Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Факультет вычислительной математики и кибернетики

Высокопроизводительные параллельные вычисления на кластерных системах

Высокопроизводительные вычисления в задачах глобальной оптимизации

К.А. Баркалов В.П. Гергель

Постановка задачи

Найти минимум функции $\varphi(y)$:

$$\varphi\left(y^*\right) = \min\left\{\varphi(y): y \in D, g_j(y) \le 0, 1 \le j \le m\right\},$$

$$D = \left\{y \in R^N: a_i \le y_i \le b_i, 1 \le i \le n\right\}.$$
 Здесь

- $\varphi(y)$ минимизируемая функция (критерий),
- $g_j(y)$, 1≤j≤m функциональные ограничения,
- D область поиска,
- у вектор варьируемых параметров

Допустимая область поиска

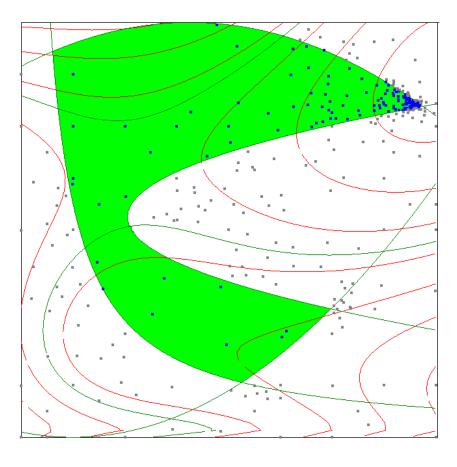
$$Q = \{ y : y \in D, g_j(y) \le 0, 1 \le j \le m \}.$$

Поиск решения на неравномерной сетке

Построение неравномерных адаптивных покрытий области поиска

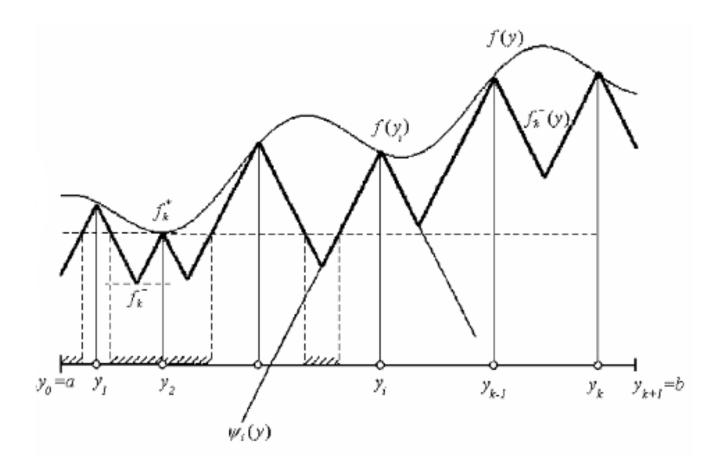
Метод ориентирован на построение существенно более плотной сетки только в окрестности глобально-оптимального решения задачи, чем вне этой окрестности.

$$y^{k+1} = G_k(y^1, ..., y^k; Z^1, ..., Z^k), k \ge t$$



Индексный алгоритм, точность Δ =0.001, K=346 итераций

Алгоритм глобального поиска



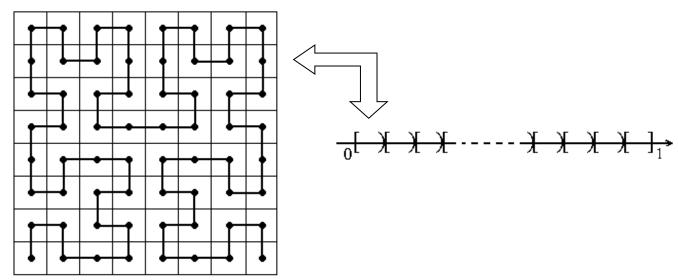
Редукция размерности

Используя отображение (развертку) Пеано $\{y(x): 0 \le x \le 1\} = D$, задачу (1) можно свести к одномерной задаче

$$\varphi(y^*) = \min \{ \varphi(y) : y \in D \} = \min \{ \varphi(y(x)) : x \in [0,1] \}.$$

При этом, если $\varphi(y)$ удовлетворяет условию Липшица, то $\varphi(y(x))$ удовлетворяет условию Гельдера.

$$|\varphi(y(x_1)) - \varphi(y(x_2))| \le 4L\sqrt{N}(|x_1 - x_2|)^{1/N}$$



[2] Стронгин Р.Г. Численные методы в многоэкстремальных задачах. М.: Наука, 1978.

