

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

NUMERICAL METHODS FOR SOLVING DIFFERENTIAL

EQUATIONS

Practice 4. Fast Fourier Transform for the Problem of Heat Diffusion in a

Plate

Nizhni Novgorod

2014

OBJECTIVES

The purpose of this practice is to study the Fast Fourier Transform-based method for

numerical solution of differential equations as illustrated by the problem of solving Poisson’s

equation with homogeneous boundary conditions and approaches to its parallelization.

ABSTRACT

The practice deals with the stationary problem of heat diffusion in a square plate with zero

temperature conditions at its edges (Dirichlet problem). It defines the problem and derives a

difference scheme to solve it. Solving the difference equation is based on expansion in basic

functions with Fourier coefficients. The computational method consists in multiple use of the

tridiagonal matrix algorithm and Fourier transform. This practice involves studying Fourier

transform implementation in Intel MKL and FFTW. You will develop a sequential

implementation of the proposed problem solution algorithm and evaluate efficiency of the Intel

MKL and FFTW sequential solvers. After this, you will develop a parallel version of the

program and analyze its scalability.

GUIDELINES

The practice deals with the stationary problem of heat diffusion in a square plate with zero

temperature conditions at its edges: (), () [] [],

 () (), () (), () (), () (). Its numerical solution

involves differential equation approximation by a difference scheme within a uniform grid with

the step h in the x and y variables (

). The difference scheme is based on a five-point

stencil.

For numerical solution of this problem, it is proposed to consider the grid functions and

 as single-dimension grid functions of . Then, for each they can be expanded in

eigenfunctions of the auxiliary problem as their eigenvalues using the Fourier coefficients. The

problem is solved in three stages:

 finding the right-hand part Fourier coefficients ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ using the Fourier

transform;

 finding the Fourier coefficients () of having solved the tridiagonal linear system for

each ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;

 restoring the solution by the Fourier coefficients () using the Fourier transform

for each ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .

The complexity of this algorithm is () .

The practice describes the use of Intel MKL [2] и FFTW [5] libraries to compute the Fast

Fourier Transform (FFT) and discusses the issues of libraries building and linking.

The use of MKL FFT requires calling the following sequence of functions:

1. DftiCreateDescriptor() – function to create the FFT descriptor. The function

has 5 input parameters:

 pointer to the descriptor object where the transform handle will be stored;

 precision of the transform (single or double);

 forward domain of the transform (complex or real);

 dimension of the transform;

 length of the transform for a one-dimensional transform. Lengths of each

dimension for a multi-dimensional transform.

2. DftiCommitDescriptor() – descriptor initialization. The function input is the

descriptor object.

3. DftiComputeForward/DftiComputeBackward() – forward/backward Fourier

transform. The function parameters are the descriptor object and pointer to the output

array.

4. DftiFreeDescriptor() – descriptor release.

The descriptor object type is DFTI_DESCRIPTOR_HANDLE. Additional transformation

parameters can be determined using DftiSetValue().

The Fastest Fourier Transform in the West (FFTW) library is a set of open C and Fortran

modules for FFT computation. A typical application scheme of FFT being a part of the FFTW

library is based on the following sequence of functions:

1. Creation of a so-called FFT computation schedule, i. e. setting input and output data

as well as transform parameters. This is done by means of either

fftw_plan_dft[_<dim>]() in case of complex input and output signals; or

fftw_plan_dft_<type>[_<dim>](), in other cases.

Here, <dim> is the FFT dimension and <type> is the transform type.

The inputs of these functions are the number of elements for each transform

dimension, pointers to the memory allocated for the input and output data sequences,

transform types and a special flag. The function returns a computation schedule of the

fftw_plan type.

2. Execution of this schedule is by calling fftw_execute(). The input of this function

is the computation schedule.

3. Release of the schedule and all the related auxiliary data by
fftw_destroy_plan().

This will be followed by implementing a sequential version of the proposed algorithm. The

practice describes a general implementation scheme and use of Intel MKL and FFTW libraries to

compute Fourier coefficients of the problem in question.

ComputeDecision() contains the complete differential equation solution path. To ensure

implementation flexibility, SinFT, a pointer to the function whose inputs are two pointers to

double type arrays of a length n, is introduced. The function computes factorization of the first

array and stores the respective coefficients in the second one. SinFT points to a certain FFT

implementation depending on the command line parameter value. SinFT_MKL() and SinFT

_FFTW() compute sums of the form ∑

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 using the technique

described in [Ошибка! Источник ссылки не найден.]. It consists in reducing the vector of

coefficients to the vector that enables determining the coefficients as a result of FFT. For

this purpose, it is proposed to extend the array ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ to reach the length of with

 . The Fast Fourier Transform will result in the array

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ with ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . If , all computations will take ().

