LlOBACHEVSKY STATE UKI.SITY OF Ni1ZHNI NOVGOROD
COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM
OF THE LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD
AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE “ACHIEVING LEADING POSITIONS IN THE FIELD
OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COI\/!PUTING”

—e

Lobachevsky State University of Nizhni Novgorod

Faculty of Computational mathematics and cybernetics

Q)

Introduction to GPU programming

05 Lecture
CUDA thread execution and memory hierarchy

Bastrakov S.I.
Software department

Contents

a GPU architecture
O Thread execution
aQ Memory hierarchy

GPU architecture

| CPU and GPU architecture

Control ALU | ALU -
" =
ALU | ALU =
-
-
-
-
CPU GPU
“cache-oriented” “cache-miss oriented”

“H[!' Image source: NVIDIA CUDA C Programming Guide v. 6.5

Tesla 8 multiprocessor

e "+ | Streaming Multiprocessor I

Texture Processing Clusger*” =" JPPPT T sennt] _ _
. ‘. Instruction Fetch
SM Shared Memory
TEX | B T SP SP
-It._#'- ‘IlJrl.l‘.. SP SP
SFU SFU
SM Tt ‘11 sp SP
SP SP
Register File

l—
Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

] u' parallel computational systems”.

Tesla 10 multiprocessor

P - Streaming Multiprocessor
_ »”
Texture Processing Cluster | - | instuctioncache | | Constant cache |
B Instruction Fetch
SM
Shared Memory
\
TEX SM "‘\ SP SP
“'\ SP SF SP SF
SP U SP U
SM "
\ SP SP
\%. RegisterFile
\
“
\
.
\

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

] a' parallel computational systems”.

Tesla 10 memory hierarchy

Q device/global
Q shared

Q constant cache
Q texture cache
Q register

Q local

T

Fermi multiprocessor

Warp Scheduler Warp Scheduler

Drispatch Unit Dispatch Unit

Register File (32768 32-bit words)

64 Kb Shared Memory' L1 Cache

Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively
parallel computational systems”.

Thread execution

10

Thread communication

A Threads of the same block are executed on the same
multiprocessor, they can communicate using:

— shared memory;
— __syncthreads().

Q Threads of different block can communicate only via global
memory.

A There are atomic operations in shared and global memory.

T

11

Kernel execution

Q Blocks are distributed between multiprocessors

A Threads of a block are executed by CUDA-cores of a
multiprocessor

Q If there are enough resources, several blocks can be
concurrently executed on the same multiprocessor.

Q Large amount of blocks helps automatic scaling.

T

12

Automatic scaling

Multithreaded CUDA Program
Blocko Block1 Block2 Block3
Block4 BlockS Block6 Block 7
v v
GPU with 2 Cores GPU with 4 Cores
Core 0 Core 1 Core 0 Core 1 Core 2 Core 3
Blocko Bocki | Blocko Blocki Blockz Block3
Ll Bocks Blocks Bocks Block 7
‘Block4 Blocks
| [Biecks [miock7.

Image source: NVIDIA CUDA C Programming Guide v. 6.5

SIMT

a All threads running on the same multiprocessor are grouped in
warps, a warp consists of threads with sequential identifiers.

— Warp size is currently 32.
Q Warp scheduling is done automatically.

aQ CUDA-cores of a multiprocessor execute same instruction for all
threads in a warp (SIMT, Single Instruction Multiple Thread).

— Threads of a warp are always synchronized.

A Programming in scalar terms: kernel code for one thread, can
use conditions.

T

14

Example of warp execution

t0t1t2t3t4 15 -~ 112131415 «w-

Thread block 1 Thread block N
_ TB2W1stall TB3 W2 stall .
TB1 TB2 TB3 B3 TB2 TB1 TE1 TB1 B3
Wi W1 W1 W2 W1 W1 W2 W3 W2
1 2 3 4 5 o 1 2 1 2 1 2 3 4 Fi a8 1 2 1 2 3 4

time
Image source: NVIDIA CUDA C Programming Guide v. 6.5

Y

15

Memory hierarchy

Memory hierarchy
Memory type | Access Scope Speed
Register R/W Per-thread High (on-chip)
Local R/W Per-thread Low (DRAM)
Shared R/W Per-block High (on-chip)
Global™* R/W Per-grid High if hit cache (DRAM)
Constant R/O Per-grid High if hit cache
Texture R/O Per-grid High if hit cache

*+ L1/L2 cache from Fermi
Image source:A.V. Boreskov, A.A. Harlamov “Architecture and programming of massively

] u' parallel computational systems”.
L 17

Using global memory

Q cudaError_t cudaMalloc (void** devPtr, size t count
Q cudaError_t cudaFree (void* devPtr)

Q cudaError_t cudaMemcpy (void* dst, const void* src, size t
count, enum cudaMemcpyKind kind),

kind can be cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost.