Основы подхода: принцип распараллеливания

Как распараллеливать алгоритмы глобального поиска:

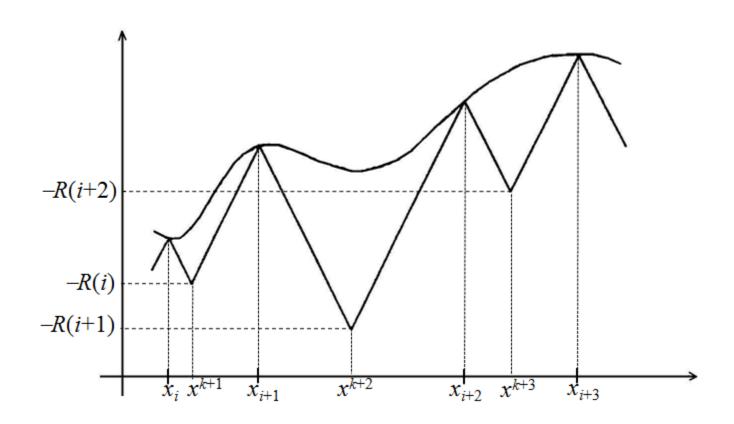
- Разделение области поиска?
- Распараллеливание правил алгоритма?

Основная идея – параллельное вычисление значений оптимизируемой функции в нескольких точках области поиска

- 1. Стронгин Р.Г. Параллельная многоэкстремальная оптимизация с использованием множества разверток // ЖВМ. 1991. Т.31, №8. С. 1173–1185.
- 2. V.A. Grishagin, Ya.D. Sergeyev, R.G. Strongin, Parallel characteristical algorithms for solving problems of global optimization. *Journal of Global Optimization*, vol. 10(2), pp. 185–206. (1997).
- 3. V.P. Gergel, Ya.D. Sergeyev, Sequential and parallel algorithms for global minimizing functions with lipschitzian derivatives. Computers and Mathematics with Applications, 37(4-5), 163–179, 1999.
- 4. Sergeyev Ya.D., Grishagin V.A. Parallel asynchronous global search and nested optimization scheme // J. Comput. Anal. Appl. 2001. V.3, №2. P.123–145.

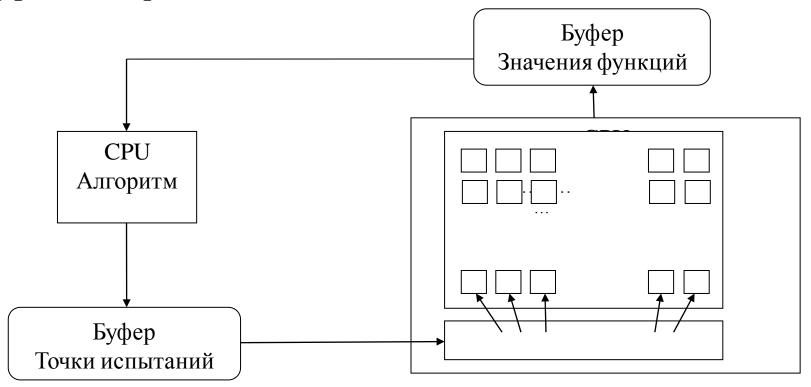
Параллельные вычисления: общая память...

- Решается одна задача
- Поисковая информация хранится в общей памяти
- На каждой итерации параллельно проводится p испытаний в p лучших точках, т.е. в интервалах с наибольшими характеристиками



Параллельные вычисления: использование GPU...

Параллельный характеристический алгоритм может быть эффективно реализован на GPU.



HPC

2014

Параллельные вычисления: использование GPU...

Ускорение по времени (по отношению к параллельному алгоритму на CPU с использованием 32 потоков).

p	N=4		N=5	
	Simple	Hard	Simple	Hard
100 200 300 400 500	2.3 2.35 1.75 2.37 2.38	2.49 2.68 2.93 2.85 2.41	2.9 2.99 3.32 3.58 3.05	4.09 6.72 7.17 7.19 6.3
$800 \\ 1000$	$1.94 \\ 2.45$	$3.38 \\ 3.07$	1.59 1.98	$5.56 \\ 6.59$

Параллельные вычисления: использование GPU...

Ускорение по итерациям (по отношению к параллельному алгоритму на CPU с использованием 32 потоков)

p	N = 4		N = 5	
	Simple	Hard	Simple	Hard
100	3.07	3.55	4.05 7.45 12.57 17.80	4.79
200	5.78	6.90		14.51
300	6.11	11.70		23.12
400	11.43	14.38		31.21
500	$ \begin{array}{c} 13.54 \\ 17.96 \\ 27.42 \end{array} $	14.98	18.83	33.26
800		33.46	14.19	47.68
1000		37.40	21.91	68.21

Подана статья в Journal of Global Optimization.

