matrix-vector product computation. As inputs, the function 
receives pointers to the matrix A in the CRS format and vector b. Function output is the 
pointer to their product x. As the result, the function returns the error code. 

int MatrixVectorMult(crsMatrix A, double * b,  double *x) 

{ 

  int i, j; 

  int s, f;  

  for(i = 0; i < A.N; i++) 

  { 

    s = A.RowIndex[i]; 

    f = A.RowIndex[i + 1]; 

    x[i] = 0.0; 

    for(j = s; j < f; j++) 

      x[i] += A.Value[j] * b[ A.Col[j] ]; 

  } 

  return BICG_OK; 

} 
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Auxiliary functions (5) 

 scalarProduct() – vector scalar product computation. As inputs, 
the function receives pointers to the vectors a, b and their 
dimension n. Output of the function is the scalar product. 

double scalarProduct(int n, double *a,  double *b) 

{ 

  double sum = 0.0; 

  int i; 

  for(i = 0; i < n; i++) 

  { 

    sum += a[i] * b[i]; 

  } 

  return sum; 

} 
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Software implementation of the biconjugate 

gradient method (1) 

 Let us start software implementation of the biconjugate 

gradient method of solving linear systems.  

 Declare and implement the BiCG() function of solving linear 

systems using the iterative method in question in BiCG.h and 

BiCG.cpp, respectively.  

 As inputs, the function will receive the system matrix A in the 

CRS format,righ-hand vector b and the maximum allowable 

number of iterations CountIteration. Function outputs are the 

pointer to the computed approximate solution x, number of 

performed iterations iter.  
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Software implementation of the biconjugate 

gradient method (2) 

 In the function body, compute approximations to the system 

solution in the x array.  

 As the method stop criterion, use the maximum allowable 

number of iterations CountIteration or the required solution 

accuracy.  

 The attainable accuracy will be computed in the check 

variable as the relative residual norm  

– Required accuracy is set by the EPSILON invariable in the 

type.h file of the parser project.  

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



35 

Software implementation of the biconjugate 

gradient method (3) 

int BiCG(crsMatrix A, double * b,  double *x, 

int CountIteration, int &iter) 

{ 

  // To speed up computation, compute  

  // the transposed matrix A 

  crsMatrix At; 

  

  At.N  = A.N; 

  At.NZ = A.NZ; 

  

  Transpose(A.N, A.Col, A.RowIndex, A.Value, 

    &(At.Col), &(At.RowIndex), &(At.Value)); 
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Software implementation of the biconjugate 

gradient method (4) 

  // arrays to store the residual  

  // of the current and next approximations 

  double * R, * biR; 

  double * nR, * nbiR; 

   

  R    = new double [A.N]; 

  biR  = new double [A.N]; 

  nR   = new double [A.N]; 

  nbiR = new double [A.N]; 

   

  // arrays to store the current and next 

  // method step direction vectors 

  double * P, * biP; 

  double * nP, * nbiP; 

   

  P    = new double [A.N]; 

  biP  = new double [A.N]; 

  nP   = new double [A.N]; 

  nbiP = new double [A.N]; 
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Software implementation of the biconjugate 

gradient method (5) 

  // pointer to change pointers for the vectors of the current 

  // and next method steps 

  double * tmp; 

   

  // arrays to store the product of matrix multiplication by  

  // the direction vector and the biconjugate vector 

  double * multAP, * multAtbiP; 

  multAP    = new double [A.N]; 

  multAtbiP = new double [A.N]; 

  

  // beta and alfa - computing formula coefficients 

  double alfa, beta; 

  // numerator and denominator of beta and alfa 

  double numerator, denominator; 

  

  // variables for computation  

  // of the current approximation accuracy 

  double check, norm; 

  norm = sqrt(scalarProduct(A.N, b, b)); 
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Software implementation of the biconjugate 

gradient method (6) 

 As the initial approximation, take a unit vector  
  // setting the initial approximation 

  int i; 

  int n = A.N;  

  

  for(i = 0; i < n; i++) 

  { 

    x[i] = 1.0; 

  } 

  

  // Method initialization 

  MatrixVectorMult(A, x, multAP); 

  for(i = 0; i < n; i++) 

