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Abstract. When direct methods for solving sparse linear systems of equations are used, an 
important stage of the solution is to reorder matrix rows and columns to reduce the number of 
non-zero elements of the matrix factor. We present MORSy – a new tool for reordering sym-
metric sparse matrices. It is based on multilevel nested dissection algorithm with modifica-
tions for vertex separators. Experimental results prove that MORSy is competitive to METIS 
and Scotch libraries both in ordering quality and performance.  
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1 INTRODUCTION 

Systems of linear equations Ax = b with sparse symmetric positive definite matrix A arise 
in a wide range of research and engineering problems in physics, chemistry, economics, fi-
nance, and other domains. There are direct and iterative methods of solving such systems. Di-
rect methods are based on factorization of the matrix A into two triangular matrices (A = LLT) 
[1], while iterative methods are based on step-by-step approximation to the solution x [2]. 
When direct methods are used, so-called fill-in of the matrix occurs – as a rule, the number of 
non-zero elements of the factor is much greater than the number of non-zero elements of ini-
tial matrix. This effect can lead to significant memory requirements for factor storage and crit-
ical increase in factorization time. For reduction of factor fill-in, ordering of the matrix rows 
and columns is applied. Finding correct ordering that minimizes factor fill-in is an NP-
complete problem of discrete optimization [3]. In practice, there are two commonly used heu-
ristic approaches for performing reordering to reduce factor fill-in: nested dissection and min-
imum degree algorithms. 

The minimum degree algorithm was proposed by Tinney and Walker in 1969 [4]. It mod-
els the Gaussian elimination process and is based on the local factor minimization strategy. At 
each step of the algorithm the vertex with the smallest degree is eliminated and numbered, 
while its neighbors are contracted to the clique. The most time consuming operation of this 
algorithm is vertex degree recalculation after every step. Since 1980s a number of modifica-
tions of the minimum degree algorithm for improving its runtime and quality has been devel-
oped, including Multiple Minimum Degree [5] (Liu, 1985), Approximate Minimum Degree [6] 
(Amestoy, Davis, Duff, 1996), Column Approximate Minimum Degree [7] (Davis, Gilbert at 
el., 2004) and others.  

The nested dissection algorithm for finite element meshes was proposed by George in 1973 
[8] and was generalized for irregular graphs by Lipton, Rose, Tarjian [9], and George, Liu 
[10]. It is based on the global factor minimization strategy. The notion of a separator is cen-
tral to this algorithm. It is a set of graph vertexes, removal of which divides the graph into two 
disconnected parts. The nested dissection algorithm is as follows: to divide the matrix graph 
into two disconnected subgraphs by a small vertex separator, to number separator vertexes 
from highest available indexes, and then to process the produced subgraphs recursively. Find-
ing a small separator that divides the graph into two roughly equal subgraphs determines the 
quality of ordering. Since 1993 modifications of the nested dissection algorithm based on the 
multilevel graph partition procedure are widely used. This approach was proposed by Bui and 
Jonse [11] and improved by Karypis and Kumar [12], Hendrickson and Leland [13], Hen-
drickson and Rothberg [14] and others. When the multilevel method for determining the sepa-
rator is used, finding graph separator consists of three stages: coarsening, partitioning, and 
uncoarsening. During the coarsening stage matching techniques are used to construct a se-
quence of graphs, where the structure of each graph coarsens the structure of the previous one. 
During the partitioning stage the separator of the coarsest graph is determined. It is performed 
by either direct finding vertex separator or finding an edge separator followed by computing a 
vertex separator from the edge separator. During the uncoarsening stage the separator of the 
coarsest graph is projected back to the original graph through the sequence of intermediate 
graphs. At each step of the uncoarsening stage the separator is refined to reduce its size and to 
balance subgraphs. Usually it is performed by the modifications of the local optimization al-
gorithm by Kernighan-Lin [15] or Fiduccia-Mattheyses [16]. The advantage of the multilevel 
scheme is that time-consuming separation algorithms are applied to small graphs, and refine-
ment of projected separators is carried out by an iterative algorithm starting from good initial 
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approximation. This allows to reduce reordering time and improve its quality in comparison 
with the classical nested dissection method. 

