
High performance particle-in-cell laser-plasma
simulation in PICADOR. Parallelization techniques

Iosif Meyerov, meerov@vmk.unn.ru

Seminar talk, 2021

BACKGROUND

• Simulation of irradiation of various targets with
high-intensity laser pulses

• Tool for theoretical research

• Compact particle sources for medicine

• Generation of radiation with unique properties

• Widely used particle-in-cell method (PIC)

• 3D PIC simulation requires parallel computing:

• 108 – 1010 cells

• 108 – 1010 particles

• 103 – 106 cores

Laser Plasma Simulation. Research Area

3

• Two main sets of data:

• Particle ensemble (electrons, ions)

• Electromagnetic field,
defined on a regular grid

• No direct Particle-Particle interaction

• Spatially local particle-grid
interactions

• Each simulated particle
(macro particle) corresponds to
a cloud of real particles

• Charge distribution in a cloud is
defined by a particle form factor

Particle-in-Cell Method

4

Particle
(r, v, q, m)

B

E

Basic Computational Loop

5

Field interpolation

𝑭𝑖 = 𝑞𝑖 𝑬 𝒓𝒊 +
1

𝑐
𝒗𝒊 × 𝑩 𝒓𝒊

Particle push

ⅆ𝒑𝒊
ⅆ𝑡
= 𝑭𝑖

ⅆ𝒓𝒊
ⅆ𝑡
= 𝒗𝑖

𝒗𝑖 =
𝒑𝒊
𝑚𝑖
1 +

𝒑𝒊
𝑚𝑖𝑐

2 −
1
2

Field solver

𝛻 × 𝑩 =
4𝜋

𝑐
𝒋 +
1

𝑐

𝜕𝑬

𝜕𝑡

 𝛻 × 𝑬 = −
1

𝑐

𝜕𝑩

𝜕𝑡

Current deposition

𝒋 𝒓 = 𝑞𝑖𝒗𝒊𝛿 𝒓 − 𝒓𝑖
𝑖

𝒓𝒊, 𝒗𝒊

𝑬,𝑩

𝒋

• EPOCH (University of Warwick)

• OSIRIS (IST, UCLA)

• PIConGPU (HZDR)

• SMILEI (CNRS)

• VLPL (HHU)

• WarpX (LBNL)

• …

In Russia:

• Codes developed by Keldysh Institute of Applied
Mathematics, ICM&MG SB RAS, FRC ICT, UNN & IAP
RAS…

Software

6

OUR TEAM AND SOFTWARE

Our Team (“How it all began”)

Code developers, users
Sergey Bastrakov, PhD, HZDR (Germany) (lead
developer of PICADOR, 2010-2018)
Alexey Bashinov, researcher, IAP RAS
Tom Blackburn, PhD, researcher, Univ. of Gothenburg
Artem Korzhimanov, PhD, researcher, IAP RAS
Alexander Muraviev, researcher, IAP RAS
Valentin Volokitin, PhD student, UNN (lead developer)
Elena Panova, master student, UNN
Alexander Panov, master student, UNN
Yury Rodimkov, master student, UNN
Igor Surmin, engineer, UNN
Kirill Tarakanov, master student, UNN
Anastasiia Arisova, student, UNN

Arkady Gonoskov, PhD,
Univ. of Gothenburg, UNN

Evgeny Efimenko, Research
Scientist, Inst. of Appl. Phys.

Iosif Meyerov, PhD., vice-
head of the dep., UNN

Collaborators
Arkady Kim,
PhD., Prof., IAP RAS (Russia)
Mattias Marklund, PhD, Prof.,
Univ. of Gothenburg (Sweden)
Felix Mackenroth, PhD,
researcher, Max Planck
Institute for the Physics of
Complex Systems (Germany)
László Veisz, PhD., Prof.
Umea Univ., Sweden

• Code for 3D plasma simulation based on the
particle-in-cell method

• Developed in UNN and IAP RAS since 2010

• Multi-level infrastructure

• Optimized computational core

• Extendable with modules

• Visualization tools

• Wide set of numerical schemes and extensions for
additional physical effects

• Support for Intel Xeon Phi and modern manycore CPUs

PICADOR Code

9

Numerical Schemes and Extensions

10

• CIC, TSC particle form factors

• Boris and Vay particle pushers

• Yee grid

• FDTD and NDF field solvers

• Current deposition schemes with
and without charge conservation

• Absorbing boundary conditions

• Boundary pulse generators

• Moving frame

• Ionization

• QED-PIC, resampling

PIC-MDK Interface

11

• Levels of parallelism in the Particle-in-Cell method:

