
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE

“ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

Sysoyev A.V.

Software department

04 Lecture

MPI Extensions

With the support of Microsoft

Parallel Programming for Multiprocessor Distributed Memory Systems

Contents

Nonblocking Collective Operations

– General Description

– Data Broadcasting

– Reduction Operations

– Scattering and Gathering

– All to All Communications

– Computation Synchronization

Process Creation and Management

– General Description

– The Dynamic Process Model

– Process Management

– Establishing Connections

N. Novgorod, 2014 MPI Extensions 3

NONBLOCKING COLLECTIVE

OPERATIONS

MPI Extensions N. Novgorod, 2014 4

Data Broadcasting

Reduction Operations

Scattering and Gathering

All to All Communications

Computation Synchronization

Nonblocking Collective Communications…
General Description

Nonblocking collective operations combine the potential benefits of

nonblocking point-to-point operations with the optimized

implementation and message scheduling provided by collective

operations

One way of doing this would be to perform a blocking collective

operation in a separate thread

Nonblocking collective communication often leads to better

performance (avoids context switching, scheduler overheads, and

thread management)

Similarly to the blocking case, nonblocking collective operations

are considered to be complete when the local part of the operation

is finished

N. Novgorod, 2014 Collective and Point-to-Point Communications 5

Nonblocking Collective Communications…
General Description

Completion does not indicate that other processes have completed

or even started the operation (unless otherwise implied by the

description of the operation)

Completion of a particular nonblocking collective operation also

does not indicate completion of any other posted nonblocking

collective (or send-receive) operations, whether they are posted

before or after the completed operation

Users should be aware that MPI implementations are allowed, but

not required (with exception of MPI_IBARRIER), to synchronize

processes during the completion of a nonblocking collective

operation

N. Novgorod, 2014 Collective and Point-to-Point Communications 6

Nonblocking Collective Communications…
General Description

Unlike point-to-point operations, nonblocking collective operations

do not match with blocking collective operations

All processes must call collective operations (blocking and

nonblocking) in the same order per communicator

Once a process calls a collective operation, all other processes in

the communicator must eventually call the same collective

operation, and no other collective operation with the same

communicator in between

N. Novgorod, 2014 Collective and Point-to-Point Communications 7

Nonblocking Collective Communications…
Data Broadcasting

The function MPI_Ibcast() carries out transmitting the data from

the buffer buf, which contains count type elements, from the

processor with the rank root to the processes within the

communicator comm

N. Novgorod, 2014 Collective and Point-to-Point Communications 8

int MPI_Ibcast(void *buf, int count, MPI_Datatype type,

 int root, MPI_Comm comm, MPI_Request *request);

- buf – the address of the memory buffer, which contains the data of the

 message to be transmitted

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- root - the rank of the process, which carries out data broadcasting

- comm - the communicator, within of which the data is transmitted

- request - the operation descriptor

Nonblocking Collective Communications…
Data Reduction

To “reduce” some data from all processes to chosen one

N. Novgorod, 2014 Collective and Point-to-Point Communications 9

int MPI_Ireduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm,

 MPI_Request *request);

- sendbuf – memory buffer with the transmitted message

- recvbuf – memory buffer with the resulting message (only for the root

 process)

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- op - the operation, which should be carried out over the data

- root - the rank of the process, on which the result must be obtained

- comm - the communicator, within of which the operation is executed

- request - the operation descriptor

Nonblocking Collective Communications…
Scattering and Gathering

To distribute some data from chosen process to all the processes

When the message sizes for different processes may be different,

the execution of data scattering is provided by means of the
function MPI_Iscatterv()

N. Novgorod, 2014 Collective and Point-to-Point Communications 10

int MPI_Iscatter(void *sbuf, int scount, MPI_Datatype stype,

 void *rbuf, int rcount, MPI_Datatype rtype,

 int root, MPI_Comm comm, MPI_Request *request);

