
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

OF THE LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE “ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Faculty of Computational mathematics and cybernetics

01 Lecture

General purpose computing on GPU

Introduction to GPU programming

Bastrakov S.I.

Software department

Contents

 Why GPU?

 Overview of GPU architecture

 Overview of GPU programming technologies

 Heterogeneous computing on CPUs and GPUs

3

4

Why GPU?

Heterogeneous computing and GPGPU

 Heterogeneous (hybrid) computing is computing using

different kinds of computational hardware.

 Most popular kinds of hardware:

– CPUs;

– Intel Xeon Phi coprocessors;

– GPUs;

– specialized processors (DSP and others);

– FPGAs.

 Most popular heterogeneous combination is currently CPU +

GPU.

 GPGPU is general-purpose computing on GPU.

5

Typical GPGPU applications

 Physical simulation

 Visual effects

 Financial computing

 Computational biology and chemistry

 Examples:

http://www.nvidia.com/object/cuda_showcase_html.html

http://developer.amd.com/zones/openclzone/pages/openclappex

amples.aspx

6

http://www.nvidia.com/object/cuda_showcase_html.html
http://www.nvidia.com/object/cuda_showcase_html.html
http://developer.amd.com/zones/openclzone/pages/openclappexamples.aspx
http://developer.amd.com/zones/openclzone/pages/openclappexamples.aspx

Peak performance of CPUs and GPUs

7

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Memory bandwidth of CPUs and GPUs

8

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Modern GPUs

 Modern GPUs are massively parallel processors.

 High performance and memory bandwidth.

 Fits for many classes of computationally intensive

problems.

 Advanced programming languages and tools.

9

Why not GPU?

 Not all problems can be parallelized on large amount

of threads.

 Not all problems fit GPU architecture.

 Code development and optimization is more

complicated compared to traditional programming.

 Many problems have computationally intensive

subproblems that can be efficiently ported to GPU.

10

11

Overview of GPU architecture

Architecture of CPUs and GPUs

12

CPU

“cache-oriented”
GPU

“cache-miss oriented”

Image source: NVIDIA CUDA C Programming Guide v. 6.5

Architecture of CPUs and GPUs

 GPU architecture is aimed at computing that is:

– data parallel: each operation is performed for many

elements in parallel,

– big computational density.

 Compared to СPU:

– much less cache and control logic

– much more computational elements

 Memory latency is covered by using large amount of lightweight

threads.

 CPU architecture is gradually becoming more parallel, GPU

architecture is gradually becoming more sophisticated.

13

NVIDIA GPU architecture

 Consists of streaming multiprocessors (MP), each contains

several CUDA-cores and shared memory.

– In first CUDA devices CUDA-cores were called scalar

processors (SP).

 CUDA-cores of one multiprocessor work as one or several

SIMD units.

 Extremely lightweight threads, hardware thread scheduler.

14

Multiprocessor of NVIDIA Fermi architecture

15

Image Source: А.В. Боресков, А.А. Харламов «Архитектура и программирование

массивно-параллельных вычислительных систем»

Overview of GPU programming

technologies

16

Stream computing model

 GPUs use stream computing model.

 Data stream is a sequence of uniform elements that can be

processed independently.

 A function that processes one element is called kernel.

 Kernel body handles one element, kernel is called many times

(maybe in parallel), once per each element.

– Example: sum of two vectors of length N, kernel body adds a

pair of numbers, kernel is called N times.

 GPU programming technologies use stream computing model.

17

Shading languages

 Historically first tool that could be used for GPGPU (although

not designed for it)

 Shading languages are used to write pieces of code that is

executed on GPU hardware, so-called shading processors

 All programming is done in graphics terms

 One of the most popular shading languages is GLSL

(OpenGL Shading Language)

18

Metaprogramming tools BrookGPU и Sh

 Metaprogramming: a program is written in a high-level

language that is later automatically translated to shading

languages.

 Much more simple to use compared to shading languages.

