

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

NUMERICAL METHODS FOR SOLVING DIFFERENTIAL

EQUATIONS

Lecture 1. Numerical Methods for Solving Systems of Ordinary Differential

Equations

Nizhni Novgorod

2014

OBJECTIVES

The purpose of this lecture is to study numerical methods of solving systems of ordinary

differential equations and approaches to their parallelization.

ABSTRACT

This lecture is dedicated to solving systems of ordinary differential equations using the

Adams, Euler and Runge–Kutta methods. It discusses the issues of local error control. The

lecture also describes the numerical methods to solve systems of ordinary differential equations

and the method of partial discretization of partial differential equations. It also describes

approaches to parallelization of methods to solve ODE systems.

GUIDELINES

This lecture is dedicated to numerical methods of solving systems of ordinary differential

equations (ODE). Differential equations (both ordinary and partial) are often used to describe

various phenomena and processes around us. Motion path computation for planets and Earth

satellites, determination of structural characteristics of engineering facilities and weather

forecasting - these are only a few problems whose mathematical models are formalized in

differential equations. Although they look simple, only some special ODE types can be solved

analytically.

The introductory part of this lecture defines the following notions: ODE, ODE solution,

initial value and the initial value problem. Numerical methods to solve initial value problems like

),(uxfu ,],[bax , axxuu
000

),(described in this lecture are intended to obtain a

numerical table of approximate values vi of a desired solution u(х)at the point хi[х0,b].

The most basic method of ODE numerical solution is the Euler method. Use the step size

nxbh /)(
0

 and set ihxx
i

0

, i=0,1,…,n as mesh points. The Euler method formula can be

derived by representing the u(х) function as its Taylor series. The local truncation error of Euler

methodis O(h
2
) while its global truncation error is O(h). The lecture derives a modified Euler

method formula whose global truncation error is O(h
2
). The method disadvantage, similar to

other high order methods based on u(х) representation as a Taylor series and successive

differentiation of the equation to obtain Taylor coefficients, is the necessity to compute partial

derivatives of f(x,u) at each step. This operation may be quite difficult; plus, high-order methods

are usually have more computational effort than simpler algorithms that do not use partial

derivatives.

The idea of construction of explicit p
th

 order Runge-Kutta methods lies in obtaining

approximate solution using the formula),,(
11

huxhvv
iiii

, where),,(hux
ii

 is a certain

function approximating a Taylor series segment to the p
th

 order and not containing any partial

derivatives of f(х,u). The method is called m-stage based on the number of function value

computations at a single step. This lecture gives formulas for the Runge-Kutta second-order and

fourth-order methods. The most common among the family of Runge-Kutta methods is the four-

stage Runge-Kutta fourth-order method.

Now let us discuss approaches to local truncation error reduction. One of approaches to step

determination is as follows. Let the absolute local error for a p
th

 order method be within ε> 0.

Then, according to the Runge principle, compute from
i

x the values
1i

v at a step sized h and

1i
v at two steps sized h/2. After this, the step will vary depending on the value

12

1

p

ii
vv

S (it is

doubled, halved or remains the same). Such an approach will enable control of the method local

truncation error and vary the step h depending on the solution behaviour, however it is difficult

enough as it requires multiple computations of the equation right-hand part.

The following issue covered by this lecture is another approach to ODE solving, i. e. the

Adams method. At the i
th

 method step several approximations vi of the solution u(x) within a

uniform mesh ihxx
i

0

 are considered to have been found, so the computation rule for the

following approximation vi+1 is to be derived. For this purpose, the equation is integrated within

the segment [xi, xi+1], and f(x,u(x)) is interpolated by a polynomial of degree k. Depending on the

set of points used for interpolation, i. e. the point xj, j = ik,…, i or the point xj, j=ik+1,…, I 1,

the method is called either the extrapolation Adams-Bashforth method or the interpolation

Adams-Moulton method. The local truncation error of Adams-Bashforth method is O(h
k+2