• Distributed memory: spatial domain decomposition,
load balancing (rectilinear load balancing), MPI

• Shared memory: OpenMP + custom load balancing

• SIMD: loop vectorization, intrinsic functions

• Typical parameters for PICADOR:

• 1 – 256 nodes

• 16 – 96 CPU cores, 68 – 72 for Xeon Phi

• 256- or 512-bit vector width

• Overall 16 – 4096 cores

Parallelism

12

UNIFORM DISTRIBUTION OF PARTICLES.
PERFORMANCE AND SCALING EFFICIENCY

Scaling on Distributed Memory

Problem: laser wakefield acceleration

Parameters: 512×512×512 grid, 1015 mln. particles, TSC form factor

Scaling on Shared Memory

Simulation: frozen plasma benchmark

Parameters: 40×40×40 grid, 3.2 mln. particles, CIC form factor

Performance on Xeon Phi

16

KNL outperforms CPU by 2.35 x and KNC by 3.47 x

Scaling Efficiency and Performance

17

• The distribution of particles in a problem domain highly
affects load imbalance, performance and scaling
efficiency

• If the distribution of particles is uniform, the code
scales reasonably up to thousands of cores

• If the distribution of particles is non-uniform, the code
scales reasonably due to special load-balancing schemes
(rectilinear partitioning…*).

• But if the distribution of particles is non-uniform and
dynamically varying, we need custom schemes to
overcome load imbalance.

* Surmin I. et al. Dynamic load balancing based on rectilinear partitioning in particle-in-cell
plasma simulation. Int. Conf. on Par. Computing Technologies. Springer, Cham, 2015. P. 107-119.

NON-UNIFORM DISTRIBUTION OF PARTICLES.
LOAD BALANCING ON DISTRIBUTED MEMORY

• Simulation area is axis-aligned box

• Spatial 3D domain decomposition into smaller boxes

• Each MPI process stores a set of particles and grid
values in the corresponding subdomain

• Each process communicates only with neighbours

Spatially Uniform Domain Decomposition

19

MPI Communication Pattern

20

𝑩
Each process

communicates with
6 neighbours

Each process
communicates with

26 neighbours

• Complexity of each time step: 𝜃(𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 + 𝑛𝐶𝑒𝑙𝑙𝑠)

• Particle distribution can be significantly non-uniform
and changing during the simulation

• Approaches to load balancing in Particle-in-Cell:

• Recursive subdivision (octree, orthogonal bisection):
good balancing, complex communication pattern

• Floating boundaries (Quicksilver, OhHelp):
ideal balancing, intensive exchanges of grid values

• Our goal: simple communication pattern and low
overhead at the cost of allowing little imbalance

Load Balancing Overview

21

• Topologically equivalent to spatially uniform:

• Each subdomain is axis-aligned box

• Each subdomain has 26 neighbours

Rectilinear Partitioning

22

Spatially uniform Rectilinear Not rectilinear

• Cell workload

𝑊𝑖,𝑗,𝑘 = 𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑖,𝑗,𝑘 + 1

• Subdomain workload is a sum of workloads of its cells

𝑊 𝑆𝐷 = 𝑊𝑖,𝑗,𝑘
𝑖,𝑗,𝑘 ∈ 𝑆𝐷

= 𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠(𝑆𝐷) + 𝑛𝐶𝑒𝑙𝑙𝑠(𝑆𝐷)

• Optimal partitioning

𝑃∗ = argmin
𝑃 ∈ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔𝑠

max
𝑆𝐷 ∈ 𝑆𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛𝑠(𝑃)

𝑊(𝑆𝐷)

• Imbalance: max SD workload / average SD workload

Load Balancing Using Rectilinear Partitioning

23

• Finding optimal 3D rectilinear partitioning is NP-complete

• But tractable in 1D

• The number of subdomains along each axis is fixed

• Heuristic algorithm [Nicol, 1994]:

• Fix decomposition along 2 axes

• Find optimal 1D decomposition

• Iteratively repeat for another axis

• Stop when trying for all 3 axes does not improve

Load Balancing Using Rectilinear Partitioning

24

• Important to quickly compute imbalance for any trial
decomposition on distributed memory

• Use parallel 3D prefix sums

• Static and dynamic load balancing

• Adjustable parameters for dynamic load balancing:

