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OBJECTIVES 

The objective of this practice is to apply CURAND for Monte Carlo method applied to two 

problems: integration and option pricing. 

ABSTRACT 

This practice considers two important applications of Monte Carlo method: integration and 

option pricing. We demonstrate how to use optimized CURAND library via both Host and De-

vice API to solve these problems. 

BRIEF OVERVIEW 

We consider pricing of Call European options. A price follows a stochastic model. Monte 

Carlo simulation is widely used for such simulations. It is performed as follows. Generate a large 

number of pseudorandom numbers. Computation for each specific number is called Monte Carlo 

path. For each path we compute price. Result is average of prices of all paths. 

Let 𝑟 be pseudorandom number of standard normal distribution. Price of an option is comput-

ed as: 

 𝑟    𝑟                       

If computation is performed with numbers 𝑟  𝑟     𝑟 , the result is: 
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To perform such simulation we need pseudorandom numbers of standard normal distribution. 

Those can be obtained from numbers uniformly distributed on [0, 1] using the second Box-

Muller transform. Let   ,    be numbers on       and     . Then the following numbers are 

normally distributed with mean 0 and variance 1: 

   √                

   √                 

In the case we consider the fair price can be analytically computed by Black-Scholes formula. 

We compare result of Monte-Carlo simulation with the analytical result. It must converge with 

order 1/2, error of Monte Carlo simulation is proportional to  
√ 

⁄ . 

Implementation on CPU is as follows: 

double endCallValue(double s, double x, double r, double mu, double w) 

{ 



    double callValue = s * exp(mu + w * r) - x; 

    return (callValue > 0) ? callValue : 0; 

} 

double MonteCarloCPU(int n, double s, double x, double t, double r, double v) 

{ 

    const double mu = (r - 0.5 * v * v) * t; 

    const double w = v * sqrt(t); 

    double * rnd = new double[n + 1]; 

    srand(12345); 

    for (int i = 0; i < n; i += 2) { 

        double u1; 

        do { 

            u1 = rand() / (double)RAND_MAX; 

        } while (u1 == 0); 

        double u2 = rand() / (double)RAND_MAX; 

        rnd[i] = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2); 

        rnd[i + 1] = sqrt(-2.0 * log(u1)) * sin(2.0 * M_PI * u2); 

    } 

   double sum = 0; 

    for (int i = 0; i < n; i++) 

    { 

        double callValue = endCallValue(s, x, rnd[i], mu, w); 

        sum += callValue; 

    } 

    delete [] rnd; 

    return exp(-r * t) * sum / (double)n; 

} 

Implementation on GPU is left for individual work. We consider 3 versions: naive, using 

CURAND external, using CURAND internal. 

GPU implementation of Monte-Carlo integral using external CURAND: 

__global__ void kernel_curand_external(int n, float a, float b, float c, 

float d, 

    float * x01, float * y01, char * count) 

{ 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

    if (i >= n) 

        return; 

    if (y01[i] * (d - c) + c  <= func_device(x01[i] * (b - a) + a)) 

        count[i] = 1; 

    else 

        count[i] = 0; 

} 

float integrateMonteCarlo_gpu_curand_external(int n, float a, float b, float 

c, 

    float d, float * x01_device, float * y01_device, 

    char * count_host, char * count_device) 

{ 

    curandGenerator_t gen; 

    curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_XORWOW); 

    curandGenerateUniform(gen, x01_device, n); 

    curandGenerateUniform(gen, y01_device, n); 

    curandDestroyGenerator(gen); 

const int num_threads_per_block = 256; 

    int num_blocks = (n + num_threads_per_block - 1) / num_threads_per_block; 

    kernel_curand_external<<<num_blocks, num_threads_per_block>>>(n, a, b, c, 

d, 

        x01_device, y01_device, count_device); 

    cudaThreadSynchronize(); 

    cudaMemcpy(count_host, count_device, n * sizeof(char), 

        cudaMemcpyDeviceToHost); 



    int count = 0; 

    for (int i = 0; i < n; ++i) 

        if (count_host[i]) 

            ++count; 

    return (float)count / (float)n; 

} 

GPU implementation of Monte-Carlo integral using internal CURAND: 

__global__ void kernel_curand_internal(int n, float a, float b, float c, 

float d,  char * count) { 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

    if (i >= n)  return; 

    curandStateXORWOW_t state; 

    curand_init(2 * i, 0, 0, &state); 

    float x = curand_uniform(&state) * (b - a) + a; 

    float y = curand_uniform(&state) * (d - c) + c; 

    if (y <= func_device(x))   count[i] = 1; 

    else  count[i] = 0; 

} 

float integrateMonteCarlo_gpu_curand_internal(int n, float a, float b, float 

c, float d, char * count_host, char * count_device) 

{ 

    const int num_threads_per_block = 256; 

    int num_blocks = (n + num_threads_per_block - 1) / num_threads_per_block; 

    kernel_curand_internal<<<num_blocks, num_threads_per_block>>>(n, a, b, c, 

d, 

        count_device); 

    cudaThreadSynchronize(); 

    cudaMemcpy(count_host, count_device, n * sizeof(char), 

        cudaMemcpyDeviceToHost); 

     int count = 0; 

    for (int i = 0; i < n; ++i) 

        if (count_host[i]) 

            ++count; 

    return (float)count / (float)n; 

} 

FOR STUDENTS  

Detailed information about CURAND is presented in [1]. 

REFERENCES 

1. NVIDIA CURAND Documentation 

[http://docs.nvidia.com/curand/index.html#axzz3JRcPurfI]. 

INDIVIDUAL WORK 

1. Generalize our Monte Carlo integration for integrals of arbitrary dimension. 

2. Implement three versions of Monte Carlo option pricing on GPU: naive, using CURAND ex-

ternal, using CURAND internal. Compare performance of these versions. 

3. Modify implementation to compute prices of several options with different parameters. 

4. Create multi-GPU implementation for multi-option case, each GPU handles one or several 

options. 