) while

its global truncation error is O(h
k+1

). The number of method steps corresponds to the number of

right-hand function values used in the computing formula. In case of the Adams-Bashforth

methods, the number of method steps equals its order of accuracy; as for the Adams-Moulton

methods, the number of steps is one less than the order of accuracy (except for the case when k=
0). The important difference between the extrapolation and interpolation Adams methods is that

the extrapolation methods are explicit and the interpolation ones are implicit. This is why the

interpolation Adams-Moulton methods can be used only in some particular cases, e. g. in case of

u linearity of f(x,u).

As a rule, both explicit and implicit methods (of the same or adjacent orders) are used

together thus making predictor-corrector methods. These methods consist in prediction of the

solution in the design point xi+1 using an explicit formula resulting in a rough approximation of

the desired solution which is then corrected using an implicit formula with the predicted value in

its right-hand part. As with the Adams method of any order only one new function value (or two

if a predictor-corrector scheme is used) is to be computed to implement one step, the Adams

methods of a relatively high order will be good for construction of the solution. However, this

entails the problem of computing the first m1 so called accelerating values v1,…, vm1. To obtain

them, the Runge-Kutta method with one step can be used.

Now we shall take a look at first-order methods of ODE system numerical solution that look

like),(UxFU , 0

0
)(UxU , where),...,,(

21 n
uuuU ,)',...,','('

21 n
uuuU ,

),...,,(
00

2

0

1

0

n
uuuU . Any of the methods described above is applicable to vector differential

equations. In this case, in the formulas that define the methods only the independent variable x

and step h are scalars; vectors sized n correspond to all other values. This lecture defines

computing formulas for the Euler and Runge-Kutta methods to solve ODE systems.

Parallelization of methods to solve ODE systems is discussed further. Thus, the Euler method

parallelization is generally possible only at the level of a single method iteration. If all the system

equations are grouped into blocks whose number is equal to that of program threads, each thread

will compute the solution components only within the respective block. The proposed scheme

requires thread synchronization after one iteration, so it will be efficient only in case the right-

hand part),(UxF is difficult to compute. Otherwise, most of the time will be dedicated to

parallelism-related overheads and the program will demonstrate low efficiency.

In general, the Runge-Kutta method may be parallelized only within the single method step,

not even within a single iteration. This also entails considerable overheads related to

creation/closing of parallel sections after each iteration in case of fast right-hand part

computation),(UxF and is only efficient when the right-hand part of the system is difficult to

compute.

Then it will be proposed to study PDE solution by partial discretization. The method consists

in transformation of a PDE into an ODE system by replacing partial derivatives by their

approximation constructed using),()(txutv
ii

 , 1 i n1. To find these functions

)(),...,(),(
121

tvtvtv
n

 an ODE system will be used. This method can be illustrated by the heat

equation. Simplification of the equation
2

2

x

u

t

u

 will result in the ODE system)(

1
)(

2
tAv

h
tv

, where A is a tridiagonal matrix. The Euler method applied to the system corresponds to the

complete discretization explicit difference scheme.

As the matrix A is sparse, arguments of the function fi in the right-hand part of the equation

will lie only in a certain neighbourhood of i. Then we shall introduce the notion of the access

distance d(F) which is the smallest integer, for which any function),(Uxf
j

 from the right-hand

part can access only the subset },...,{
bjbj

ww

 of the vector U components. If the access distance

is restricted, i. e.d(F) << n, computations can be pipelined. The lecture demonstrates a pipelined

computation scheme for the fourth-order Runge-Kutta method. In this case, if all system

equations are grouped into
B

n blocks whose number is equal to that of threads, computation of

the block of functions },...,1{
B

nJ requires the use of J–1, J and J+1 only (except for the case

of adjacent blocks). For this purpose, only)(
B

nOn stored values are enough.