- sbuf, scount, stype – the parameters of the transmitted message

 (scount defines the number of elements transmitted to each process)
- rbuf, rcount, rtype – the parameters of the received message

- root - the rank of the process, on which the result must be obtained

- comm - the communicator, within of which the operation is executed

- request - the operation descriptor

Nonblocking Collective Communications…
Scattering and Gathering

Gathering data from all the processes to a process is reverse to

data scattering

When the message sizes for different processes may be different,

the execution of data scattering is provided by means of the
function MPI_Igatherv()

N. Novgorod, 2014 Collective and Point-to-Point Communications 11

int MPI_Gather(void *sbuf, int scount, MPI_Datatype stype,

 void *rbuf, int rcount, MPI_Datatype rtype,

 int root, MPI_Comm comm, MPI_Request *request);

- sbuf, scount, stype – the parameters of the transmitted message

- rbuf, rcount, rtype – the parameters of the received message

- root - the rank of the process, on which the result must be obtained

- comm - the communicator, within of which the operation is executed

- request - the operation descriptor

Nonblocking Collective Communications…
All to All Communications

To obtain all the gathered data on each communicator process, it

is necessary to use the function of gathering and distribution
MPI_Iallgather()

The execution of the general variant of data gathering operation,

when the sizes of the messages transmitted among the processes

may differ, is provided by means of the function
MPI_Iallgatherv()

N. Novgorod, 2014 Collective and Point-to-Point Communications 12

int MPI_Iallgather(

 void *sbuf, int scount, MPI_Datatype stype,

 void *rbuf, int rcount, MPI_Datatype rtype,

 MPI_Comm comm, MPI_Request *request);

Nonblocking Collective Communications…
All to All Communications

The total data exchange among processes

The variant of this operation in case when the sizes of the

transmitted messages may differ is provided by means of the
function MPI_Ialltoallv()

N. Novgorod, 2014 Collective and Point-to-Point Communications 13

int MPI_Ialltoall(void *sbuf, int scount, MPI_Datatype stype,

 void *rbuf, int rcount, MPI_Datatype rtype, MPI_Comm comm,

 MPI_Request *request);

p-1

0

а) Before the operation

00 01

0(p-1)

1
10 11

1(p-1)

i
i 0 i 1

i (p-1)

p-1

(p-1)0 (p-1)1

(p-1)(p-1)

0

b) After the operation

00 10

(p-1) 0

1
01 11

(p-1) 1

i
0 i 1 i

(p-1) i

0(p-1) 1(p-1)

(p-1) (p-1)

Nonblocking Collective Communications…
All to All Communications

To obtain the data reduction results on each of the communicator

processes, it is necessary to use the function
MPI_Iallreduce()

For operations which are not truly associative, the result delivered

upon completion of the nonblocking reduction (via
MPI_Ireduce() or MPI_Iallreduce()) may not exactly

equal the result delivered by the blocking reduction, even when

specifying the same arguments in the same order

N. Novgorod, 2014 Collective and Point-to-Point Communications 14

int MPI_Iallreduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype type, MPI_Op Op, MPI_Comm comm,

 MPI_Request *request);

Nonblocking Collective Communications
Computation Synchronization

MPI_IBarrier() is a nonblocking version of MPI_Barrier()

By calling MPI_IBarrier(), a process notifies that it has

reached the barrier

The call returns immediately, independent of whether other
processes have called MPI_IBarrier()

A nonblocking barrier can be used to hide latency

Moving independent computations between the MPI_IBarrier()

and the subsequent completion (MPI_Wait(), …) call can overlap

the barrier latency

N. Novgorod, 2014 Collective and Point-to-Point Communications 15

int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request);