Currently, there exist a number of open source implementations of sparse matrix ordering 
that can be used sequentially or in parallel for distributed memory systems. We compare our 
results with widely used METIS [17] and Scotch [18] libraries that are based on the multilevel 
nested dissection algorithm. Most of sparse linear solvers have interfaces for running external 
reordering libraries and their own ordering implementations. For example, the modifications 
of minimum degree and nested dissection orderings are implemented in Intel MKL Pardiso 
[19], SuperLU [20], MUMPS [21], CHOLMOD [22], and others. We present MORSy – a 
new open source fill-in minimization software based on the multilevel nested dissection algo-
rithm with modifications for using vertex separator at all steps of multilevel scheme.  

 
The remainder of the paper is organized as follows. Section 2 defines the fill-in minimiza-

tion problem. Section 3 describes multilevel nested dissection implementation in MORSy. 
Section 4 presents the experimental results of MORSy and compares its performance and or-
derings quality with that of METIS and Scotch libraries. Section 5 gives a summary of exper-
imental results and observes future work. 

2 PROBLEM STATEMENT 

Let A = (aij) be a sparse symmetric n by n matrix. Let us construct a matrix graph G = (V, E) 
with the set of vertexes V and the set of edges E, where each vertex vi is associated with ma-
trix row i (i = 1, 2, ..., n), and each edge (vi, vj) is associated with non-zero element of matrix, 
i.e. (vi, vj) ∊ E if and only if aij ≠ 0 (i, j = 1, 2, ..., n; i ≠ j). The set of vertexes that are adjacent 
to a vertex v is denoted by Adj(v). 

When elimination of vertex v from graph G is performed, edges between vertexes adjacent 
to vertex v are added to the graph so that they become a clique, vertex v is deleted from the set 
of vertexes together with all incident edges: 

V = V \ v; 
E = E \ {(u, v): u ∊ Adj(v)} ∪ {(u1, u2): u1, u2 ∊ Adj(v)} 

The added edges are associated with the elements that became non-zero during Gaussian 
elimination of v-th matrix row. Let π = (π1, π2, ..., πn) be a permutation of the set of vertexes V. 
Fill-in  F(π) generated by the permutation π is a set of edges added during the consequent 
elimination of vertexes π1, π2, ..., πn. Problem of finding the permutation π* that minimizes 
number of edges in produced fill-in is NP-complete [3]: 

π
* = argmin {|F(π)|} 

Let us denote the quality of ordering as the number of nonzero elements of the Cholesky 
factor of the matrix after applying this ordering. 

3 MULTILEVEL NESTED DISSECTION IN MORSY  

Reordering in MORSy is based on the classical multilevel scheme with modification of 
stages for vertex separator (Figure 1).  

 
Program MultilevelNestedDissection (GA(VA, EA), Iperm) 
Input:  GA(VA, EA) – a graph constructed from the sparse symmetric matrix A struc-
ture.  
Output:  Iperm– a new numbering of GA vertexes (A rows). 
 

1 G(V, E) = Compress(GA) 
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2 while G isn' t numbered do 
3    G0(V0, E0) = current subgraph of G 
4    if | V0| is small enough then  
5       number the nodes in G by automatic nested dissection 
6       V = V \ V 0; 
7    else 
8       i = 0; 
9       while Gi is big enough do 
10          Gi+1(Vi+1, Ei+1)  = Coarse (Gi); i++; 
11       end while 
12       m = i; 
13       Pm(Sm, Vm,1, Vm,2) = InitializePartition (Gm) with separator Sm; 
14       for i = m downto 1 do 
15          Pi - 1(Si - 1, Vi - 1,1, Vi - 1,2)  = ProjectPartition (Pi); 
16          Pi - 1(Si - 1, Vi - 1,1, Vi - 1,2)  = RefinePartition(Pi - 1); 
17       end for  
18       Number vertexes from S0; 
19       V = V \ S0; 
20    end if 
21 end while 
22 Iperm = ProjectNumbers(GA); 

Figure 1: Structure of multilevel nested dissection in MORSy. Stages are modified for use of a vertex separator. 

