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| CPU and GPU architecture
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Tesla 8 multiprocessor
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Tesla 10 multiprocessor
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Tesla 10 memory hierarchy

Q device/global
Q shared

Q constant cache
Q texture cache
Q register

Q local
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Fermi multiprocessor
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Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively
parallel computational systems”.




Thread execution
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Thread communication

A Threads of the same block are executed on the same
multiprocessor, they can communicate using:

— shared memory;
— __syncthreads().

Q Threads of different block can communicate only via global
memory.

A There are atomic operations in shared and global memory.

T
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Kernel execution

Q Blocks are distributed between multiprocessors

A Threads of a block are executed by CUDA-cores of a
multiprocessor

Q If there are enough resources, several blocks can be
concurrently executed on the same multiprocessor.

Q Large amount of blocks helps automatic scaling.

T
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Automatic scaling

Multithreaded CUDA Program
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Image source: NVIDIA CUDA C Programming Guide v. 6.5




SIMT

a All threads running on the same multiprocessor are grouped in
warps, a warp consists of threads with sequential identifiers.

— Warp size is currently 32.
Q Warp scheduling is done automatically.

aQ CUDA-cores of a multiprocessor execute same instruction for all
threads in a warp (SIMT, Single Instruction Multiple Thread).

— Threads of a warp are always synchronized.

A Programming in scalar terms: kernel code for one thread, can
use conditions.

T
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Example of warp execution
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Image source: NVIDIA CUDA C Programming Guide v. 6.5
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Memory hierarchy




Memory hierarchy
Memory type | Access Scope Speed
Register R/W Per-thread High (on-chip)
Local R/W Per-thread Low (DRAM)
Shared R/W Per-block High (on-chip)
Global™* R/W Per-grid High if hit cache (DRAM)
Constant R/O Per-grid High if hit cache
Texture R/O Per-grid High if hit cache

*+ L1/L2 cache from Fermi
Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

] u' parallel computational systems”.
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Using global memory

Q cudaError_t cudaMalloc (void** devPtr, size t count
Q cudaError_t cudaFree (void* devPtr)

Q cudaError_t cudaMemcpy (void* dst, const void* src, size t
count, enum cudaMemcpyKind kind),

kind can be cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost.

A cudaMemcpyAsync — asynchronous version.

T
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Example

Q Allocate arrays on host and device:

int n = 1000;

float * a = new float[n], * a gpu;

cudaMalloc ((void**) &a gpu, n * sizeof (float));

a Copy from host to device:

cudaMemcpy (a gpu, a, n * sizeof (float),
cudaMemcpyHostToDevice) ;

a Copy from device to host:

cudaMemcpy (a, a gpu, n * sizeof (float),

cudaMemcpyDeviceToHost) ;

T
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Coalescing for global memory...

Aligned and sequential

Addresses: 96

128

256 288
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Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached
1x 64Bat128 |1x 64Bat128 |1x 128Bat 128
1x 64Bat192 | 1x 64Bat 192

Image source: NVIDIA CUDA C Programming Guide v. 6.5
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Coalescing for global memory...

Aligned and non-sequential

Addresses: 96 12 256 288
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Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128 |1x 64Bat128|1x128Bat 128
8x 32Bat160 | 1x 64Bat 192
8x 32Bat192
8x 32Bat224
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Coalescing for global memory

Misaligned and sequential

Addresses: 96

128 160

192 224

256 288
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Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

7x 32Bat128
8x 32Bat160
8x 32Bat192
8x 32Bat 224
1x 32B at 256

1x128Bat128
1x 64Bat 192
1x 32Bat 256

1x128Bat 128
1x 128B at 256

Image source: NVIDIA CUDA C Programming Guide v. 6.5

22



Example: Jacobi method

__global  void kernel (float * a, float * £, float * x0, float
* x1, int n)

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int ia = n * idx;
float sum = 0.0f;
for (int 1 = 0; i < n; i++)

sum += af[ia + i] * x0[i]; /* no coalescing! */
float alpha = 1.0f / a[ia + idx];
x1[idx] = x0[idx] + alpha * (f[idx] - sum);
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Working with shared memory

Q Latency 4 clocks.
a Small size (16 to 48 KB).

Q Typical use pattern:
— Load intensively used data from global memory;
— Synchronize if necessary;
— Compute using loaded data;
— Synchronize if necessary;
— Write results back to global memory.

T
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Example

¥
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__global __ void kernel(int * a)

{
Int globalldx = blockldx.x * blockDim.x + threadldx.x;
__shared  intshared a|[NUM_THREADS];
shared_a[threadldx.x] = a[globalldx];
__syncthreads();
// all threads of a block can use shared_a

¥
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Dynamically allocated shared memory

Q arrayO of type short length 2n, arrayl of type float length n and
array2 of type int length 3n.

extern _ shared  float array[];
__global__ void kernel(int n) {
short* array0 = (short*)array;
float* arrayl = (float*)&array0[2 * n];
Int* array2 = (int*)&arrayl[n];
h

Int shared_mem_size = sizeof(short) * 2 * n + sizeof(float) * n +
sizeof(int) * 3 * n;
kernel<<<num_blocks, num_threads, shared _mem_size>>>(n);

Q
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No bank conflicts

Thread O Bank O
Thread 1 k., Bank 1
Thread 2 - Bank 2
Thread 3 Bank 3
Thread 4 = Bank 4
Thread 5 Bank 5
Thread & e Bank 6
Thread T Bank T
Thread & Bank B
Thread 9 Bank 9
Thread 10 W__ Bank 10
Thre 11 Bank 11
Thread 12 FM‘IZ
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 L Bank 15

Image source: NVIDIA CUDA C Programming Guide v. 6.5
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Bank conflicts

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Thread 0 Bank O
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread & Bank &
Thread T Bank 7
Thread B r Bank B
Thread 9 Bank @
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

Image source: NVIDIA CUDA C Programming Guide v. 6.5
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