A cudaMemcpyAsync — asynchronous version.

T

18

Example

Q Allocate arrays on host and device:

int n = 1000;

float * a = new float[n], * a gpu;

cudaMalloc ((void**) &a gpu, n * sizeof (float));

a Copy from host to device:

cudaMemcpy (a gpu, a, n * sizeof (float),
cudaMemcpyHostToDevice) ;

a Copy from device to host:

cudaMemcpy (a, a gpu, n * sizeof (float),

cudaMemcpyDeviceToHost) ;

T

19

Coalescing for global memory...

Aligned and sequential

Addresses: 96

128

256 288

—'_——_'—\

LLLALARRRRRY

JLLLLAEEEA

Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached
1x 64Bat128 |1x 64Bat128 |1x 128Bat 128
1x 64Bat192 | 1x 64Bat 192

Image source: NVIDIA CUDA C Programming Guide v. 6.5

T

20

Coalescing for global memory...

Aligned and non-sequential

Addresses: 96 12 256 288

$——l—|

LK

Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128 |1x 64Bat128|1x128Bat 128
8x 32Bat160 | 1x 64Bat 192
8x 32Bat192
8x 32Bat224

W

Coalescing for global memory

Misaligned and sequential

Addresses: 96

128 160

192 224

256 288

—

T,

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

7x 32Bat128
8x 32Bat160
8x 32Bat192
8x 32Bat 224
1x 32B at 256

1x128Bat128
1x 64Bat 192
1x 32Bat 256

1x128Bat 128
1x 128B at 256

Image source: NVIDIA CUDA C Programming Guide v. 6.5

22

Example: Jacobi method

__global void kernel (float * a, float * £, float * x0, float
* x1, int n)

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int ia = n * idx;
float sum = 0.0f;
for (int 1 = 0; i < n; i++)

sum += af[ia + i] * x0[i]; /* no coalescing! */
float alpha = 1.0f / a[ia + idx];
x1[idx] = x0[idx] + alpha * (f[idx] - sum);

Y

Working with shared memory

Q Latency 4 clocks.
a Small size (16 to 48 KB).

Q Typical use pattern:
— Load intensively used data from global memory;
— Synchronize if necessary;
— Compute using loaded data;
— Synchronize if necessary;
— Write results back to global memory.

T

24

Example

¥

[\

0

__global __ void kernel(int * a)

{
Int globalldx = blockldx.x * blockDim.x + threadldx.x;
__shared intshared a|[NUM_THREADS];
shared_a[threadldx.x] = a[globalldx];
__syncthreads();
// all threads of a block can use shared_a

¥

25

Dynamically allocated shared memory

Q arrayO of type short length 2n, arrayl of type float length n and
array2 of type int length 3n.

extern _ shared float array[];
__global__ void kernel(int n) {
short* array0 = (short*)array;
float* arrayl = (float*)&array0[2 * n];
Int* array2 = (int*)&arrayl[n];
h

Int shared_mem_size = sizeof(short) * 2 * n + sizeof(float) * n +
sizeof(int) * 3 * n;
kernel<<<num_blocks, num_threads, shared _mem_size>>>(n);

Q

26

No bank conflicts

Thread O Bank O
Thread 1 k., Bank 1
Thread 2 - Bank 2
Thread 3 Bank 3
Thread 4 = Bank 4
Thread 5 Bank 5
Thread & e Bank 6
Thread T Bank T
Thread & Bank B
Thread 9 Bank 9
Thread 10 W__ Bank 10
Thre 11 Bank 11
Thread 12 FM‘IZ
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 L Bank 15

Image source: NVIDIA CUDA C Programming Guide v. 6.5

27

Bank conflicts

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Thread 0 Bank O
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread & Bank &
Thread T Bank 7
Thread B r Bank B
Thread 9 Bank @
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

Image source: NVIDIA CUDA C Programming Guide v. 6.5

28

References

Q Sanders J., Kandrot E. CUDA by Example: An Introduction to
General-Purpose GPU Programming. — Addison-Wesley
Professional, 2010. — 312 p.

a Farber R. CUDA Application Design and Development. —
Morgan Kaufmann, 2011. — 336 p.

a NVIDIA CUDA C Programming Guide.
[http://docs.nvidia.com/cuda/cuda-c-programming-guide/].

T

29

Authors

Q Bastrakov S.1.,
Assistant of the Software department of CMC faculty.
bastrakov@vmk.unn.ru

30

https://e.mail.ru/messages/inbox/sentmsg?compose&To=bastrakov@vmk.unn.ru