First, compressing of graph structure [14] is performed to reduce reordering time (Figure 1, 
line 1). Then, in the main loop of the algorithm (Figure 1, lines 2-21) a separator is found for 
each subgraph G0 of the initial graph G, which is constructed during the processing of nested 
dissection ordering. If the number of graph vertexes is big enough, its separator is defined us-
ing the multilevel technique (Figure 1, lines 8-17).  

At the coarsening stage (Figure 1, lines 8-11) a sequence of graphs G1, G2, ..., Gm, is 
formed, where each following graph flows out of the previous one by contracting edges and 
merging their incident vertexes. Heavy edge matching or random matching [12] are used for 
this purpose.  

At the partitioning stage (Figure 1, line 13) the vertex separator of the graph is fined by 
building a rooted level structure from pseudoperipheral vertex [23]. 

At the uncoarsening stage (Figure 1, lines 14-17) the Primitive moves method is used for 
partition refinement. This method is a modification of the iterative Kernighan-Lin method 
adapted for vertex separator by Ashcraft and Liu [24] and modified for the multilevel scheme 
by Hendrickson and Rothberg [14]. The method uses the notion of a partition P = (S, V1, V2) 
as a union of free disjoint sets of graph vertexes, were S is separator and V1, V2 are the sets of 
vertexes of disconnected subgraphs produced after separator's deleting. The essence of the 
method is as follows: each vertex s ∊ S from the partition P = (S, V1, V2) is associated with 
“gain” – change of separator size when moving this vertex to one of the parts V1, V2 (let us 
denote it gain(s → V1), gain(s → V2) respectively). Then as per rule from Figure 2 a series of 
separator vertex moves is carried out: 

 
1. M = {v ∊ V: v have not been selected during this sequence of moves} 
2. s1 = argmax {gain(u → V1), u ∊ S ∩ M }; maxV1 = gain(s1 → V1); 
3. s2 = argmax {gain(u → V2), u ∊ S ∩ M }; maxV2 = gain(s2 → V2); 
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4. if  maxV1 > maxV2 then 
5.    Move s1 to V1; M = M / s1; 
6. else  
7.    if  maxV2 > max V1 then 
8.       Move s2 to V2; M = M / s2; 
9.    else // maxV1 = maxV2 
10.       if |V1| < |V2| then 
11.          Move s1 to V1; M = M / s1; 
12.       else  
13.          Move s2 to V2; M = M / s2; 
14.       end if 
15.    end if 
16. end if 

Figure 2: The rule of moving the separator vertexes from the Primitive move algorithm [1].  

If moving of vertice s improves the partition, then the best found partition P* is updated. 
Then the process is repeated for a newly received partition P*. Thus, the algorithm consists of 
two nested loops, the external one corresponds to the loop on various partitions, and the inter-
nal one corresponds to the loop on vertex moves from the current partition.  

The rule of moving of separator vertexes significantly influences the quality of resulting 
orderings. When using rule (Figure 2) it is possible that the imbalance of partition received at 
the previous iteration of the internal loop of the algorithm has to be compensated at the next 
iteration. We changed the rule of vertex moves for most effective balancing tracking so that at 
each iteration of the external loop moves are carried out only into one part of partition (small-
er one at the beginning of the external loop). It also reduces storage requirements as it is not 
necessary to store the gains of moving vertexes to another part of the partition. 

For reduction of run time of the algorithm at the uncoarsening stage, partition refinement 
can be used not for every intermediate graph from the sequence of G1, G2, ..., Gm, but once per 
several iterations. Besides, it has been experimentally established that limiting the number of 
algorithm iterations also reduces its run time with an insignificant loss in quality for the ma-
jority of graphs.  

