Нижний Новгород, 6 ноября 2014 г.

Абросимов Н. А., д.ф.-м.н., профессор

Компьютерное моделирование нелинейного деформирования и разрушения конструкций при нестационарных многофакторных воздействиях на многопроцессорных вычислительных системах

Компьютерное моделирование нелинейного деформирования и разрушения конструкций при нестационарных многофакторных воздействиях на многопроцессорных

вычислительных системах

Решение задач нестационарного деформирования и разрушения оболочечных элементов конструкций из изотропных и композитных материалов. Решение задач идентификации параметров математических моделей. Решение трехмерных задач гидрогазодинамики с целью определения внешних воздействий на элементы конструкции.

Решение задач динамического деформирования элементов конструкций при сейсмических воздействиях. Решение задач динамики элементов конструкций методом ГИУ.

Подход в рамках макрооднородной теории оболочек

Кинематические модели деформирования:

1) модель типа Тимошенко

$$U_i(\alpha_1,\alpha_2,\alpha_3,t) = u_i(\alpha_1,\alpha_2,t) + \alpha_3\varphi_i(\alpha_1,\alpha_2,t)(i=\overline{1,3}).$$
(1)

2) модель с разложением в ряд

$$U_{1}(\alpha_{1},\alpha_{2},\alpha_{3},t) = u_{1}^{0}(\alpha_{1},\alpha_{2},t) + u_{1}^{1}(\alpha_{1},\alpha_{2},t)\alpha_{3} + \sum_{n=2}^{N} u_{1}^{n}(\alpha_{1},\alpha_{2},t)\varphi_{n}(\alpha_{3}), \ (1\leftrightarrow 2)$$

$$U_{1}(\alpha_{1},\alpha_{2},t) = u_{1}^{0}(\alpha_{1},\alpha_{2},t) + u_{1}^{1}(\alpha_{1},\alpha_{2},t)\alpha_{3} + \sum_{n=2}^{N} u_{1}^{n}(\alpha_{1},\alpha_{2},t)\varphi_{n}(\alpha_{3}), \ (1\leftrightarrow 2)$$

$$(2)$$

$$U_{3}(\alpha_{1},\alpha_{2},\alpha_{3},t) = u_{3}^{1}(\alpha_{1},\alpha_{2},t) + u_{3}^{2}(\alpha_{1},\alpha_{2},t)\alpha_{3} + \sum_{n=3}^{n} u_{3}^{n}(\alpha_{1},\alpha_{2},t)\varphi_{n}'(\alpha_{3}),$$
где $\varphi_{n}(\alpha_{3})$ - заданные функции.

3

Геометрические соотношения нелинейной теории оболочек

$$\begin{aligned} e_{11} &= \frac{1}{z_{1}} \left\{ \varepsilon_{11} + \frac{1}{2} \left(\varepsilon_{11}^{2} + \varepsilon_{12}^{2} + \varepsilon_{13}^{2} \right) + \alpha_{3} \left[\Im_{11} + \varepsilon_{11} \Im_{11} + \varepsilon_{12} \Im_{12} + \varepsilon_{13} \Im_{13} - \frac{k_{1}}{2} \left(\varepsilon_{11}^{2} + \varepsilon_{12}^{2} + \varepsilon_{13}^{2} \right) \right] \right\}, \quad (1 \leftrightarrow 2) \end{aligned}$$

$$\begin{aligned} e_{12} &= \frac{1}{z_{1}} \left\{ \varepsilon_{12} + \varepsilon_{11} \varepsilon_{21} + \frac{1}{2} \varepsilon_{13} \varepsilon_{23} + \alpha_{3} \left[\Im_{12} + \varepsilon_{11} \Im_{21} + \varepsilon_{21} \Im_{11} + \frac{1}{2} \left(\varepsilon_{13} \Im_{23} + \Im_{13} \varepsilon_{23} \right) - k_{2} \varepsilon_{11} \varepsilon_{21} - \frac{k_{2}}{2} \varepsilon_{13} \varepsilon_{23} \right] \right\} + \\ &+ \frac{1}{z_{2}} \left\{ \varepsilon_{21} + \varepsilon_{22} \varepsilon_{12} + \frac{1}{2} \varepsilon_{13} \varepsilon_{23} + \alpha_{3} \left[\Im_{21} + \varepsilon_{22} \Im_{12} + \varepsilon_{12} \Im_{22} + \frac{1}{2} \left(\varepsilon_{13} \Im_{23} + \varepsilon_{23} \Im_{13} \right) - k_{1} \varepsilon_{22} \varepsilon_{12} - \frac{k_{1}}{2} \varepsilon_{13} \varepsilon_{23} \right] \right\}, \end{aligned}$$