  { 

    R[i] = biR[i] = P[i] = biP[i] = b[i] - multAP[i]; 

  } 
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Software implementation of the biconjugate 

gradient method (7) 

  // Method initialization 

  for(iter = 0; iter < CountIteration; iter++) 

  { 

    MatrixVectorMult(A, P, multAP); 

    MatrixVectorMult(At, biP, multAtbiP); 

  

    numerator   = scalarProduct(A.N, biR, R); 

    denominator = scalarProduct(A.N, biP, multAP); 

    alfa = numerator / denominator; 

  

    for(i = 0; i < n; i++) 

    {  

      nR[i] = R[i] - alfa * multAP[i]; 

    } 

  

    for(i = 0; i < n; i++) 

    {  

      nbiR[i] = biR[i] - alfa * multAtbiP[i]; 

    } 

  

    denominator = numerator; 

    numerator   = scalarProduct(A.N, nbiR, nR); 

    beta = numerator / denominator; 
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Software implementation of the biconjugate 

gradient method (8) 

    for(i = 0; i < n; i++) 

    {  

      nP[i] = nR[i] + beta * P[i]; 

    } 

    for(i = 0; i < n; i++) 

    {  

      nbiP[i] = nbiR[i] + beta * biP[i]; 

    } 

 

    // control compliance with accuracy requirements 

    check = sqrt(scalarProduct(n, R, R)) / norm; 

    if (check < EPSILON) 

      break;  

    for(i = 0; i < n; i++) 

    {  

      x[i] += alfa * P[i]; 

    } 

  

    // swap positions of the current and next step arrays 

    tmp = R; R = nR; nR = tmp; 

    tmp = P; P = nP; nP = tmp; 

    tmp = biR; biR = nbiR; nbiR = tmp; 

    tmp = biP; biP = nbiP; nbiP = tmp; 

  } 
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Software implementation of the biconjugate 

gradient method (9) 

  // memory release 

  FreeMatrix(At); 

  delete [] R; 

  delete [] biR; 

  delete [] nR; 

  delete [] nbiR; 

  

  delete [] P; 

  delete [] biP; 

  delete [] nP; 

  delete [] nbiP; 

  

  delete [] multAP; 

  delete [] multAtbiP; 

  

  return BICG_OK; 

} 
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Biconjugate gradient   

method convergence analysis (1) 

 Incorporate the call for BiCG() in the main() function body.  

 Now the project can be compiled from Build→Rebuild and 

the respective correctness check can be performed. 
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Biconjugate gradient   

method convergence analysis (2) 

 Example of program implementing the biconjugate gradient 

method for a well-conditioned matrix 

 

 

 

 Example of program implementing the biconjugate gradient 

method for an ill-conditioned matrix 
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Biconjugate gradient   

method convergence analysis (3) 

 No solution has been found for the second matrix due to two 

factors.  

– First, the matrix bcsstk01.mtx is ill-conditioned.  

– Second, the parameter restricting the number of algorithm 

iterations during experiments was the matrix size 

(theoretical estimate).  

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



45 

Biconjugate gradient   

method convergence analysis (4) 

 Results of running the software implementation of the 

biconjugate gradient method for symmetric matrices (required 

computational accuracy is 0.0001). 
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Matrix 

matrix 

dimensio

n 

attainable 

method 

accuracy 

number of 

iterations 

algorithm 

runtime 

bcsstk01  48 116213.2199 48 0.000 

bcsstk05  153 27.2275 153 0.002 

bcsstk10  1 086 162.2504 1 086 0.092 

bcsstk12  1 473 8576.2735 1 473 0.187 

parabolic_fem  525 825 0.0012 717 25.089 

tmt_sym  726 713 0.0062 2 487 122.543 
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Biconjugate gradient   

method convergence analysis (5) 

 Results of running the software implementation of the 

biconjugate gradient method for non-symmetric matrices 

(required computational accuracy is 0.0001). 
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Matrix 

matrix 

dimensio

n 

attainable 

method 

accuracy 

number of 

iterations 

algorithm 

runtime 

fs_541_1  541 0.00030 6 0.000 

ex22  839 1.63999 839 0.068 

sherman2  1080 5075084918.6 1080 0.103 

cage10  11397 0.00213 10 0.011 
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Biconjugate gradient   

method convergence analysis (6) 

 To improve the method convergence rate, preconditioning is 

used.  