PROCESS CREATION AND

MANAGEMENT

MPI Extensions N. Novgorod, 2014 16

General Description

The Dynamic Process Model

Process Management

Establishing Connections

Process Creation and Management…
General Description

 Important classes of MPI applications require process control

– task farms

– serial applications with parallel modules

– problems that require a run-time assessment of the number and type

of processes that should be started

MPI provides a clean interface between an application and system

software

MPI guarantees communication determinism in the presence of

dynamic processes

MPI maintains a consistent concept of a communicator, regardless

of how its members came into existence

A communicator is never changed once created, and it is always

created using deterministic collective operations

N. Novgorod, 2014 MPI Extensions 17

Process Creation and Management…
The Dynamic Process Model

The dynamic process model allows for the creation and

cooperative termination of processes after an MPI application has

started

 It provides a mechanism to establish communication between the

newly created processes and the existing MPI application

 It also provides a mechanism to establish communication between

two existing MPI applications, even when one did not “start” the

other

MPI Extensions N. Novgorod, 2014 18

Process Creation and Management…
The Dynamic Process Model

Starting Processes

MPI applications may start new processes through an interface to

an external process manager

– MPI_Comm_spawn() starts MPI processes and establishes

communication with them, returning an intercommunicator

– MPI_Comm_spawn_multiple() starts several different binaries

(or the same binary with different arguments), placing them in the

same MPI_COMM_WORLD and returning an intercommunicator

A process is represented in MPI by a (group, rank) pair

A (group, rank) pair species a unique process

A process does not determine a unique (group, rank) pair, since a

process may belong to several groups

MPI Extensions N. Novgorod, 2014 19

Process Creation and Management…
Process Management

MPI_Comm_spawn() tries to start maxprocs identical copies of

the MPI program specified by command, establishing

communication with them and returning an intercommunicator

The spawned processes are referred to as children. The children
have their own MPI_COMM_WORLD, which is separate from that of

the parents

MPI_Comm_spawn() is collective over comm

The intercommunicator returned by MPI_Comm_spawn()

contains the parent processes in the local group and the child

processes in the remote group
MPI Extensions N. Novgorod, 2014 20

int MPI_Comm_spawn(const char *command, char *argv[],

 int maxprocs, MPI_Info info, int root, MPI_Comm comm,

 MPI_Comm *intercomm, int array_of_errcodes[]);

Process Creation and Management…
Process Management

MPI Extensions N. Novgorod, 2014 21

int MPI_Comm_spawn(const char *command, char *argv[],

 int maxprocs, MPI_Info info, int root, MPI_Comm comm,

 MPI_Comm *intercomm, int array_of_errcodes[]);

- command - name of program to be spawned (significant only at root)

- argv - arguments to command (significant only at root)

- maxprocs - maximum number of processes to start (significant only at root)

- info - a set of key-value pairs telling the runtime system where and how

 to start the processes (significant only at root)

- root - rank of process in which previous arguments are examined

- comm - intracommunicator containing group of spawning processes

- intercomm - intercommunicator between original group and the newly spawned

 group

- array_of_errcodes - one code per process (array of integer)

Process Creation and Management…
Process Management

MPI_Comm_spawn_multiple() is identical to

MPI_Comm_spawn() except that there are multiple executable

specifications

The first argument, count, gives the number of specifications

Each of the next four arguments are simply arrays of the
corresponding arguments in MPI_Comm_spawn()

All of the spawned processes have the same MPI_COMM_WORLD

MPI Extensions N. Novgorod, 2014 22

int MPI_Comm_spawn_multiple(int count, char *commands[],

 char **argvs[], const int maxprocs[],

 const MPI_Info info[], int root, MPI_Comm comm,

 MPI_Comm *intercomm, int array_of_errcodes[]);

Process Creation and Management…
Process Management

MPI Extensions N. Novgorod, 2014 23

int MPI_Comm_spawn_multiple(int count, char *commands[],

 char **argvs[], const int maxprocs[],

 const MPI_Info infos[], int root, MPI_Comm comm,

 MPI_Comm *intercomm, int array_of_errcodes[]);

