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OBJECTIVES 

The purpose of this lecture is to study methods for numerical solution of partial differential 

equations and construction of corresponding parallel algorithms. As an example, this lecture 

describes the Dirichlet problem posed for Poisson’s equation. 

ABSTRACT 

The lecture describes numerical solution of the Dirichlet problem posed for Poisson’s 

equation. It defines the problem and derives a difference scheme to solve it. To solve a linear 

system resulting from the difference scheme, the SOR method will be used. This lecture 

describes a parallel numerical solution algorithm based on wavefront computational grid 

traversal. To optimize the said algorithm, perform computations per grid block as part of 

wavefront grid processing. The lecture describes a method of solving the Poisson’s equation that 

combines the tridiagonal matrix algorithm and Fourier transform, and an approach to its 

parallelization. It gives experimental results for the described algorithms. 

GUIDELINES 

The lecture describes numerical solution of the Dirichlet problem posed for Poisson’s 

equation. Δu(x,y)=f(x,y), x(0,1), y(0,1);u(0,y)=ψ1(y), u(1,y)=ψ2(y),u(x,1)=ψ3(x), 

u(x,0)=ψ4(x).This problem can be considered as a problem of determining deformation of an 

elastic membrane exposed to external effects whose edges are fixed in a predetermined manner, 

or as a problem of determining stationary temperature distribution in a square plate exposed to 

external heat sources whose edges are subject to sustainable preset temperature specifications. 

To find the numerical problem solution, introduce into the domain a uniform rectangular grid 

with n partitions in the x variable and m partitions in the y variable. Then, derive the second-

order difference scheme that enables finding the solution v(x,y) within the grid points. 

The constructed difference scheme is a linear system with respect to an unknown vector v 

sized (n – 1)∙(m – 1) with components 
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where vij is the grid function value v(x,y) in the point (xi,yj). The matrix constructed on the 

basis of a difference scheme is a block diagonal sparse matrix. Its main diagonal has numbers in 

the form of  22
112 khA  , while other non-zeroes can be equal either to 1/h

2
 or 1/k

2
 (here, 

h and k are grid steps). The matrix is symmetric, nonsingular and negative definite. By 

multiplying the system equations by 1, the difference scheme is formulated as a linear system 

with a symmetric positive definite matrix. To solve it, one can use iterative methods. Now let us 

discuss dependence of iterative methods convergence on grid steps and matrix condition number. 

To solve linear systems, this lecture proposes to use the SOR method. For this purposes, the 

SOR method computational formulas are introduced subject to the difference scheme 

peculiarities. The SOR method optimal parameter is known for the considered problem. To 

implement the SOR method, each next k
th

 approximation of vij is computed based on the last k-th 

approximation of vi1,j и vi,j1 and the second last (k1)th approximation of vi+1,j and vi,j+1. 

Then a parallel algorithm is constructed to perform only the same actions as the sequential 

version and ensure exactly the same solutions of the initial problem. Such an algorithm divides 

the method iteration into a sequence of steps, each of them being used for computation of points 

on the additional grid diagonal with the number determined by the stage number. The resulting 

scheme is called a wavefront scheme. However, the computational wavefront shows poor 

compliance with the processor cache utilization rules. The considered algorithm is based on row-

wise data storage and diagonal-wise wavefront which leads to low cache utilization efficiency. A 

possible way to improve the situation proposed in this lecture is to use a procedure of processing 



of a certain rectangular subregion (block) of the computation grid as a set of actions divided 

among the threads. 

Now let us list experimental results of solving the test Dirichlet problem posed for Poisson’s 

equation. For experimental purposes, the partition number for x and y was the same and varied 

from 250 through 1,500; the SOR method stop criterion was accuracy. Experimental results 

showed that implementation speed up demonstrated almost no increase for all grids if the 

number of threads exceeded 3. This can be explained by low complexity of operations performed 

by each thread in case of wavefront computations. In this case, overhead outweigh the benefits of 

parallelization. To confirm this, experiments with an increased computational load on threads 

took place. They showed that in this case speed up was subject to linear growth for large grids 

(n>500) and reached 5 for 8 threads. For smaller grids, speed up showed insignificant growth or 

even reduced if the number of threads exceeded 4. 

At this moment, let us study the method of solving Dirichlet Problem posed for Poisson’s 

equation based on Fourier transform. Let us consider an auxiliary single-dimension problem in 

eigenvalues for difference equations. It is known that this problem has a fully orthonormal 

system of eigenfunctions. If vij and fij are considered as single-dimension grid functions 

depending only on j, j1,…,n1, they may be expanded into the auxiliary problem 

eigenfunctions. In this case, to find the Fourier coefficients сk(i) of the function vij an auxiliary 

tridiagonal linear system has to be solved. 