$$\begin{aligned} e_{13} &= \varphi_{3} + \frac{1}{2} \left(\varphi_{3}^{2} + \varphi_{1}^{2} + \varphi_{2}^{2} \right), \qquad (1 \leftrightarrow 2). \end{aligned}$$

где

$$\begin{split} \varepsilon_{11} &= \frac{1}{A_1} \frac{\partial u_1}{\partial \alpha_1} + \frac{u_2}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2} + k_1 u_3, \quad (1 \leftrightarrow 2) \\ & \Im_{11} &= \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \alpha_1} + \frac{\varphi_2}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2} + k_1 \varphi_3, \quad (1 \leftrightarrow 2) \\ & \varepsilon_{12} &= \frac{1}{A_1} \frac{\partial u_2}{\partial \alpha_1} - \frac{u_1}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2}, \quad (1 \leftrightarrow 2) \\ & \Im_{12} &= \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \alpha_1} - \frac{\varphi_1}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2}, \quad (1 \leftrightarrow 2) \\ & \varepsilon_{13} &= \frac{1}{A_1} \frac{\partial u_3}{\partial \alpha_1} - k_1 u_1; \quad \Im_{13} &= \frac{1}{A_1} \frac{\partial \varphi_3}{\partial \alpha_1} - k_1 \varphi_1, \quad (1 \leftrightarrow 2). \end{split}$$

*A*₁, *A*₂, *k*₁, *k*₂ — параметры Ламе и главные кривизны внутренней поверхности оболочки.

(4)

Физические соотношения

Ортотропный материал:

$$\sigma_{ii} = \sum_{j=1}^{3} C_{ij}^{o} e_{ij}^{0}, \qquad (i = \overline{1,3}); \qquad \sigma_{ij} = G_{ij}^{o} e_{ij}^{\prime}; \qquad (5)$$

$$e_{ii}^{0} = e_{ii} - \left(1 - \frac{C_{ii}^{\infty}}{C_{ii}^{o}}\right)_{0}^{t} R(t - \tau) e_{ii}(\tau) d\tau; \qquad e_{ij}^{0} = e_{jj} - \left(1 - \frac{C_{ij}^{\infty}}{C_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{jj}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\infty}}{G_{ij}^{o}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\prime}}{G_{ij}^{\prime}}\right)_{0}^{t} R(t - \tau) e_{ij}(\tau) d\tau; \qquad e_{ij}^{\prime} = e_{ij} - \left(1 - \frac{G_{ij}^{\prime}}{G_{ij}^{\prime}}\right)_{0}^{t} R(t - \tau) e_{ij}^{\prime} R(t - \tau) e_{ij}^$$

Упругопластический материал:

$$\sigma_{ij} = \lambda e \delta_{ij} + 2\mu e_{ij}'; e_{ij} = e_{ij}' + e_{ij}''; e = e_{11} + e_{22} + e_{33}; \dot{e}_{ij}'' = \dot{\gamma} S_{ij}; \sum_{i,j=1}^{3} S_{ij} S_{ij} = \frac{2}{3} \sigma *^{2}; S_{ij} = \sigma_{ij} - \sigma \delta_{ij} - \rho_{ij}; \quad (6)$$

$$\sigma = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3; \ \rho_{ij} = 2ge''_{ij}; e''_{ij} = \int_{0}^{1} \dot{e}_{ij} dt$$

где λ, μ - параметры Ламе; δ_{ij} - символ Кронекера, σ^* - предел текучести материала, ρ_{ij} тензор остаточных микронапряжений, g - модуль линейного упрочнения материала, $\dot{\gamma}$ - скалярный параметр.

