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OBJECTIVES 

The purpose of this work is to implement explicit methods of numerical solution of stochastic 

differential equations and to study the numerical solution convergence to the SDE solution. 

ABSTRACT 

This work consists in implementing the numerical solution of a SDE describing a stock 

market. It involves numerical modeling of the Wiener process using the pseudo-random 

generator from the Intel MKL library. This is followed by implementation of the Euler, Milstein 

and Burrage-Platen methods and subsequent evaluation of the numerical solution error. 

GUIDELINES 

This practical work features a quantitative finance problem. Let a financial market of two 

types of assets, i. e. stocks (risk-generating assets, S) and bonds (risk-free assets, B), evolve in 

continuous time. For market modeling, the well-known Black-Scholes model will be used. The 

equation 0,
0
 BdtrBdB

tt
 is an ordinary differential equation that describes behaviour of 

the bond Bt price depending on the interest rate r. The equation   0,
0
 SdWrdtSdS

ttt
  is a 

stochastic differential equation that describes evolution of the stock price St depending on the 

interest rate r, volatility σ and the Wiener process  
 0


tt

WW . Initial prices of the stock and 

bond (S0 and B0, respectively) are set values.  

Now let us discuss numerical modeling of the Wiener process paths. Use a computational 

scheme that lets obtain nPaths paths of the random process Wt. To do this, set the number of 

steps nStep, the time step h and compute for each path i at each moment of time j  

W[i, j] = W[i, j-1] + dW, where dW is a normally distributed random value. In such a way, 

obtain nPaths paths of the random process Wt which are sets of discrete values at the point 

nSteps+1 of the segment [0;T].  

Then perform numerical modeling of the Wiener process using the pseudo-random (PRN) 

generator from the Intel MKL library. To obtain pseudorandom numbers with standard normal 

distribution, declare a service variable of type VSLStreamStatePtr, i. e. a PRN stream, and 

call the following functions: 

1. vslNewStreamEx() is  the basic generator initialization. The function inputs are the 

pointer to the stream variable and the basic generator type. The initial value to initialize 

the generator for this function is composed from k 32-bit numbers stored in the array. 

These are also input parameters of the function;  

2. vdRngGaussian() is generation of Gaussian distribution. The function inputs are the 

constant that determines the algorithm of random distribution conversion to normal 

distribution (VSL_METHOD_DGAUSSIAN_ICDF in our case), stream variable, size of 

buffer for the returned PRNs, buffer itself and distribution parameters (expectation and 

standard deviation);  

3. vslDeleteStream() release the random stream.  

The basic generator type used is VSL_BRNG_MCG59. Generator initialization is determined 

by the const unsigned int seed[2] array whose elements constract one 64-bit number. 

The buffer size of the PRN generation function influences only the efficiency. When 

vdRngGaussian() is called for the next time with the same parameters, we shall obtain the 

next block whose numbers follow the same sequence as the one defined by seed. To check 



generation results, output the resulting random numbers to the file and find expectation and 

standard deviation for them. 

Given constant market parameters and a number of other conditions, the second equation  of 

the Black-Scholes model  will have an analytical solution:       
(  

  

 
)     

. To forecast the 

stock price at the time T, it is proposed to use the Monte Carlo algorithm, i. e. to generate the WT 

value nPaths times, use it in the formula and average the results. Create an implementation of 

this algorithm. Then it is proposed to modify it: compute the S(t) values not only in the endpoint 

of [0; T], but also in its midpoints. For this purpose, divide the interval into nSteps parts with an 

equal step h and use the Wiener process generator implemented earlier. 

Now let us study computational formulas of SDE numerical solution methods, i. e. the Euler, 

Milstein and Burrage-Platen methods, evaluate their convergence and create implementations of 

these methods. Implementation of the Euler and Milstein methods will require calling the step 

calculation function. The Burrage-Platen method will require modification of the Wiener process 

path modeling function to model the Zt process. To generate multivariate normal distribution of 

Zt and Wt, vdRngGaussianMV() will be used. The inputs for this function are the RN 

generation method name, RN stream, dimension of random vectors, size of buffer to save the 

returned PRNs, buffer itself, covariance matrix storage format, expectation and covariance 

matrix. Calling for the function above will results in nSteps random vectors sized 2. 