• Frequency of imbalance estimation

• Imbalance threshold to perform rebalancing

Implementation Overview

25

• Test problem:

• Test plasma heating simulation

• Infrastructure:

• MVS-100K of JSCC RAS

• Intel Xeon E5450, 8 GB RAM, Infiniband DDR

Computational Experiments

26

• Initially small ball of plasma in the center

• Particles drift from the center in random directions

• 42 M particles, 128 × 128 × 128 grid, 256 MPI
processes

• Dynamic balancing: check each 50 steps, threshold 1.2

Test Plasma Heating Problem

27

Initial uniform Final uniform Initial rectilinear

Test Problem: Imbalance

28 Dynamic load balancing overhead ≈ 1% of run time

Test Problem: Scaling Efficiency

29

Ideal – simulation of the same size with ideal balancing

Dynamic vs. Uniform: 2 x advantage
 Dynamic vs. Ideal: 1.5 x disadvantage

NON-UNIFORM DISTRIBUTION OF PARTICLES.
LOAD BALANCING ON SHARED MEMORY

Quantum Electrodynamics Effects

31

• In the case of extremely strong electromagnetic
fields, the QED processes come into play.

• Charged particles accelerated in extreme laser
field emit high-energy photons, which in turn
can decay into a pair of electron and positron.

• These processes may lead to an avalanche like
pair density growth leading to the development
of the QED cascades

QED-PIC Method

32

• Before starting the QED-cascade, estimate the
sub-step value

• Propagate the particle by sub-step to grid step in
time with the Boris pusher

• At each time step, take into account a
probabilistic emission of a photon by a particle
or the generation of an electron-positron pair by
a photon

• In certain simulations of interest, accounting for
QED effects takes up to 95% of the total QED-PIC
run time.

• Due to the development of QED cascades the number of particles
may rapidly increase

• in local regions of a problem domain

• by many orders of magnitude

• Problem #1: There is a need of preserving the use of
a reasonable number of particles (reweighting particles using
particle thinout or particle merging procedures*).

• Problem #2: We need to overcome huge load imbalance in many
state-of-the-art simulations

• highly affects scaling efficiency in substantially non-uniform
and dynamically varying distribution of macroparticles in a
computational area in QED simulations

• requires the development of custom load balancing schemes

Performance and Scalability Limiting Factors

33 * Muraviev A. et al. Strategies for particle resampling in PIC simulations //arXiv preprint
arXiv:2006.08593. – 2020.

• Particles are stored and processed separately for each cell

• During particle processing only local grid data is used

• Preload all grid values needed for field interpolation

• Accumulate currents in a local array

• Dependencies between particles which are close enough

• Particle migration, at most to neighbor cell

• Reduction for accumulated values of current density

• Parallel processing scheme:

• Subdivide cells into several groups so that cells in a group
can be processed independently

• Process groups sequentially

• Parallelize loops over cells inside a group using OpenMP

Implementation Overview

34

• A simplified example of cells split into four walks

• Particles are represented with the grey dots

• Cells inside each walk are processed independently in
parallel

• Walks are performed sequentially with a barrier between
walks

Baseline Parallel Processing Scheme

35

Workload Distribution*

36

• Inside each group of cells we just have a loop with independent
iterations to parallelize

• OpenMP static: standard static OpenMP schedule

• Generally extremely good with chunk = 1

• Inefficient for highly non-uniform particle distributions

• OpenMP dynamic: standard dynamic OpenMP schedule

• Potentially better balancing

• Potentially large overhead

• Sorted dynamic: sort by number of particles in cell, process in
descending order, dynamic OpenMP schedule:

• Definitely better balancing

• Potentially large overhead

Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Workload Distribution*

37

• Manual distribution:

• Workload estimate for a cell: #particles + 1

• Greedily distribute cells between threads

• Dynamic distribution:

• Perform Sorted dynamic scheme and save distribution

• Use the same distribution for next K iterations (e.g. 100)