 Let us implement the preconditioned biconjugate gradient 

method. 
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Software implementation of the preconditioned 

conjugate gradient method 
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Preconditioned biconjugate gradient method 

implementation 

 Algorithm pseudocode: 
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Project creation  

 Preconditioner implementation is outside the scope of this 

laboratory work. Use the ILU-preconditioner from the 

respective laboratory work.  

 Add to the solution a project containing implementation of the 

ILU(p)-preconditioner. The project contains the following files: 

– ilup.h and ilup.cpp – files containing declaration and 

software implementation of the symbolic and numerical 

pars of the ILU(p) algorithm  

– validation.h and validation.cpp – files containing 

declaration and software implementation of factorization 

check for correctness and the function that divides the 

matrix containing both L and U into two separate matrices. 
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Auxiliary functions (1) 

 To use the ILU-preconditioner, implement the additional function of 
solving triangular systems GaussSolve() in the 
sparseMatrixOperation.cpp and sparseMatrixOperation.h files.  

 The GaussSolve() function solves linear systems with triangular 
matrices. As inputs, the function receives the structure of the 
system matrix A, right-hand vector b and symbol denoting system 
type uplo - L means the lower triangular system and U means the 
upper triangular one. The output is the system solution x. 

 To implement the function, use the existing functionality 
represented in the MKL.  

– To use the mkl_dcsrtrsv() function of triangular system 
solution, represent the matrix so that its indices start from 1.  

– Having solved the system, go back to numbering accepted in 
C/C++ starting from zero. 
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Auxiliary functions (2) 

void GaussSolve(crsMatrix* A, char uplo,  

  double* b, double* x)  

{ 

  char transa = 'N'; 

  char diag   = 'N'; 

  int i; 

  for(i = 0; i < A->N + 1; i++) 

    A->RowIndex[i] ++; 

  for(i = 0; i < A->NZ; i++) 

    A->Col[i] ++; 

  mkl_dcsrtrsv(&uplo, &transa, &diag, &(A->N), A->Value,  

    A->RowIndex, A->Col, b, x); 

  for(i = 0; i < A->N + 1; i++) 

    A->RowIndex[i] --; 

  for(i = 0; i < A->NZ; i++) 

    A->Col[i] --; 

} 
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Software implementation of the preconditioned 

biconjugate gradient method (1) 

 Develop BiCG_M(), a new function of solving linear systems 

using the preconditioned biconjugate gradient method. 

 Main features of the function 

1. The function accepts the preconditioner in the form of two 

matrices, L and U. 

2. Для вычислений необходимо хранить помимо 

транспонированной матрицы транспонированные 

матрицу фактора предобуславливателя 

3. The biconjugate gradient method requires additional 

steps to apply the preconditioner to the linear system. 
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Software implementation of the preconditioned 

biconjugate gradient method (2) 

int BiCG_M(crsMatrix A, double * b,  double *x, crsMatrix L, crsMatrix U,  

           int CountIteration, int &iter) 

{ 

  // To speed up computation, compute the transposed matrix A, 

  crsMatrix At; 

  ... 

  // To compute the matrix inverse to the transposed  

  // preconditioner matrix, compute the transposed  

  // matrices L and U 

  crsMatrix Lt; 

  

  Lt.N  = L.N; 

  Lt.NZ = L.NZ; 

  

  Transpose(L.N, L.Col, L.RowIndex, L.Value, 

    &(Lt.Col), &(Lt.RowIndex), &(Lt.Value)); 

  

  crsMatrix Ut; 

  

  Ut.N  = U.N; 

  Ut.NZ = U.NZ; 

  

  Transpose(U.N, U.Col, U.RowIndex, U.Value, 

    &(Ut.Col), &(Ut.RowIndex), &(Ut.Value)); 
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Software implementation of the preconditioned 

biconjugate gradient method (3) 

  // arrays to store the residue of the current  

  // and next approximations 

  double * R, * biR; 

  double * nR, * nbiR; 

  ... 