To confirm that the numerical solution  ( ) converges to the sought function  ( ) one has 

to make sure that experimental data satisfy the relation  *| ( )   ( )|+     . For nPaths 

paths of the Wiener process Wt compute   
 

      
∑ *|  ( )    ( )|+      
    to be used to 

evaluate expectation  *| ( )   ( )|+. The complete set of paths can be divided into M groups, 

compute absolute variance for the exact value for each path, then compute M averages and, using 

them as a sampling, find the sample mean and variance. Using the parameters above, one can 

construct an additional interval for  . Taking the logarithm of the computation formula for   will 

result in a straight-line equation of the form Y = γX + b, where γ determines the strong 

convergence order for the numerical method. 

The St stock price modeling error can be evaluated as follows: perform numerical modeling 

of paths for the Wiener process Wt and for the Burrage-Platen method process Zt followed by 

analytical and numerical SDE solution and   computation for each path. It is proposed to 

perform computations several times using a different integration step and represent the results as 

a table. After this, take logarithms of the results, represent the data as a table function with X and 

Y columns and, using the least squares method, evaluate the γ value and the least squares method 

error. A negligible least squares method error and the γ value corresponding to the theoretical 

convergence order will indicate that the experimental results of the implementation do not clash 

with the theory. 

The experimental results mentioned in this work prove correctness of the effected 

implementation. 

RECOMMENDATIONS FOR STUDENTS  

See the monographs below [2, 3, 4] for a detailed formalized description of stochastic 

differential equations and random processes. This work is mostly based on materials [1], [5] and 

monograph [3].  
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PRACTICE 

1. Implement parallel versions of the studied methods. 

2. Implement a generator of random numbers subject to normal distribution using the Box-

Muller algorithm. Check the implementation for correctness. Replace the PRNG in the 

financial market modeling program, perform numerical experiments and compare them to 

the results obtained earlier. 

TEST 

1. What MKL file is to be connected to enable the use of PRNGs? 

a. mkl_blas.h 

b. mkl_lapack.h 

c. + mkl_vsl.h 

2. What is the input parameter for vdRngGaussian()? 

a. + Standard deviation 

b. Covariance matrix 

c. Covariance matrix storage format 

3. What is returned by vdRngGaussian()? 

a. PRN stream 

b. Pointer to the buffer containing PRNs 

c. + Error code 

4. What is NOT an input parameters for vdRngGaussianMV()? 

a. + Standard deviation 

b. Covariance matrix 

c. PRN generation method 

5. What correlation matrix storage format does the VSL_MATRIX_STORAGE_PACKED 

constant correspond to? 

a. Column Row Storage 

b. + The lower matrix triangle is recoded column-wise to a single-dimension array 

c. The lower matrix triangle is recoded row-wise to a single-dimension array 

6. What condition must be met by the numerical modeling data in case of strong 

convergence of the result  ( ) to the analytical solution  ( ) with the order   at time  ? 

a. +  *| ( )   ( )|+      

b.  *| ( )   ( )|+      

c.  *| ( )   ( )|+      



7. What linear equation corresponds to the condition of strong convergence of the result 

 ( ) to the analytical solution  ( ) with the order   at time  ? 

a.         

b.        

c. +        

8. What part of the random sequence will be computed by the PRN generator 

vdRngGaussian()when it is recalled, if generator initialization was called only once? 

a. + Next block of numbers from the same sequence 

b. Same random numbers as for the first time 

c. Returned numbers do not depend on the number of times the function was called. 

9. What condition is necessary to enable analytical solution of SDE in the Black-Scholes 

model? 

a. Zero   volatility 

b. + Constant market parameters  ,  

c. Zero correlation between the market parameters  ,  

10. What advantages does the stepwise Wiener process generation within the [0, T] interval 

and subsequent value averaging have compared to single WT value generation? 

a. Generation time reduction 

b. + More clear definition of the generated number expectation 

c. Reduction of variance for generation 

 