Уравнения движения оболочечных элементов конструкций

$$\iiint_{V} \sum_{i,j=1}^{3} \sigma_{ij} \,\delta \mathbf{e}_{ij} + \iiint_{V} \sum_{i=1}^{3} \rho \ddot{U}_{i} \,\delta u_{i} \,dV - \iint_{S} P_{i} \,\delta U_{i} \,dS = 0.$$
(7)

Уравнения динамики однородных
композитных оболочек переменной толщины

$$L_1(N) + N_{13}^*k_1A_1A_2 + F_1 = A_1A_2(B_{11}\ddot{u}_1 + B_{12}\ddot{\varphi}_1),$$
 $L_2(N) + N_{23}^*k_2A_1A_2 + F_2 = A_1A_2(B_{11}\ddot{u}_2 + B_{12}\ddot{\varphi}_2),$
 $\frac{\partial(A_2N_{13}^*)}{\partial \alpha_1} + \frac{\partial(A_1N_{23}^*)}{\partial \alpha_2} - A_1A_2(N_{11}^*k_1 + N_{22}^*k_2) + F_3 = A_1A_2(B_{11}\ddot{u}_3 + B_{12}\ddot{\varphi}_3),$
 $L_1(M) + (M_{13}^*k_1 - Q_{13}^*)A_1A_2 + M_1 = A_1A_2(B_{22}\ddot{\varphi}_1 + B_{21}\ddot{u}_1),$
 $L_2(M) + (M_{23}^*k_2 - Q_{23}^*)A_1A_2 + M_2 = A_1A_2(B_{22}\ddot{\varphi}_2 + B_{21}\ddot{u}_2),$
 $\frac{\partial(A_2M_{13}^*)}{\partial \alpha_1} + \frac{\partial(A_1M_{23}^*)}{\partial \alpha_2} - A_1A_2(Q_{33}^* + M_{11}^*k_1 + M_{22}^*k_2) + M_3 =$
 $= A_1A_2(B_{22}\ddot{\varphi}_3 + B_{21}\ddot{u}_3),$
 $L_1(K) = \frac{\partial(A_2K_{11})}{\partial \alpha_1} - K_{22}\frac{\partial A_2}{\partial \alpha_1} + \frac{\partial(A_1K_{21})}{\partial \alpha_2} + K_{12}\frac{\partial A_1}{\partial \alpha_2},$
 (1 \leftrightarrow 2)

 Граничные условия:
 $N_{11}^* = N_{11}^0;$
 $N_{12}^* = M_{12}^0;$
 $N_{13}^* = M_{13}^0,$
 (1 \leftrightarrow 2).

Начальные условия:

 $u_{i}(\alpha_{1},\alpha_{2},0) = u_{i}^{0}(\alpha_{1},\alpha_{2}); \varphi_{i}(\alpha_{1},\alpha_{2},0) = \varphi_{i}^{0}(\alpha_{1},\alpha_{2});$ $\dot{u}_{i}(\alpha_{1},\alpha_{2},0) = \dot{u}_{i}^{0}(\alpha_{1},\alpha_{2}); \dot{\varphi}_{i}(\alpha_{1},\alpha_{2},0) = \dot{\varphi}_{i}^{0}(\alpha_{1},\alpha_{2}),$

6

Подход в рамках кинематически неоднородной модели теории оболочек

Модель многослойной оболочки

$$U_i^K(\alpha_1,\alpha_2,\alpha_3,t) = \widetilde{u}_i^K(\alpha_1,\alpha_2,t) + \alpha_3^K \varphi_i^K(\alpha_1,\alpha_2,t), \quad (i = \overline{1,3}, \ k = \overline{1,N}), \tag{9}$$

где $\widetilde{u}_{i}^{K} = (u_{i}^{K+1} + u_{i}^{K})/2; \quad \varphi_{i}^{K} = (u_{i}^{K+1} - u_{i}^{K})/h_{K}; \ U_{i}^{K+1}, U_{i}^{K}$ - тангенциальные и

нормальные компоненты перемещений на внешней и внутренней поверхностях к-го слоя, h_{K} - толщина слоя.