  // auxiliary vector and the biconjugate vector 

  // to use the preconditioner 

  double * Z, * biZ; 

  double * nZ, * nbiZ; 

  double * sol; 

   

  Z    = new double [A.N]; 

  biZ  = new double [A.N]; 

  nZ   = new double [A.N]; 

  nbiZ = new double [A.N]; 

  sol  = new double [A.N]; 

   

  // arrays to store the current and next 

  // method step direction vectors 

  double * P, * biP; 

  double * nP, * nbiP; 

  ... 
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Software implementation of the preconditioned 

biconjugate gradient method (4) 

  // Method initialization 

  MatrixVectorMult(A, x, multAP); 

  for(i = 0; i < n; i++) 

  { 

    R[i] = biR[i] = b[i] - multAP[i]; 

  } 

  

  GaussSolve(&L, 'L', R  , sol); 

  GaussSolve(&U, 'U', sol, Z); 

  GaussSolve(&Ut, 'L', biR, sol); 

  GaussSolve(&Lt, 'U', sol, biZ); 

  

  for(i = 0; i < n; i++) 

  { 

    P[i] = Z[i]; 

    biP[i] = biZ[i]; 

  } 
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Software implementation of the preconditioned 

biconjugate gradient method (5) 

  // Method implementation 

  for(iter = 0; iter < CountIteration; iter++) 

  { 

    MatrixVectorMult(A, P, multAP); 

    MatrixVectorMult(At, biP, multAtbiP); 

    numerator   = scalarProduct(A.N, biR, Z); 

    denominator = scalarProduct(A.N, biP, multAP); 

    alfa = numerator / denominator; 

    for(i = 0; i < n; i++) 

    {  

      nR[i] = R[i] - alfa * multAP[i]; 

    } 

    for(i = 0; i < n; i++) 

    {  

      nbiR[i] = biR[i] - alfa * multAtbiP[i]; 

    } 

    GaussSolve(&L, 'L', nR , sol); 

    GaussSolve(&U, 'U', sol, nZ); 

    GaussSolve(&Ut, 'L', nbiR, sol); 

    GaussSolve(&Lt, 'U', sol , nbiZ); 

  

    denominator = numerator; 

    numerator   = scalarProduct(A.N, nbiR, nZ); 

    beta = numerator / denominator; 
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Software implementation of the preconditioned 

biconjugate gradient method (6) 

    for(i = 0; i < n; i++) 

    {  

      nP[i] = nZ[i] + beta * P[i]; 

    }  

    for(i = 0; i < n; i++) 

    {  

      nbiP[i] = nbiZ[i] + beta * biP[i]; 

    } 

    check = sqrt(scalarProduct(n, R, R)) / norm; 

 if (check < EPSILON) 

     break; 

    for(i = 0; i < n; i++) 

    {  

      x[i] += alfa * P[i]; 

    } 

    // swap array positions 

    tmp = R; R = nR; nR = tmp;  

    tmp = P; P = nP; nP = tmp; 

    tmp = biR; biR = nbiR; nbiR = tmp; 

    tmp = biP; biP = nbiP; nbiP = tmp; 

  

    tmp = Z; Z = nZ; nZ = tmp; 

    tmp = biZ; biZ = nbiZ; nbiZ = tmp; 

  } 
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Software implementation of the preconditioned 

biconjugate gradient method (7) 

 // memory release 

  ... 

  FreeMatrix(Lt); 

  FreeMatrix(Ut); 

   

  delete [] Z; 

  delete [] biZ; 

  delete [] nZ; 

  delete [] nbiZ; 

  delete [] sol; 

  

  ... 

  

  return BICG_OK; 

} 
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Task 2 

 Modify the main() function to call for the biconjugate gradient 

method.  

– For this purpose, connect the ilup.h header file.  

– Call the ILU(p) computation function. 

– Divide matrices into L and U. 

– Call the implemented BiCG_M() function. 

 Study how the preconditioner quality influences the method 

operation quality. 

– For this, add the call for system solution using the 

biconjugate gradient method with a preconditioner 

computed at various p levels. 
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Preconditioned biconjugate gradient method 

convergence analysis (1) 

 Run the biconjugate gradient algorithm for the bcsstk01.mtx 

matrix. 