4 EXPERIMENTAL RESULTS 

4.1 Test environment  

We tested MORSy with the matrices from The University of Florida Sparse Matrix Collec-
tion [25]. Matrix sizes varied from 200 000 to 1 500 000. Table 1 gives the description of the 
set of matrices. 
 

Matrix name N NZ Description 
pwtk 217 918 11 524 432 structural problem 
msdoor 415 863 19 173 163 structural problem 
parabolic_fem 525 825 3 674 625 computational fluid dynamics problem 
tmt_sym 726 713 5 080 961 electromagnetics problem 
boneS10 914 898  40 878 708  3D structural problem 
Emilia_923 923 136  40 373 538  3D structural problem 
audikw_1 943 695  77 651 847  3D problem 
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bone010 986 703  47 851 783 3D problem 
ecology2 999 999 4 995 991 2D structural problem 
thermal2 1 228 045  8 580 313 unstructured FEM 
StocF-1465 1 465 137  21 005 389 computational fluid dynamics problem 
Hook_1498 1 498 023  59 374 451 3D structural problem 
Flan_1565 1 564 794  114 165 372  3D structural problem 
G3_circuit 1 585 478 7 660 826 circuit simulation problem 

Table 1: Description of the test matrices.  
N is the number of matrix rows, NZ is the number of non-zero elements of the matrix. 

All experiments were performed on Intel Xeon E5-2690 CPU (8 cores, 2.9 GHz) with 64 
GB of RAM, running OS Linux. MORSy was compiled with Intel® C++ Composer (from 
Intel Parallel Studio XE 2013); Intel MKL library was used for random number generation.  

The quality of orderings was evaluated with respect to the number of non-zero elements in 
the factor of reordered matrix and time needed for the ordering. 

4.2 Reordering parameters  

Reordering in MORSy allows various parameter setting (Table 2), with prioritization of 
run time minimization and reordering quality maximization. Values of the parameters used in 
experiments are described in Table 2. 

 
Parameter name Range of values 
Coarsening method Random matching, heavy edge 

matching 
Number of coarsening steps 10, 15 
Partition quality evaluation function coefficient 0.20, 0.25, 0.30 
Step of partitioning refinement during Uncoarsening 
process 

1 (for every intermediate graph), 
2 (for every second intermediate 
graph) 

Limit of the number of iterations of the partition re-
finement algorithm at intermediate Uncoarsening 
steps  

No limits, 
Limited – not more than one itera-
tion 

Table 2: MORSy parameters used in experiments. 

4.3 Comparison with other ordering libraries 

Table 3 shows the quality of orderings produced by MORSy, METIS and Scotch. MORSy 
was run with the best parameter configuration with respect to factor fill-in for each matrix. 
We denote this parameter configuration as “quality-priority”. METIS and Scotch were run 
with the default parameters of ordering routines. Scotch was run under the METIS-compatible 
interface. 

In comparison with METIS, in 7 test matrices out of 14 MORSy provided orderings with a 
better quality. For ecology2 matrix the size of the factor is 26% better, for other matrices it is 
1-3% better. For the remaining 7 matrices from the test set MORSy provides orderings with a 
worse quality than METIS. The size of the factor is 9-10% larger for two matrices (boneS10, 
Hook_1498), for other matrices it is 1-3% larger. Thus, in 12 matrices out of 14 MORSy pa-
rameter adjustment allows orderings that are very close to orderings of METIS or better in 
quality.  
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In comparison with default reordering in Scotch, MORSy orderings are better for all test 
matrices. The factor size advantage is 20 to 60% for 5 matrices, 10 to 20% for 5 matrices, and 
less than 10% for 4 matrices (19% on average). 