 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

• 160 × 160 grid, average 100 particles per cell

• Normal distribution of particles

• Mean at center of simulation area

• Diagonal covariance matrix, same variance for 𝑥, 𝑦

• Variance: 𝜎1
2 = 25∆𝑥/8, 𝜎2

2 = 2𝜎1
2, 𝜎3
2 = 3𝜎1

2

• All 3 values result in severely non-uniform distribution

• First-order form factor, direct current deposition

• 1000 time steps, distribution of particles does not change

• 24-core Intel Xeon E7-8890 v4 CPU at Intel Endeavor

• Intel C++ Compiler 17.0

Test Problem

38

Performance Evaluation: 𝝈𝟏
𝟐 = 𝟐𝟓∆𝒙/𝟖, 24 cores

39 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Performance Evaluation: 𝝈𝟐
𝟐 = 𝟐𝝈𝟏

𝟐, 24 cores

40 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Performance Evaluation: 𝝈𝟑
𝟐 = 𝟑𝝈𝟏

𝟐, 24 cores

41 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Scaling Efficiency

42 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

• Interaction of dense electron-positron plasma target
with a cylindrical wave

• 256 × 256 grid, initially average 18 particles per cell

• Second-order form factor, direct current deposition

• Accounting for QED effects: photon generation and
decay into electron-positron pairs, QED cascades

• Rapid increase in the number of particles in small areas
could result in intricate particle distributions

• 4x 24-core Intel Xeon E7-8890 v4 CPUs at Intel Endeavor

• Intel C++ Compiler 17.0

Real Problem…

43 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

• Preparation phase: creating incoming cylindrical wave,
particles are not injected yet

• Stratification phase: laser pulse penetrates target,
compresses plasma and starts to create separated sheets

• Particle distribution is not uniform and changes

• However, number of particles in neighbor cells does
not vary drastically

• Stratified phase: several separated current sheets,
particles actively drift

• Particle distribution is intricate and highly non-uniform

• Could be significant difference between neighbor cells

• More challenging for load balancing

Real Problem

44

Performance: Overall, 96 cores

45 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Scaling Efficiency

46 Larin, A., et al.: Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski R.,
Dongarra J., Deelman E., Karczewski K. (eds) PPAM 2017. LNCS, vol 10777. Springer, Cham (2018).

Five Custom Schemes. Is it enough?

47

• For many PIC simulation scenarios particle distribution
changes rather slowly relative to the cell size

• In such simulations one of the considered schemes
provide excellent load balancing

• For QED PIC some cells can have significantly more
particles than others

• Distribution of particles can vary significantly over time

• In such a case a cell is too coarse of a workload unit

We developed a new load balancing scheme
employing cell subdivision

New Dynamic Load Balancing Scheme

48

• The main idea is to treat subsets of particles in a cell as separate
pieces of work

• This allows balancing the workload so that each thread processes
almost the same number of particles

• The walks play the same role, but processing a cell consists of
several tasks, each handling a subset of particles

• Tasks of the same cell are dependent, but tasks of different cells
are not. Each thread has a queue of tasks in which no more than
one task corresponds to a subdivided cell

• Thus, a relatively small number of cells not exceeding the number
of threads can be subdivided

• Rebalancing is performed every K iterations. If the imbalance is too
high, K decreases

 Meyerov I. et al. Exploiting Parallelism on Shared Memory in the QED PIC Code PICADOR with
Greedy Load Balancing . Int. Conf. on Par. Proc. and Appl. Math. Springer, 2019. P. 335-347.

Example of the New Scheme Applied
to a Single Walk

49

• The numbers represent the amounts of particles in cells

• The blue and red arrows illustrate two threads working in parallel

• One of the cells is subdivided into two tasks

Meyerov I. et al. Exploiting Parallelism on Shared Memory in the QED PIC Code PICADOR with
Greedy Load Balancing . Int. Conf. on Par. Proc. and Appl. Math. Springer, 2019. P. 335-347.

Example of the New Scheme Applied
to a Single Walk

50

• Greedy algorithm (linear-time in terms of # cells)

• The cell with particles is added to the tasks queue of the
thread if the total size of the tasks in the queue does
not violate the ideal balance by more than 𝑀 times

• Otherwise, the cell is divided into two parts to provide
the ideal balance.

• 2D 160 × 160 grid, average 100 particles per cell

• Normal distribution of particles

• Mean at the center of the simulation area

• Diagonal covariance matrix, same variance for 𝑥, 𝑦

• Variance: 𝜎1
2 = 25∆𝑥/8, 𝜎2

2 = 2𝜎1
2, 𝜎3
2 = 3𝜎1

2

• All 3 values result in severely non-uniform distribution

• First-order form factor, direct current deposition

• 1000 time steps, distribution of particles does not change

• 2 × Intel Xeon Gold 6132 (28 cores overall), 192 GB RAM
at Intel Endeavor

Test Problem

51

Scaling Efficiency

52

For the first (most unbalanced) problem, the new scheme
(PartDist) outperforms the best of the others by factor of 4.4

Meyerov I. et al. Exploiting Parallelism on Shared Memory in the QED PIC Code PICADOR with
Greedy Load Balancing . Int. Conf. on Par. Proc. and Appl. Math. Springer, 2019. P. 335-347.

