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Why GPU? 



Heterogeneous computing and GPGPU 

 Heterogeneous (hybrid) computing is computing using 

different kinds of computational hardware. 

 Most popular kinds of hardware: 

– CPUs; 

– Intel Xeon Phi coprocessors; 

– GPUs; 

– specialized processors (DSP and others); 

– FPGAs. 

 Most popular heterogeneous combination is currently CPU + 

GPU. 

 GPGPU is general-purpose computing on GPU. 
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Typical GPGPU applications 

 Physical simulation 

 Visual effects 

 Financial computing 

 Computational biology and chemistry 

 

 Examples: 

http://www.nvidia.com/object/cuda_showcase_html.html 

http://developer.amd.com/zones/openclzone/pages/openclappex

amples.aspx 
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Peak performance of CPUs and GPUs 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Memory bandwidth of CPUs and GPUs 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Modern GPUs 

 Modern GPUs are massively parallel processors. 

 High performance and memory bandwidth. 

 Fits for many classes of computationally intensive 

problems. 

 Advanced programming languages and tools. 
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Why not GPU? 

 Not all problems can be parallelized on large amount 

of threads. 

 Not all problems fit GPU architecture. 

 Code development and optimization is more 

complicated compared to traditional programming. 

 Many problems have computationally intensive 

subproblems that can be efficiently ported to GPU. 
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Overview of GPU architecture 



Architecture of CPUs and GPUs 
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CPU 

“cache-oriented” 
GPU 

“cache-miss oriented” 

Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Architecture of CPUs and GPUs 

 GPU architecture is aimed at computing that is:  

– data parallel: each operation is performed for many 

elements in parallel, 

– big computational density. 

 Compared to СPU: 

– much less cache and control logic 

– much more computational elements 

 Memory latency is covered by using large amount of lightweight 

threads. 

 CPU architecture is gradually becoming more parallel, GPU 

architecture is gradually becoming more sophisticated. 
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NVIDIA GPU architecture 

 Consists of streaming multiprocessors (MP), each contains 

several CUDA-cores and shared memory. 

– In first CUDA devices CUDA-cores were called scalar 

processors (SP). 

 CUDA-cores of one multiprocessor work as one or several 

SIMD units. 

 Extremely lightweight threads, hardware thread scheduler. 
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Multiprocessor of NVIDIA Fermi architecture 
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Image Source: А.В. Боресков, А.А. Харламов «Архитектура и программирование 

массивно-параллельных вычислительных систем» 



Overview of GPU programming 

technologies 

16 



Stream computing model 

 GPUs use stream computing model. 

 Data stream is a sequence of uniform elements that can be 

processed independently. 

 A function that processes one element is called kernel. 

 Kernel body handles one element, kernel is called many times 

(maybe in parallel), once per each element. 

– Example: sum of two vectors of length N, kernel body adds a 

pair of numbers, kernel is called N times. 

 GPU programming technologies use stream computing model. 
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Shading languages 

 Historically first tool that could be used for GPGPU (although 

not designed for it) 

 Shading languages are used to write pieces of code that is 

executed on GPU hardware, so-called shading processors 

 All programming is done in graphics terms 

 One of the most popular shading languages is GLSL 

(OpenGL Shading Language) 
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Metaprogramming tools BrookGPU и Sh 

 Metaprogramming: a program is written in a high-level 

language that is later automatically translated to shading 

languages. 

 Much more simple to use compared to shading languages. 

 A tradeoff is efficiency, the code is hard to optimize for a 

specific hardware. 

 Now these tools are not supported, by they have given birth to 

other technologies: 

– Sh became RapidMind that was consumed by Intel in 2009. 

– Improved version of BrookGPU was part of AMD Stream as 

Brook+. 
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NVIDIA CUDA and AMD Stream 

 NVIDIA CUDA: February 2007. 

 AMD Stream Computing: November 2007. 

 Have similar structure: 

– Low level: GPU assembly, memory management. 

– High level: stream extensions of C language, high 

performance libraries, profiling and debugging tools. 

 Advantages: 

– Programming in extensions of C language. 

– Access to hardware features and low-level optimization. 

 Disadvantages: 

– Programming requires some knowledge of architecture. 

– Porting is not easy. 

 

 

 

20 



OpenCL 

 OpenCL – Open Computing Language. 

 Open standard for heterogeneous computing 

developed by Khronos Group in collaboration with 

vendors. 

 First version: November 2008. 

 Supported by Apple, NVIDIA, AMD, Intel, IBM, and 

others. 

 Supports a wide range of hardware due to 

programming in terms of abstract models of hardware. 

 Applications are portable. Performance is not always 

high, but usually reasonable 
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OpenACC 

 Standard for heterogeneous computing on multicore 

CPUs and GPUs. 

 Concept is similar to OpenMP (and particularly 

#pragma offload for Xeon Phi) 

 Limited access to low-level optimization and memory 

management 

 Ideally suited for quick porting of large applications 

 Performance-critical parts might be later 

implemented and optimized using CUDA 
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Heterogeneous computing on 

CPUs and GPUs 



Motivation 

 Heterogeneous systems are becoming more and more 

popular: 

– APU (accelerated processing unit) combine CPU and GPU 

cores. 

– Intel Xeon Phi (MIC, many integrated cores) coprocessors 

contain about 60 cores. 
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Motivation 

 Most popular heterogeneous combination is currently CPU + 

GPU. 

 Peak performance of modern GPUs is largely superior over 

CPUs. 

 However, a gap is usually smaller on real applications. 

 It makes sense to use both CPUs and GPUs simultaneously 
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Motivation 

 In applications using CUDA or OpenCL host part is usually 

playing only utility role: 

– Initialization. 

– Running kernels. 

– Data exchanges. 

 It does not place a great computational load on CPU and 

does not require all CPU cores. 

 Thus, some (or all) CPU cores can be used for computing. 
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Load balancing 

 Load balancing is required because of different nature of 

hardware being used: 

– Performance 

– Data transfers: CPU cores use shared memory, need data 

transfers between CPU and GPU or GPU and another GPU. 

 Inefficient load balancing can cause data transfer overheads to 

ruin performance gains. 
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Summary 

 GPUs are massively parallel processors that are well suited 

for data parallel applications 

 GPU programming technologies mainly use stream 

computing model 

 Most popular technologies are CUDA, OpenCL, OpenACC 

 Heterogeneous computing becomes more popular 

 Load balancing needs to be address thoroughly 
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Summary 

 Appropriate algorithms that allow high degree of parallelism 

need to be chosen for implementation on GPU 

 Typical scheme of problem decomposition is: 

– decomposition into large amount (thousands or more) of sub-

problems that can be solved independently; 

– decomposition into small amount of sub-problems that can be 

solved independently, decomposition of each sub-problem into 

hundreds of smaller problems. 

 High computational density is preferable. 

 Usually CPUs are used for sequential parts of an application 

and GPUs are used for massively parallel part. 
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