 

Matrix name  N 
Factor NZ, 
METIS 

Factor NZ, 
MORSY 

Factor NZ, 
Scotch 

pwtk 217 918 47 124 530 46 784 875 56 116 478 
msdoor 415 863 51 483 893 52 085 831 83 374 463 
parabolic_fem 525 825 25 607 853 24 923 337 28 575 855 
tmt_sym 726 713 29 507 621 28 741 732 35 754 899 
boneS10 914 898 267 940 257 295 723 050 339 280 809 
Emilia_923 923 136 1 636 886 316 1 650 689 751 1 715 779 992 
audikw_1 943 695 1 216 865 448 1 200 984 910 1 204 126 326 
bone010 986 703 1 049 932 740 1 035 907 995 1 249 173 615 
ecology2 999 999 35 641 736 30 081 507 43 675 655 
thermal2 1 228 045 50 430 085 51 356 445 58 403 914 
StocF-1465 1 465 137 1 037 743 963 1 072 623 748 1 111 688 726 
Hook_1498 1 498 023 1 484 282 865 1 617 131 106 1 863 646 578 
Flan_1565 1 564 794 1 456 370 148 1 415 670 363 1 546 352 973 
G3_circuit 1 585 478 90 916 423 91 292 425 107 035 058 

Table 3: Comparison of number of factor non-zero elements after performing reordering.  
N is number of matrix rows, NZ is number of non-zero elements after factorization.  

Table 4 presents the comparison of run time of MORSy, METIS and Scotch for obtaining 
the above mentioned orderings. On 5 matrices out of the 14 MORSy works 1.13 to 1.99 times 
faster than METIS, and on 4 matrices it is 1.02 to 1.64 times slower, and on 5 matrices it 
works 2.11 to 2.53 times slower. In comparison with Scotch, MORSy has 1.04 to 2.64 times 
performance advantage on the half of the test matrices and 1.05 to 1.92 times disadvantage on 
other matrices.  

 

Matrix name  N 
Reordering time, 
METIS 

Reordering time, 
MORSY 

Reordering 
time, Scotch 

pwtk 217 918 0,44 0,34 0,46 
msdoor 415 863 0,59 0,60 0,60 
parabolic_fem 525 825 2,75 5,95 3,76 
tmt_sym 726 713 4,04 9,77 5,10 
boneS10 914 898 5,43 8,92 5,95 
Emilia_923 923 136 5,48 3,74 5,64 
audikw_1 943 695 8,27 4,16 10,99 
bone010 986 703 7,08 8,26 7,86 
ecology2 999 999 4,50 9,66 5,99 
thermal2 1 228 045 7,31 18,46 10,44 
StocF-1465 1 465 137 14,96 31,52 26,81 
Hook_1498 1 498 023 9,73 8,62 8,98 
Flan_1565 1 564 794 11,47 10,07 12,37 
G3_circuit 1 585 478 9,19 9,43 13,33 

Table 4: Comparison of the run time of METIS, MORSy, Scotch.  
N is number of matrix rows, NZ is number of non-zero elements after factorization. All times are in seconds.  
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Table 5 shows MORSy quality and run time with the parameter configuration that mini-
mizes reordering time while keeping factor increase less than 10%, in comparison with the 
previous results. Let us denote this parameters configuration “time-priority”. 

 

Matrix name N 
Factor NZ, 
MORSy 

Reordering 
time, MORSy 

Factor 
increase Time decrease 

Pwtk 217 918 48 112 201 0.31 2.8% 9.7% 
Msdoor 415 863 53 500 238 0.5 2.7% 20.0% 
parabolic_fem 525 825 25 450 749 3.45 2.1% 72.5% 
tmt_sym 726 713 29 517 952 6.28 2.7% 55.6% 
boneS10 914 898 315 302 577 5.81 6.6% 53.5% 
Emilia_923 923 136 1 713 036 243 3.45 3.8% 8.4% 
audikw_1 943 695 1 200 984 910 4.16 0.0% 0.0% 
bone010 986 703 1 081 234 524 5.38 4.4% 53.5% 
ecology2 999 999 33 076 977 5.6 10.0% 72.5% 
thermal2 1 228 045 53 088 061 11.8 3.4% 56.4% 
StocF-1465 1 465 137 1 159 553 480 19.57 8.1% 61.1% 
Hook_1498 1 498 023 1 682 587 980 8.11 4.0% 6.3% 
Flan_1565 1 564 794 1 464 331 428 8.08 3.4% 24.6% 
G3_circuit 1 585 478 92 706 938 9.27 1.5% 1.7% 

Table 5: Comparison of MORSy quality and run time with parameters for minimizing run time 
of reordering (time-priority), with parameters for maximizing quality (quality-priority).  