Thus, the proposed algorithm consists of three steps:  

 Computation of the Fourier coefficients fk(i) of the right-hand part fij, for each i = 1,…, 

n1; 

 Computation of the Fourier coefficients сk(i) as a solution to the auxiliary linear system 

using the tridiagonal matrix algorithm for each k = 1,…, n1; 

 Restoration of the solution vij for each i = 1,…, n1 by Fourier transform. 

Fourier coefficients are computed by means of fast Fourier transform which requires 
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tridiagonal matrix algorithm is )(nO . Thus, the complexity of the tridiagonal matrix algorithm is 
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At each algorithm stage, computations are performed in loops with each iteration 

independent on other ones in terms of data. This is why, to construct a parallel algorithm it is 

proposed to parallelize the loop executed at each problem solution stage. 

The disadvantage of such algorithms (both parallel and sequential) is the necessity to 

explicitly compute the eigenvalues and eigenfunctions of the single-dimension problem. 

Therefore, this approach is not applicable in the cases when the problem solution for eigenvalues 

is impossible to write explicitly. 

The lecture lists experimental results for the test problem allowing for analytical solution. A 

FFT application implemented as part of the practice “Development, Optimization and 

Parallelization of Fast Fourier Transform as Applicable to Filtration Problem” is compared to the 

Intel MKL-based application and the FFTW-based one. The grid partition number varied from 

128 through 8,192. Comparison of sequensial versions showed that for the implementation 

proposed in the laboratory work the runtime was 1.3 times longer than that of the FFTW 

implementation and 1.8 times longer that that of the Intel MKL implementation with 8,192 grid 

partitions. If the partition number is less or equal to 2,048, the applications have close runtimes. 

The speed up of the own parallel version implementation exceeds 5 for a grid whose partition 

number is greater than 4,000. Such parameters are ensured due to absence of data dependencies 

at each algorithm stage.  



RECOMMENDATIONS FOR STUDENTS 

See [2, 3] for a detailed description of numerical methods for solving differential equations. 

See [1] for the methods for solving linear systems and the tridiagonal matrix algorithm and the 

SOR method in particular. 
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PRACTICE 

1. Implement a sequential program for solving the test Dirichlet problem posed for the 

Poission’s equation. Compare efficiency of your implementation with the experimental results 

mentioned in the lectures. 

2. Implement a parallel program of solving the test Dirichlet problem posed for the Poission’s 

equation using the wave and block wave computation scheme. Find the best block size for the 

latter. Evaluate efficiency of the implementations and make conclusions. 

3. Do the laboratory work “Solving Sparse Linear Systems By Iterative Methods: Problem of 

Heat Diffusion in a Plate”. Compare efficiency of your implementation with the experimental 

results mentioned in the lectures. How can you reduce the computation time? 

TEST 

1. What approximation order for interior grid points does the studied numerical solution of 

the Poisson’s equation have? The grid step in the x variable is h, the step in the y variable 

is k. 

a. + O(h
2
 + k

2
) 

b. O(h
2
 + k

3
) 

c. O(h
3
 + k

2
) 

2. What is the size of a linear system matrix constructed using a difference scheme with n 

partitions in the x variable and m partitions in the y variable? Grid points located on the 

bounds of the admissible region are not taken into account. 

a. (n1)× (m+1) 

b. + (n1)× (m1) 

c. n×m 

3. What linear system matrix results from the difference scheme? 

a. Symmetric positive definite 

b. + Symmetric negative definite 

c. Non-symmetric positive definite 

4. What is the order of value computations in the points of the grid vij if the SOR method is 

used for the considered problem? The partition number is n for x and m for y. 

a. outer loop for i from 1 through n and inner loop for j from 1 through m 

b. outer loop for i from 1 through n1 and inner loop for j from 1 through m1. 



c. + outer loop for j from 1 through m1 and inner loop for i from 1 through n1. 

5. What is the order of parallel value computations in the points of the grid vij if the SOR 

method is used for the considered problem? 

a. Wavefront starting from the lower left angle of the system matrix 

b. + Wavefront starting from the upper left angle of the system matrix 

c. Wavefront starting from the upper right angle of the system matrix 

6. What auxiliary problem must be solved when Fourier transform is used to solve 

Poission’s equation? 

a. + Finding eigenvalues and eigenfunctions 

b. Finding eigenvalues and eigenvectors 

c. Finding eigenvalues  

7. What grid function requires finding Fourier coefficients to solve Poisson’s equation? 

a. fij(j) 

b. vij(j) 

c. + vij(j) and fij(j) 

8. What grid function requires solving a linear system for the considered problem? 

a. fij(j) 

b. + vij(j) 

c. vij(j) and fij(j) 

9. What computational complexity does the Fourier transform-based Poisson’s equation 

solution algorithm have? 

a. )(
2
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b. )log(
2
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c. + )log(
2
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10. What stages of solving Poission’s equation using Fourier transform allow for 

parallelization? 

a. + each step: Fourier coefficient computation, tridiagonal system solution, solution 

restoration 

b. Fourier coefficient computation and solution restoration 

c. tridiagonal system solution 

 