RECOMMENDATIONS FOR STUDENTS

Study [Ошибка! Источник ссылки не найден. – 3] for detailed descriptions of the

numerical methods of solving ODEs and ODE systems, method error analysis and method step

size control procedures.

REFERENCES

1. Butcher, J.C. Numerical Methods for Ordinary Differential Equations. New York: John Wiley

& Sons, 2003.

2. Hoffman, J.D. Numerical Methods for Engineers and Scientists, 2nd Edition. New York:

CRC Press, 2001.

3. Kincaid D.R., Cheney E.W. Numerical Analysis: Mathematics of Scientific Computing, 3rd

Edition. Pacific Grove: Brooks Cole, 2001.

PRACTICE

1. Implement the Euler method and the Runge-Kutta second-order and fourth-order

methods. Implement the methods to solve a first-order test equation, compare the

solutions and errors. Compare runtimes.

2. Implement the Adams-Bashforth and Adams-Moulton methods. Implement the methods

to solve a first-order test equation, compare the solutions and errors. Compare the results

to those of Task 1.

3. Implement the Euler method and the Runge-Kutta second-order and fourth-order

methods to solve ODE systems. Use these methods to solve a first-order test system.

Compare the runtime and truncation errors.

4. Parallelize the implemented ODE system numerical solution methods. Evaluate

efficiency of the implementations.

5. Implement the partial discretization method to solve the heat transfer problem. Apply it

to the test problem. Parallelize the program using a pipelined scheme. Evaluate efficiency

of the parallel version.

TEST

1. What is the Euler method local truncation error order for the step size h?

a. First

b. + Second

http://en.wikipedia.org/wiki/John_C._Butcher
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons

c. Third

2. What is the main disadvantage of the correcter Euler method?

a. Low approximation order

b. +Necessity to compute partial derivatives of f(x,u) at each step

c. Necessity of multiple computations of the f(x,u) value at each step

3. The Runge-Kutta method is called m-stage if...

a. It approximates ODE solution at the order m

b. Its numerical solution requires a mesh of m points

c. +To obtain vi, the right-hand part function value is to be computed m times

4. How, according to Runge’s rule, will the numerical method step h change if the auxiliary

value S fulfills the condition of

S
p 1

2 ?

a. The step will double

b. The step will be halved

c. +The step will remain the same

5. What function is interpolated by the polynomial at the i
th

 step of the Adams methods?

a. + f(x,u(x))

b. u(x)

c.

1

))(,(

i

i

x

x

dxxuxf

6. What is the local truncation error of the Adams-Bashforth method when a k-th order

polynomial is used to interpolate functions and a meshsized h?

a. + O(h
k+2

)

b. O(h
k+1

)

c. O(h
k
)

7. What is the main idea of predictor-corrector methods?

a. + An approximate problem solution is computed in the design point xi+1 using an

explicit formula and corrected using an implicit formula with the predicted value

in its right-hand part.

b. An approximate problem solution is computed in the design point xi+1 using an

implicit formula and corrected using an explicit formula with the predicted value

in its right-hand part.

c. An approximate problem solution is computed in the design point xi+1 using an

explicit formula and corrected using the Adams-Bashforth method.

8. When the Euler or the second-order Runge-Kutta method can be efficiently parallelized

to solve ODE systems by distribution of the vector V components among the threads?

a. In case of a greater order of the system n

b. In case of fast right-hand part computation),(UxF

c. +When the right-hand part of the system),(UxF is difficult to compute

9. Which difference scheme corresponds to the use of the implicit Euler method to solve an

ODE system resulting from partial discretization of the heat equation?

a. Explicit difference scheme

b. +Implicit difference scheme

c. Crank-Nicolson scheme

10. When does an ODE system allow pipelined parallelization?

a. If the system matrix A is a band matrix

b. +Any function),(Uxf
j

 from the right-hand part has access only to the subset

},...,{
bjbj

ww

 of the vector U components and the access distance d(F)<<n.

c. If the system matrix A is sparse