N is the number of matrix rows.  Factor NZ, MORSy is the number of matrix factor non-zero 
elements after "time-priority" reordering. Reordering time, MORSy - " time-priority" reorder-

ing run time.  Factor increase is an increase in the size of the matrix factor in comparison with 
the "quality-priority" configuration. All times are in seconds. 

MORSy run time reduction by 1.06 to 1.72 times allows obtaining the ordering that gives 
at most 10% of excess non-zero factor elements in comparison with the best MORSy results. 
For 3 test matrices MORSy produced orderings with 1-3% better factor fill-in compared with 
METIS, for 8 matrices factor fill-in is 0.5-5% worse, and for 3 matrices it is 12-18% worse. 
However, for a half of the test matrices MORSy works 1.18-1.99 times faster than METIS 
(1.44 times faster on average). With other matrices the difference is by 1.01 - 1.61 times (1.29 
times on average). In comparison with Scotch, orderings made by MORSy with "time-
quality" parameters provide a 0.2-35% better fill-in for 13 matrices (12% on average), for one 
matrix it is 4% worse. Thus, for 12 matrices run time is worse than with Scotch by 2-62% 
(25% on average). For the rest two matrices the difference is 13% and 23%. 

Figure 3 shows the quality of orderings produced by METIS, Scotch and MORSy with 
"quality-priority" and "time-priority" parameter configurations. Figure 4 presents the time for 
obtaining these orderings. It has been shown that there is a parameter configuration that pro-
vides orderings with a better fill-in, than obtained by METIS, during a possibly longer period 
of time, and orderings with a not critically worse fill-in, during shorter periods of time for all 
test matrices. In comparison with Scotch, orderings received using MORSy with various pa-
rameter settings are of a better quality and, for a half of the tested matrices, are less time-
consuming. 



Anna Yu. Pirova, Iosif B. Meyerov 

pwtk

msdoor

parabolic_fem

tmt_sym

boneS10

Emilia_923

audikw_1

bone010

ecology2

thermal2

StocF-1465

Hook_1498

Flan_1565

G3_circuit

Scotch MORSy, time priority MORSy, quality priority METIS

 
Figure 3: Comparison of number of factor non-zero elements received using MORSy, METIS, Scotch. Results of 

MORSy and Scotch are given with relation to the number of non-zero elements of the factor received using 
METIS. 
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Figure 4: The run time of MORSy, METIS, Scotch. Time of MORSy and Scotch is shown in relation to METIS 

time.  
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5 CONCLUSIONS AND FUTURE WORK  

We have presented MORSy – a new reordering tool for reducing sparse matrix fill-in based 
on the multilevel nested dissection algorithm with modifications for vertex separator at all 
steps of the multilevel scheme. Our experiments demonstrate that MORSy is competitive with 
the widely used open source ordering libraries METIS and Scotch. MORSy is cross-platform 
and is publically available [26]. The software is used in the High Performance Computing 
Center of the State University of Nizhny Novgorod [27] for solving sparse systems of linear 
equations in the process of finite element simulation of heart activity.  

We plan to improve MORSy performance with quality-priority settings to achieve METIS 
and Scotch performance on the full set of test matrices. The main line of future research is to 
develop a parallel version of MORSy for shared-memory systems. While there are a number 
of successful implementations for distributed memory systems (ParMetis [28], PT-Scotch 
[29]), developing parallel reordering tools for shared memory systems is still an open question. 
The recent reports presented parallel versions of multilevel graph partitioning algorithms by 
Scotch [30] and METIS [31] which are designed to the relative problem. While multicore and 
manycore systems is widely used today, developing parallel reordering algorithms that will 
combine high quality of orderings with efficient use of computational resources of modern 
shared-memory systems, are of great importance. 
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