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GPU architecture 



CPU and GPU architecture 
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CPU 

“cache-oriented” 
GPU 

“cache-miss oriented” 

Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Tesla 8 multiprocessor 
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Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively 

parallel computational systems”.  



Tesla 10 multiprocessor 
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Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively 

parallel computational systems”.  



Tesla 10 memory hierarchy 

 device/global  

 shared 

 constant cache 

 texture cache 

 register 

 local 
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Fermi multiprocessor 
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Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively 

parallel computational systems”.  
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Thread execution 



Thread communication 

 Threads of the same block are executed on the same 

multiprocessor, they can communicate using: 

– shared memory; 

– __syncthreads(). 

 Threads of different block can communicate only via global 

memory. 

 There are atomic operations in shared and global memory. 
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Kernel execution 

 Blocks are distributed between multiprocessors 

 Threads of a block are executed by CUDA-cores of a 

multiprocessor 

 If there are enough resources, several blocks can be 

concurrently executed on the same multiprocessor. 

 Large amount of blocks helps automatic scaling. 
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Automatic scaling 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



SIMT 

 All threads running on the same multiprocessor are grouped in 

warps, a warp consists of threads with sequential identifiers. 

– Warp size is currently 32. 

 Warp scheduling is done automatically. 

 CUDA-cores of a multiprocessor execute same instruction for all 

threads in a warp (SIMT, Single Instruction Multiple Thread). 

– Threads of a warp are always synchronized. 

 Programming in scalar terms: kernel code for one thread, can 

use conditions. 
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Example of warp execution 

15 

Image source: NVIDIA CUDA C Programming Guide v. 6.5 



16 

Memory hierarchy 



Memory hierarchy 

*+ L1/L2 cache from Fermi 

 

17 

Memory type Access Scope Speed 

Register R/W Per-thread High (on-chip) 

Local R/W Per-thread Low (DRAM) 

Shared R/W Per-block High (on-chip) 

Global* R/W Per-grid High if hit cache (DRAM) 

Constant R/O Per-grid High if hit cache 

Texture R/O Per-grid High if hit cache 

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively 

parallel computational systems”.  



Using global memory 

 cudaError_t cudaMalloc (void** devPtr, size_t count 

 cudaError_t cudaFree (void* devPtr) 

 cudaError_t cudaMemcpy (void* dst, const void* src, size_t 

count, enum cudaMemcpyKind kind), 

kind can be cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost. 

 cudaMemcpyAsync – asynchronous version. 

 

18 



Example 

 Allocate arrays on host and device: 

int n = 1000; 

float * a = new float[n], * a_gpu; 

cudaMalloc((void**)&a_gpu, n * sizeof(float)); 

 Copy from host to device: 

cudaMemcpy(a_gpu, a, n * sizeof(float), 

   cudaMemcpyHostToDevice); 

 Copy from device to host: 

cudaMemcpy(a, a_gpu, n * sizeof(float), 

   cudaMemcpyDeviceToHost); 

 
19 



Coalescing for global memory… 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Coalescing for global memory… 
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Coalescing for global memory 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Example: Jacobi method 

__global__ void kernel (float * a, float * f, float * x0,  float 

* x1, int n) 

{ 

  int idx = blockIdx.x * blockDim.x + threadIdx.x; 

  int ia = n * idx; 

  float sum = 0.0f; 

  for (int i = 0; i < n; i++) 

    sum += a[ia + i] * x0[i]; /* no coalescing! */  

  float alpha = 1.0f / a[ia + idx]; 

  x1[idx] = x0[idx] + alpha * (f[idx] - sum); 

} 
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Working with shared memory 

 Latency 4 clocks. 

 Small size (16 to 48 KB). 

 Typical use pattern: 

– Load intensively used data from global memory; 

– Synchronize if necessary; 

– Compute using loaded data; 

– Synchronize if necessary; 

– Write results back to global memory. 
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Example 
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__global__ void kernel(int * a) 

{ 

    int globalIdx = blockIdx.x * blockDim.x + threadIdx.x; 

    __shared__ int shared_a[NUM_THREADS]; 

    shared_a[threadIdx.x] = a[globalIdx]; 

    __syncthreads(); 

    // all threads of a block can use shared_a 

} 



Dynamically allocated shared memory 

 array0 of type short length 2n, array1 of type float length n and  

array2 of type int length 3n. 
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extern __shared__ float array[];  

__global__ void kernel(int n) {  

    short* array0 = (short*)array; 

    float* array1 = (float*)&array0[2 * n]; 

    int*   array2 =   (int*)&array1[n]; 

} 

… 

int shared_mem_size = sizeof(short) * 2 * n + sizeof(float) * n + 

                                      sizeof(int) * 3 * n; 

kernel<<<num_blocks, num_threads, shared_mem_size>>>(n); 



No bank conflicts 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 



Bank conflicts 
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Image source: NVIDIA CUDA C Programming Guide v. 6.5 
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