Многошаговая схема

Решение многомерной задачи оптимизации при помощи *многошаговой схемой редукции размерности* сводится к решению последовательности «вложенных» одномерных задач

$$\min \varphi(y) = \min_{y_1 \in [a_1, b_1]} \dots \min_{y_1 \in [a_N, b_N]} \varphi(y_{1, \dots} y_N)$$

Решение многомерной задачи сводится к решению одномерной задачи вида

$$\varphi^* = \min_{y \in D} \varphi(y) = \min_{y_1 \in [a_1,b_1]} \widetilde{\varphi}_1(y_1)$$
 где
$$\widetilde{\varphi}_i(y_i) = \varphi_i(y_1,...,y_i) = \min_{y_{i+1} \in [a_{i+1},b_{i+1}]} \varphi_{i+1}(y_1,...,y_i,y_{i+1}), 1 \le i < N.$$

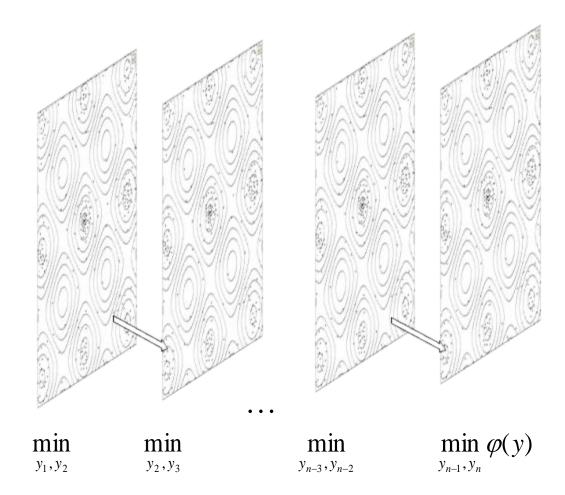
Многошаговая схема

• Вложенные подзадачи можно укрупнить, проведя минимизацию по нескольким переменным сразу.

Например,

$$\min_{y \in D} \varphi(y) = \min_{y_1, y_2} \left[\min_{y_2, y_3} \left[\dots \left[\min_{y_{n-1}, y_n} \varphi(y) \right] \right] \right]$$

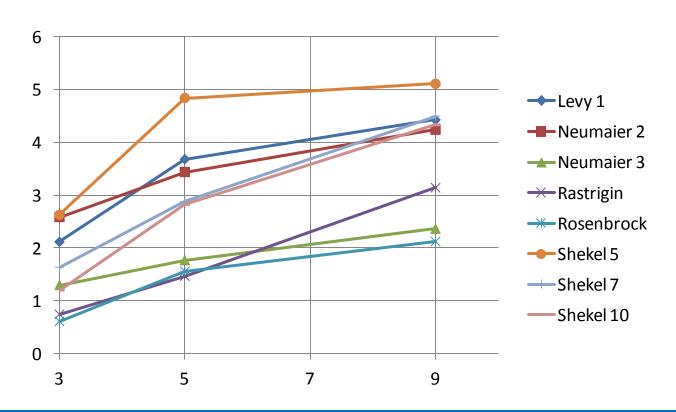
Многошаговая схема



 $\min_{y \in D} \varphi(y) =$

Параллельные вычисления: распределенная память

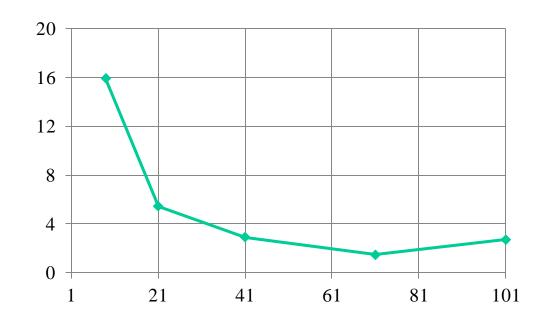
- Решение вложенных задач можно проводить параллельно, используя параллельный характеристический алгоритм
- Решение вложенных задач может проводиться независимо друг от друга, т.е. на распределенной памяти.



Параллельные вычисления: распределенная память

Пример (3):
$$\varphi(y) = 10N - \sum_{i=1}^{N} (y_i^2 - 10\cos(2\pi y_i))$$
, $-1.2 \le y_i \le 1.1$, $1 \le i \le N$.

Procs	T	$\overline{arphi^*}$
9	15 938	0.26
21	5 448	0.18
41	2911	0.19
71	1 453	0.27
101	2 697	0.18



Спасибо за внимание!

barkalov@vmk.unn.ru