Nizhny Novgorod, 2014 Solving sparse linear systems using the preconditioned biconjugate gradient method 



62 

Preconditioned biconjugate gradient method 

convergence analysis (2) 

 The matrix bcsstk01.mtx is ill-conditioned.  

– As a result, this matrix showed a greater iterative method 

error in the context of restricted number of iterations. 

 The use of preconditioner enabled highly accurate system 

solution.  

 As p (algorithm level parameter) grows, the number of 

iterations required to find the solution reduces.  

– For this matrix, the higher is the level, the better is the 

preconditioner. 
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Preconditioned biconjugate gradient method 

convergence analysis (3) 

 Results of running the preconditioned biconjugate method 

software implementation for the bcsstk10 matrix. 
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matrix: bcsstk10  dimension: 1 086 

p 

number of 

iterations 

attainable 

method 

accuracy 

ILU(p) 

symbolic part 

time 

ILU(p) 

numerical 

part time 

BiCG 

time Total time 

without ILU 1086 162.250     0.0922 0.0922 

0 211 0.00030 0,0010 0.0007 0.0910 0.0927 

1 83 0.00059 0,0030 0.0009 0.0335 0.0374 

2 70 0.00032 0,0059 0.0010 0.0303 0.0373 

3 92 0.00012 0,0093 0.0011 0.0407 0.0511 
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Preconditioned biconjugate gradient method 

convergence analysis (4) 

 Results of running the preconditioned biconjugate method 

software implementation for the tmt_sym matrix. 
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matrix: tmt_sym dimension: 726 713 

P 

number of 

iterations 

attainable 

method 

accuracy 

ILU(p) symbolic 

part time 

ILU(p) 

numerical 

part time BiCG time Total time 

without 

ILU 2487 0.006     122.5435 122.5435 

0 894 0.00933 0.2886 0.0906 140.6882 141.0673 

1 896 0.00813 0.6497 0.1218 151.9161 152.6875 

2 894 0.00870 1.3676 0.1608 163.7241 165.2525 

3 895 0.01176 2.4250 0.2079 183.1238 185.7567 
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Preconditioned biconjugate gradient method 

convergence analysis (5) 

 From the tables above one can see that the use of 

preconditioner lets considerably reduce the number of 

iterations required by the method to solve a linear system.  

 Reduction of method iterations may not always improve the 

solution time in general (the most important thing is the 

preconditioner quantity, not the level). 

– For the matrix tmt_sym, the number of iterations reduced 

more than twice but the solution time has increased. 

– At the same time, computation speedup is observed for the 

bcsstk10 matrix.  
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Preconditioned biconjugate gradient method 

convergence analysis (5) 

 The preconditioner quality in the algorithm may not always 

depend on the level.  

– For the bcsstk10 matrix, the best level value is 1 or 2.  

– For the tmt_sym matrix, the 0 level will be the best.  

 To obtain better preconditioners that are less dependent on 

parameters, other preconditioner search algorithms should be 

employed. 
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Software implementation of the algorithm 

 The main computation operation of the biconjugate gradient 

algorithm is scalar product computation.  

– The scalar product has a low computational complexity but is 

used more than once for the algorithm purposes. Therefore, 

scalar product parallelization will definitely be inefficient.  

– Low efficiency is due to considerable contingencies for parallel 

computation. 

 It will be more efficient to replace the developed software 

implementation of the scalar product by function call from the 

library.  

– Such libraries as Intel MKL can be used. 

 To parallelize the biconjugate gradient algorithm in a more efficient 

manner, one can compute independent scalar products in parallel. 
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Added tasks 

1. Analyze the method convergence rate depending on 
precision of the floating point arithmetics. 

2. Implement the biconjugate gradient method with a 
preconditioner resulting from the ILUT algorithm. 

3. Analyze the efficiency and scalability of the BiCG algorithm 
parallel modification with parallelization on the scalar product 
level. 

4. Evaluate the efficiency of library implementations of the 
mathematic operations offered by Intel MLK for the 
biconjugate gradient method. 

5. Analyze the efficiency and scalability of the BiCG algorithm 
parallel modification with parallelization by parallel 
computation of independent scalar products. 
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Questions 

 ??? 
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