
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

OF THE LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE “ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Faculty of Computational mathematics and cybernetics

02 Lecture

CUDA C

Introduction to GPU programming

Bastrakov S.I.

Software department

Contents

 Introduction to CUDA

 CUDA compute model

 СUDA С

3

Introduction to CUDA

NVIDIA CUDA

 CUDA – Compute Unified Device Architecture.

 Hardware and software platform for parallel general purpose

computing on NVIDIA GPUs.

 Supports many programming interfaces

 Traditionally did not support other vendors. In the latest

versions it is possible.

– E.g. PGI CUDA-x86 http://www.pgroup.com/resources/cuda-

x86.htm

5

http://www.pgroup.com/resources/cuda-x86.htm
http://www.pgroup.com/resources/cuda-x86.htm
http://www.pgroup.com/resources/cuda-x86.htm

Many programming interfaces

6

Image source: NVIDIA CUDA C Programming Guide v. 6.5

CUDA Kit

 CUDA driver.

 CUDA Toolkit.

– compiler;

– profiler;

– optimized libraries;

– documentation.

 GPU Computing SDK.

7

CUDA compute model

8

Main concepts

 Program with CUDA C consists of 2 parts:

– CPU part written on C/C++ (including function main).

– GPU executes special functions – kernels and functions called
within kernels.

 Many threads execute kernel body in parallel.

 Kernel is called from CPU with specified number of threads.

 GPU programming mainly follows stream compute model.

9

Simple examples of kernels

 Vector addition: kernel computes one element of the result.

 Matrix multiplication (by definition): kernel computes one

element of the result.

 Integrating PDE with explicit scheme: kernel computes one grid

value.

 The common property of these examples is that number of

threads is equal to number of work elements. This is the most

simple case, but not the only possible way.

10

Data parallelism

 All examples given on the previous slide are data parallel.

 This is the most simple case for parallel programming

technologies, including CUDA: each subset of data can be

processed independently.

 Data parallelism – all cores perform same processing on

different data.

 In sequential C++ implementation there is a loop with

independent iterations.

11

Thread hierarchy

 Thread hierarchy is used to make a correspondence of thread
model to hardware architecture.

 Threads are grouped into thread blocks.

 All thread blocks have the same size.

 Blocks are grouped into grid.

 Kernel is executed on a grid. Kernel call sets number of blocks
and block size.

12

Identifiers

 Each thread and block have identifiers.

 They are used to find out which data to process in each thread.

 Identifiers are 3D (some components may be constant, thus

giving 1D or 2D).

 Example: kernel performs matrix multiplication by definition,

each thread computes one element. It is convenient to use 2D

indexes so that x-components is row index and y-component is

column index.

13

Identifiers

14

Image source: NVIDIA CUDA C Programming Guide v. 6.5

CUDA C

15

CUDA C

 CUDA C is extensions of С/C++ that consists of

– function qualifiers;

– memory qualifiers;

– inline variables.

 In this lecture we cover basic subset of CUDA C.

 Terminology:

– host = CPU;

– device = GPU;

– kernel = function that is executed on GPU in parallel.

16

Function qualifiers

 __host__ (by default) is a function called from host and

executed on host. All usual C++ functions are host functions.

 __global__ is a function called from host and executed in

parallel on GPU (kernel).

 __device__ is a function called inside kernel or other device

function and executed on GPU.

17

Qualifier Executed on Called from

__host__ host host

__global__ device host

__device__ device device

Syntax examples

 __host__ float hostSquare(float a) {

 return a * a;

 }

 __device__ float deviceSquare(float a) {

 return a * a;

 }

 __global__ void kernel(float a) {

 float a2 = deviceSquare(a);

 }

18

Inline variables

 From code on GPU side the following variables are accessible:

– gridDim – size of grid;

– blockIdx – index of current block;

– blockDim – size of block;

– threadIdx – index of current thread inside current block.

 All indexes are 3D, access to components via .x, .y, .z.

 (0, 0, 0) ≤ blockIdx < gridDim, (0, 0, 0) ≤ threadIdx < blockDim.

 Read only.

19

Unique index of a thread

 threadIdx is local thread index inside block. There is no inline

variable fro global thread index (among all blocks).

 But it can be computed.

 We assume indexes are 1D, i.e. only x-component is used.