• Highly unbalanced problem of the QED cascade development in
extreme laser fields*

• The maximum intensity of each of counter-propagating pulses
is 𝐼0 = 1025 𝑊/𝑐𝑚2

• The wavelength is 0.8𝜇𝑚

• Half infinite pulses with a 1 wave period front edge.

• An electron-positron plasma slab with width of one wavelength
and density 1𝑐𝑚−3 serves as a seed and is located at the center
of the simulation area.

• Incident laser pulses compress seed plasma. Laser pulses
overlap, standing wave is formed and a QED cascade starts to
develop.

• Plasma is highly localized in the vicinity of the antinode.

QED Simulations

53 * Bashinov, A.V., et al.: Particle dynamics and spatial e−e+ density structures at QED cascading in circularly
polarized standing waves, Phys. Rev. A 95, 042127 (2017)

Electric
field

Magnetic
field

Electron
density

Positron
density

yz
plane

xz
plane

• Intel Endeavor supercomputer with high-end CPUs of the
Cascade Lake generation

• Cluster node: 2 × Intel Xeon Platinum 8260L CPU (48 cores
overall), 192 GB of RAM.

• 1 MPI process per socket, 2 OpenMP threads per core.

• The code was built using the Intel Parallel Studio XE software
package.

• QED Simulations

Computational Infrastructure/Test Problem

55

Problem # Cells Simulation

area

Initial

particles

Thinning

threshold

cores

1D 128 2𝜇m 106 2 x 106 48 (1 node)

2D 64 x 112 2𝜇m x 8𝜇m 5 x 106 5 x 106 96 (2 nodes)

3D 64 x 112 x 112 2𝜇m x 8𝜇m x 8𝜇m 2.5 x 106 2.5 x 106 96 (2 nodes)

• Time imbalance is measured by means of Intel Amplifier

• Particles imbalance is estimated as
• 𝑃𝑤𝑡𝑖 is a number of particles processed

• by the thread 𝑡
• within walk 𝑤
• on 𝑖-th out of total 𝑁 iterations

‘Time Imbalance’ vs. ‘Particles Imbalance’

56
Meyerov I. et al. Int. Conf. on Par. Proc. and Appl. Math. Springer, 2019. P. 335-347.

• When calculating 1300 iterations, the new scheme speeds up the
simulation
• by 10 times in the 1D problem
• by 2.5 times in the 2D problem
• by 2.1 times in the 3D problem

Performance Results (3D)

57

Start of the QED cascade development

Meyerov I. et al.. Int. Conf. on Par. Proc. and Appl. Math. Springer, 2019. P. 335-347.

ONGOING RESEARCH

• The project High-Intensity Collisions and Interactions (hi-Chi) –
an open-source collection of Python-controlled tools for
performing simulations and data analysis in the research area of
strong-field particle and plasma physics.

• Open Source

• Python + C++ (flexibility + HPC)

• Easily extendable

• We plan to port hi-Chi to the oneAPI model

Ongoing Research…

59

https://github.com/hi-chi

• Low-precision and mixed precision computations

• Heterogeneous computing (oneAPI Center of Excellence)

Ongoing Research…

60

https://github.com/hi-chi

• Reconstructing experimental conditions with ML

Ongoing Research

61

• We considered the computational loop of the PIC method and
the problem of efficient utilization of modern CPUs in PIC
simulations

• We discussed parallelization techniques and performance limiting
factors

• We addressed a problem of improving load balancing in QED PIC
simulations

• To overcome the load imbalance, we developed and
implemented a special scheme in the PICADOR code that allows
subdividing cells with a large number of particles

• This approach substantially increased the potential for
parallelization

Summary

• Iosif Meyerov, PhD, associate professor, vice-chair of the
Mathematical Software and Supercomputing
Technologies department, Lobachevsky University
meerov@vmk.unn.ru

• Project page:

http://hpc-
education.unn.ru/en/research/overview/laser-plasma

https://github.com/hi-chi

Contact

63