 A tradeoff is efficiency, the code is hard to optimize for a

specific hardware.

 Now these tools are not supported, by they have given birth to

other technologies:

– Sh became RapidMind that was consumed by Intel in 2009.

– Improved version of BrookGPU was part of AMD Stream as

Brook+.

19

NVIDIA CUDA and AMD Stream

 NVIDIA CUDA: February 2007.

 AMD Stream Computing: November 2007.

 Have similar structure:

– Low level: GPU assembly, memory management.

– High level: stream extensions of C language, high

performance libraries, profiling and debugging tools.

 Advantages:

– Programming in extensions of C language.

– Access to hardware features and low-level optimization.

 Disadvantages:

– Programming requires some knowledge of architecture.

– Porting is not easy.

20

OpenCL

 OpenCL – Open Computing Language.

 Open standard for heterogeneous computing

developed by Khronos Group in collaboration with

vendors.

 First version: November 2008.

 Supported by Apple, NVIDIA, AMD, Intel, IBM, and

others.

 Supports a wide range of hardware due to

programming in terms of abstract models of hardware.

 Applications are portable. Performance is not always

high, but usually reasonable

 21

OpenACC

 Standard for heterogeneous computing on multicore

CPUs and GPUs.

 Concept is similar to OpenMP (and particularly

#pragma offload for Xeon Phi)

 Limited access to low-level optimization and memory

management

 Ideally suited for quick porting of large applications

 Performance-critical parts might be later

implemented and optimized using CUDA

22

23

Heterogeneous computing on

CPUs and GPUs

Motivation

 Heterogeneous systems are becoming more and more

popular:

– APU (accelerated processing unit) combine CPU and GPU

cores.

– Intel Xeon Phi (MIC, many integrated cores) coprocessors

contain about 60 cores.

24

Motivation

 Most popular heterogeneous combination is currently CPU +

GPU.

 Peak performance of modern GPUs is largely superior over

CPUs.

 However, a gap is usually smaller on real applications.

 It makes sense to use both CPUs and GPUs simultaneously

25

Motivation

 In applications using CUDA or OpenCL host part is usually

playing only utility role:

– Initialization.

– Running kernels.

– Data exchanges.

 It does not place a great computational load on CPU and

does not require all CPU cores.

 Thus, some (or all) CPU cores can be used for computing.

26

Load balancing

 Load balancing is required because of different nature of

hardware being used:

– Performance

– Data transfers: CPU cores use shared memory, need data

transfers between CPU and GPU or GPU and another GPU.

 Inefficient load balancing can cause data transfer overheads to

ruin performance gains.

27

Summary

 GPUs are massively parallel processors that are well suited

for data parallel applications

 GPU programming technologies mainly use stream

computing model

 Most popular technologies are CUDA, OpenCL, OpenACC

 Heterogeneous computing becomes more popular

 Load balancing needs to be address thoroughly

28

Summary

 Appropriate algorithms that allow high degree of parallelism

need to be chosen for implementation on GPU

 Typical scheme of problem decomposition is:

– decomposition into large amount (thousands or more) of sub-

problems that can be solved independently;

– decomposition into small amount of sub-problems that can be

solved independently, decomposition of each sub-problem into

hundreds of smaller problems.

 High computational density is preferable.

 Usually CPUs are used for sequential parts of an application

and GPUs are used for massively parallel part.

29

References

 Sanders J., Kandrot E. CUDA by Example: An Introduction to

General-Purpose GPU Programming. – Addison-Wesley

Professional, 2010. – 312 p.

 NVIDIA CUDA C Programming Guide.

[http://docs.nvidia.com/cuda/cuda-c-programming-guide/].

30

Authors

 Bastrakov S.I.,

Assistant of the Software department of CMC faculty.

bastrakov@vmk.unn.ru

31

https://e.mail.ru/messages/inbox/sentmsg?compose&To=bastrakov@vmk.unn.ru

