
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

OF THE LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE “ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Faculty of Computational mathematics and cybernetics

05 Lecture

CUDA thread execution and memory hierarchy

Introduction to GPU programming

Bastrakov S.I.

Software department

Contents

 GPU architecture

 Thread execution

 Memory hierarchy

3

4

GPU architecture

CPU and GPU architecture

5

CPU

“cache-oriented”
GPU

“cache-miss oriented”

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Tesla 8 multiprocessor

6

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

parallel computational systems”.

Tesla 10 multiprocessor

7

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

parallel computational systems”.

Tesla 10 memory hierarchy

 device/global

 shared

 constant cache

 texture cache

 register

 local

8

Fermi multiprocessor

9

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

parallel computational systems”.

10

Thread execution

Thread communication

 Threads of the same block are executed on the same

multiprocessor, they can communicate using:

– shared memory;

– __syncthreads().

 Threads of different block can communicate only via global

memory.

 There are atomic operations in shared and global memory.

11

Kernel execution

 Blocks are distributed between multiprocessors

 Threads of a block are executed by CUDA-cores of a

multiprocessor

 If there are enough resources, several blocks can be

concurrently executed on the same multiprocessor.

 Large amount of blocks helps automatic scaling.

12

Automatic scaling

13

Image source: NVIDIA CUDA C Programming Guide v. 6.5

SIMT

 All threads running on the same multiprocessor are grouped in

warps, a warp consists of threads with sequential identifiers.

– Warp size is currently 32.

 Warp scheduling is done automatically.

 CUDA-cores of a multiprocessor execute same instruction for all

threads in a warp (SIMT, Single Instruction Multiple Thread).

– Threads of a warp are always synchronized.

 Programming in scalar terms: kernel code for one thread, can

use conditions.

14

Example of warp execution

15

Image source: NVIDIA CUDA C Programming Guide v. 6.5

16

Memory hierarchy

Memory hierarchy

*+ L1/L2 cache from Fermi

17

Memory type Access Scope Speed

Register R/W Per-thread High (on-chip)

Local R/W Per-thread Low (DRAM)

Shared R/W Per-block High (on-chip)

Global* R/W Per-grid High if hit cache (DRAM)

Constant R/O Per-grid High if hit cache

Texture R/O Per-grid High if hit cache

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

parallel computational systems”.

Using global memory

 cudaError_t cudaMalloc (void** devPtr, size_t count

 cudaError_t cudaFree (void* devPtr)

 cudaError_t cudaMemcpy (void* dst, const void* src, size_t

count, enum cudaMemcpyKind kind),

kind can be cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost.

 cudaMemcpyAsync – asynchronous version.

18

Example

 Allocate arrays on host and device:

int n = 1000;

float * a = new float[n], * a_gpu;

cudaMalloc((void**)&a_gpu, n * sizeof(float));

 Copy from host to device:

cudaMemcpy(a_gpu, a, n * sizeof(float),

 cudaMemcpyHostToDevice);

 Copy from device to host:

cudaMemcpy(a, a_gpu, n * sizeof(float),

 cudaMemcpyDeviceToHost);

19

Coalescing for global memory…

20

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Coalescing for global memory…

21

Coalescing for global memory

22

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Example: Jacobi method

__global__ void kernel (float * a, float * f, float * x0, float

* x1, int n)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 int ia = n * idx;

 float sum = 0.0f;

 for (int i = 0; i < n; i++)

 sum += a[ia + i] * x0[i]; /* no coalescing! */

 float alpha = 1.0f / a[ia + idx];

 x1[idx] = x0[idx] + alpha * (f[idx] - sum);

}

23

Working with shared memory

 Latency 4 clocks.

 Small size (16 to 48 KB).

 Typical use pattern:

– Load intensively used data from global memory;

– Synchronize if necessary;

– Compute using loaded data;

– Synchronize if necessary;

– Write results back to global memory.

24

Example

25

__global__ void kernel(int * a)

{

 int globalIdx = blockIdx.x * blockDim.x + threadIdx.x;

 __shared__ int shared_a[NUM_THREADS];

 shared_a[threadIdx.x] = a[globalIdx];

 __syncthreads();

 // all threads of a block can use shared_a

}

Dynamically allocated shared memory

 array0 of type short length 2n, array1 of type float length n and

array2 of type int length 3n.

26

extern __shared__ float array[];

__global__ void kernel(int n) {

 short* array0 = (short*)array;

 float* array1 = (float*)&array0[2 * n];

 int* array2 = (int*)&array1[n];

}

…

int shared_mem_size = sizeof(short) * 2 * n + sizeof(float) * n +

 sizeof(int) * 3 * n;

kernel<<<num_blocks, num_threads, shared_mem_size>>>(n);

No bank conflicts

27

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Bank conflicts

28

Image source: NVIDIA CUDA C Programming Guide v. 6.5

References

 Sanders J., Kandrot E. CUDA by Example: An Introduction to

General-Purpose GPU Programming. – Addison-Wesley

Professional, 2010. – 312 p.

 Farber R. CUDA Application Design and Development. –

Morgan Kaufmann, 2011. – 336 p.

 NVIDIA CUDA C Programming Guide.

[http://docs.nvidia.com/cuda/cuda-c-programming-guide/].

29

Authors

 Bastrakov S.I.,

Assistant of the Software department of CMC faculty.

bastrakov@vmk.unn.ru

30

https://e.mail.ru/messages/inbox/sentmsg?compose&To=bastrakov@vmk.unn.ru