- count - number of commands

- commands - programs to be executed

- argvs - arguments for commands

- maxprocs - maximum number of processes to start for each command

- infos - info objects telling the runtime system where and how

 to start processes

- root - rank of process in which previous arguments are examined

- comm - intracommunicator containing group of spawning processes

- intercomm - intercommunicator between original group and the newly spawned

 group

- array_of_errcodes - one code per process (array of integer)

Process Creation and Management…
Establishing Connections

Some situations in which establishing connections are useful are:

– Two parts of an application that are started independently need to

communicate

– A visualization tool wants to attach to a running process

– A server wants to accept connections from multiple clients. Both

clients and server may be parallel programs

MPI must establish communication channels where there is no

parent/child relationship

MPI Extensions N. Novgorod, 2014 24

Process Creation and Management…
Establishing Connections

MPI must establish communication channels where there is no

parent/child relationship

– Establishing contact between two groups of processes that do not

share an existing communicator is a collective but asymmetric process

– One group of processes indicates its willingness to accept connections

from other groups of processes

– We will call this group the (parallel) server, even if this is not a

client/server type of application

– The other group connects to the server; we will call it the client

MPI Extensions N. Novgorod, 2014 25

Process Creation and Management…
Establishing Connections

Server Routines

Establishes a network address, encoded in the port_name string,

at which the server will be able to accept connections from clients

Releases the network address represented by port_name

Establishes communication with a client

 It is collective over the calling communicator. It returns an

intercommunicator that allows communication with the client

MPI Extensions N. Novgorod, 2014 26

int MPI_Open_port(MPI_Info info, char *port_name);

int MPI_Close_port(const char *port_name);

int MPI_Comm_accept(const char *port_name, MPI_Info info,

 int root, MPI_Comm comm, MPI_Comm *newcomm);

Process Creation and Management…
Establishing Connections

Client Routine

Establishes communication with a server specified by port_name.

 It is collective over the calling communicator and returns an

intercommunicator in which the remote group participated in an
MPI_Comm_accept()

 If the named port does not exist (or has been closed),
MPI_Comm_connect() raises an error of class MPI_ERR_PORT

MPI Extensions N. Novgorod, 2014 27

int MPI_Comm_connect(const char *port_name, MPI_Info info,

 int root, MPI_Comm comm, MPI_Comm *newcomm);

Process Creation and Management
Establishing Connections

Client Routine

 If the port exists, but does not have a pending
MPI_Comm_accept(), the connection attempt will eventually time

out after an implementation-defined time, or succeed when the
server calls MPI_Comm_accept()

 In the case of a time out, MPI_Comm_connect() raises an error

of class MPI_ERR_PORT

MPI Extensions N. Novgorod, 2014 28

int MPI_Comm_connect(const char *port_name, MPI_Info info,

 int root, MPI_Comm comm, MPI_Comm *newcomm);

Summary

The Nonblocking Collective Operations are discussed

The Creation and Management of additional process in MPI

program are considered

N. Novgorod, 2014 MPI Extensions 29

Exercises

Develop a sample program for each method of nonblocking

collective operations

Develop a sample program using additional process in MPI

program. Possible scheme to implement is “master-workers”

N. Novgorod, 2014 MPI Extensions 30

References

1. The internet resource, which describes the standard MPI:

http://www.mpiforum.org

2. One of the most widely used MPI realizations, the library MPICH, is presented

on http://www.mpich.org

3. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New

York, NY: McGraw-Hill.

4. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. (1996). MPI:

The Complete Reference. – MIT Press, Boston, 1996.

6. Group, W., Lusk, E., Skjellum, A. (1999). Using MPI – 2nd Edition: Portable

Parallel Programming with the Message Passing Interface (Scientific and

Engineering Computation). – MIT Press.

7. Group, W., Lusk, E., Thakur, R. (1999). Using MPI-2: Advanced Features of the

Message Passing Interface (Scientific and Engineering Computation). – MIT

Press.

MPI Extensions N. Novgorod, 2014 31

http://www.mpiforum.org/
http://www.mpich.org/