20

idx = blockIdx.x * blockDim.x + threadIdx.x;

Shift of thread 0 of current

block to thread 0 of block 0 Global

thread

index

Shift of current thread

to thread 0 of current

block

Example: vector addition

__global__ void vecAdd_kernel(

 const float * a, const float * b,

 float * result) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 result[i] = a[i] + b[i];

}

21

Example: matrix addition

__global__ void matAdd_kernel(const float * a, const

 float * b, float * result, int m, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 int idx = i * n + j;

 result[idx] = a[idx] + b[idx];

}

22

Kernel calls

 Kernels are called with execution configuration.

 It is set by expression <<< Dg, Db >>> between kernel name

and arguments.

 Dg is number of blocks, total number of blocks is Dg.x * Dg.y *

Dg.z.

 Db is block size (all blocks have the same size), total number of

threads per block is Db.x * Db.y * Db.z.

 Besides, there are two optional parameters with default values, we

will consider those in the next lectures.

23

Kernel calls

 Grid and block sizes are variables of CUDA type dim3 that is

vector of 3 integers.

 By default all components are initialized with 1. For 1D

indexes one can use int values.

 Example:

 some_kernel <<< 201, 500 >>> (some_args);

Calling kernel <some_kernel> with arguments <some_args> on

a grid of 201 blocks, 500 threads per block. In total

201 * 500 = 100500 threads.

24

Example: calling vector addition kernel

 We use the kernel from previous example.

 Assume block size is 256.

 We need to compute number of blocks.

void vecAdd(const float * a, const float * b,

float * result, int n)

{

 const int block_size = 256;

 int num_blocks = ?;

vecAdd_kernel <<< num_blocks, block_size

 >>> (a, b, result);

}

25

Example: calling vector addition kernel

void vecAdd(const float * a, const float * b,

float * result, int n)

{

 const int block_size = 256;

 int num_blocks =

 (n + block_size - 1) / block_size;

 vecAdd_kernel <<< num_blocks, block_size >>>

(a, b, result);

}

 Is it correct?

26

Fixed vector addition kernel

__global__ void vecAdd_kernel(

 const float * a, const float * b,

 float * result, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n)

 result[i] = a[i] + b[i];

}

27

Treating alignment

 Choose number of blocks as upper integer part and add

condition in kernels.

 Ensure alignment.

 Make workload of thread not fixed.

 Optimal choice depends on a situation.

28

“CUDA Hello, World!”…

#include <cstdlib>

#include <iostream>

#include <cuda_runtime.h>

__global__ void vecAdd_kernel(

 const float * a, const float * b,

 float * result, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n)

 result[i] = a[i] + b[i];

}

29

“CUDA Hello, World!” …

int main() {

 int n = 1000;

 float * a = new float[n], * a_gpu;

 cudaMalloc((void**)&a_gpu, n *

 sizeof(float));

 float * b = new float[n], * b_gpu;

 cudaMalloc((void**)&b_gpu, n *

 sizeof(float));

 float * result = new float[n], * result_gpu;

 cudaMalloc((void**)&result_gpu, n *

 sizeof(float));

30

“CUDA Hello, World!” …

for (int i = 0; i < n; i++)

 a[i] = b[i] = i;

cudaMemcpy(a_gpu, a, n * sizeof(float),

 cudaMemcpyHostToDevice);

cudaMemcpy(b_gpu, b, n * sizeof(float),

 cudaMemcpyHostToDevice);

31

“CUDA Hello, World!”

const int block_size = 256;

int num_blocks =

 (n + block_size - 1) / block_size;

vecAdd_kernel <<< num_blocks, block_size

 >>> (a_gpu, b_gpu, result_gpu, n);

cudaMemcpy(result, result_gpu, n *

sizeof(float), cudaMemcpyDeviceToHost);

delete [] a; delete [] b; delete [] result;

cudaFree(a_gpu); cudaFree(b_gpu);

cudaFree(result_gpu);

return 0;

}

32

Building

 nvcc.

 Build rules for Microsoft Visual Studio 2008.

 From Visual Studio 2010 there is a special project type for

CUDA.

33

References

 Sanders J., Kandrot E. CUDA by Example: An Introduction to

General-Purpose GPU Programming. – Addison-Wesley

Professional, 2010. – 312 p.

 NVIDIA CUDA C Programming Guide.

[http://docs.nvidia.com/cuda/cuda-c-programming-guide/].

34

Authors

 Bastrakov S.I.,

Assistant of the Software department of CMC faculty.

bastrakov@vmk.unn.ru

35

https://e.mail.ru/messages/inbox/sentmsg?compose&To=bastrakov@vmk.unn.ru