The bodies of SinFT_MKL() and SinFT_FFTW() are subject to creation of an extended array

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, call of the corresponding library FFT computation function and forming of the

sought array ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

The tridiagonal linear system is solved using the MKL library. This is done by

dgttrfb(),a function that computes factorization of the tridiagonal matrix and

ddttrsb(), a function that solves the linear system based on the known factorization of

the tridiagonal matrix.

The proposed method is parallelized separately for each computation stage. In this case,

parallelization is based on OpenMP. Iterations inside the loops that compute Fourier coefficients

are data-independent, so they can be distributed among independent threads. For this purpose,

add pragma omp parallel for to ComputeDecision() before each problem solution

stage performed within the loop. In this case, the memory for the arrays storing the auxiliary

tridiagonal linear system will be allocated individually to each thread.

The practice compares the results computed by means of MKL and FFTW-based Fourier

transform and those computed using own implementation from “Development, Optimization and

Parallelization of the Fast Fourier Transform as Applied to the Filtration Problem”. Experiments

were performed within grids ranging from through . Experimental

results showed that the MKL-based implementation is the most efficient, the FFTW-based one is

1.4 times less efficient, while own implementation is 1.8 times less efficient for the largest

available grid sized .

The parallel program version for the own FFT implementation is compared to the MKL-

based implementation for 1 through 8 threads. For the own implementation the highest speed up

equals to 5.4 was obtained in case of 8-thread computation within a grid. In this

case, monotonic speed up growth in relation to the number of threads is observed within grids

whose dimensions exceed . For the MKL implementation the highest speed up

equals to 4.8 was obtained in case of 7-thread computation within a grid. For 8-

thread computation, the highest speed up is 4.3 for a grid. In this case, monotonic

speed up growth in relation to the number of threads is observed within grids whose dimensions

exceed . For 8 threads, the gap between the own and the MKL implementation

reduced to 1.3 times.

RECOMMENDATIONS FOR STUDENTS

See [2, 3] for the methods for solving differential equations by the finite difference method.

Study [1] for the methods for solving linear systems. Visit [4-6] for the documents related to

libraries used in this practice.

REFERENCES

1. Golub G.H., Van Loan Ch. F. Matrix Computations. The John Hopkins University Press,

1996.

2. Hoffman J.D. Numerical Methods for Engineers and Scientists, 2nd Edition. New York:

CRC Press, 2001.

3. Kincaid D.R., Cheney E.W. Numerical Analysis: Mathematics of Scientific Computing,

3rd Edition. Pacific Grove: Brooks Cole, 2001.

4. Intel® Math Kernel Library documentation [http://software.intel.com/en-us/articles/intel-

math-kernel-library-documentation/].

5. Fastest Fourier Transform in the West (FFTW) official page [http://www.fftw.org/].

6. Fastest Fourier Transform in the West documentation [http://www.fftw.org/fftw3.pdf].

PRACTICE

1. Develop an implementation that uses ordinary single-dimension arrays instead if pointer

arrays. Evaluate its efficiency.

2. Modify the developed program for a rectangular plate.

3. Solve the initial problem subject to inhomogeneous boundary conditions.

4. Develop your own FFT implementation that will work for a random length input

sequence.

5. Implement the FFT algorithm to base 4. Evaluate the efficiency of this implementation as

compared to implementations described as part of this practice. Optimize and parallelize

the algorithm.

TEST

1. What is the complexity of computation of Fourier coefficients using FFT?

a. ()

b. ()

c. + ()

2. How many times is the Fourier Transform performed in the described algorithm for

a grid?

a. time

b. time

c. + () times

3. What Fourier Transform type is supported by MKL and FFTW?

a. + Fourier transform in both complex and real domains

b. Fourier transform in the real domain

c. Fourier transform in the complex domain

4. What is NOT an input parameter of DftiCreateDescriptor() of MKL?

a. + descriptor object

b. transform dimension

c. number of sequence elements

5. What invariable cannot be set by DftiSetValue() of MKL?

a. + DFTI_PRECISION

b. DFTI_FORWARD_SCALE

c. DFTI_PLACEMENT

6. What is the name of the FFTW static library file containing Fourier transform

implementation for the double precision elements?

a. libfftw3r-3.lib
b. + libfftw3l-3.lib
c. libfftw3d-3.lib

7. What is returned by fftw_plan_dft_1d() from the FFTW library?

a. nothing

b. error code

c. + computation schedule

8. What does ddttrsb() of MKL do?

a. -factorization of tridiagonal matrices

b. + solving a linear system with the tridiagonal matrix for which -

factorization has been found

c. solving a linear system with the tridiagonal matrix for which LU-factorization has

been found

9. What is the size of the input array for the Fourier transform computation in this problem?

a. +

b.

c. ()

10. How is the memory to store the tridiagonal matrix allocated among the threads in the

proposed parallel algorithm implementation?

a. Each thread receives a pointer to the general matrix

b. + Each thread receives a pointer to its own matrix

c. Each thread receives a pointer to its own fragment of the general matrix.