Геометрические соотношения многослойной оболочки

$$e_{11}^{K} = \varepsilon_{11}^{K} + (\varepsilon_{13}^{K})^{2} / 2 + \alpha_{3} \mathscr{G}_{11}^{K}, \quad (1 \leftrightarrow 2)$$

$$e_{12}^{K} = \varepsilon_{12}^{K} + \varepsilon_{21}^{K} + \varepsilon_{13}^{K} \varepsilon_{23}^{K} + \alpha_{3} (\mathscr{G}_{12}^{K} + \mathscr{G}_{21}^{K}), \quad (10)$$

$$e_{33}^{K} = \varphi_{3}^{K}; \quad e_{13}^{K} = \varphi_{1}^{K} + \varepsilon_{13}^{K}, \quad (1 \leftrightarrow 2).$$

$$\begin{split} & \mathcal{E}_{11}^{\Gamma R e} = \frac{1}{2} \Biggl[\frac{1}{A_1^K} \Biggl(\frac{\partial u_1^{K+1}}{\partial \alpha_1} + \frac{\partial u_1^K}{\partial \alpha_1} \Biggr) + \frac{(u_2^{K+1} + u_2^K)}{A_1^K A_2^K} \frac{\partial A_1^K}{\partial \alpha_2} + k_1^K (u_3^{K+1} + u_3^K) \Biggr], \\ & \mathcal{E}_{11}^K = \frac{1}{h_K} \Biggl[\frac{1}{A_1^K} \Biggl(\frac{\partial u_1^{K+1}}{\partial \alpha_1} - \frac{\partial u_1^K}{\partial \alpha_1} \Biggr) + \frac{(u_2^{K+1} - u_2^K)}{A_1^K A_2^K} \frac{\partial A_1^K}{\partial \alpha_2} + k_1^K (u_3^{K+1} - u_3^K) \Biggr], \\ & \mathcal{E}_{12}^K = \frac{1}{2} \Biggl[\frac{1}{A_1^K} \Biggl(\frac{\partial u_2^{K+1}}{\partial \alpha_1} + \frac{\partial u_2^K}{\partial \alpha_1} \Biggr) - \frac{(u_1^{K+1} + u_1^K)}{A_1^K A_2^K} \frac{\partial A_1^K}{\partial \alpha_2} \Biggr], \quad (1 \leftrightarrow 2) \\ & \mathcal{E}_{12}^K = \frac{1}{h_K} \Biggl[\frac{1}{A_1^K} \Biggl(\frac{\partial u_2^{K+1}}{\partial \alpha_1} - \frac{\partial u_2^K}{\partial \alpha_1} \Biggr) - \frac{(u_1^{K+1} - u_1^K)}{A_1^K A_2^K} \frac{\partial A_1^K}{\partial \alpha_2} \Biggr], \\ & \mathcal{E}_{13}^K = \frac{1}{2} \Biggl[\frac{1}{A_1^K} \Biggl(\frac{\partial u_3^{K+1}}{\partial \alpha_1} + \frac{\partial u_3^K}{\partial \alpha_1} \Biggr) - k_1^K (u_1^{K+1} + u_1^K) \Biggr]. \end{split}$$

8

(11)

Композитные слои конструкции

$$\sigma_{ii} = \sum_{j=1}^{3} \widetilde{C}_{ij} e_{ij}, \quad (i = \overline{1,3}); \quad \sigma_{12} = 2\widetilde{G}_{12} e_{12}, \quad \sigma_{13} = 2\widetilde{G}_{13} e_{13}, \quad \sigma_{23} = 2\widetilde{G}_{23} e_{23}$$
(12)

Характеристики слоя

$$\begin{split} \widetilde{C}_{11} &= C_{11} \cos^4 \varphi + C_{22} \sin^4 \varphi + 2(C_{12} + 2G_{12}) \sin^2 \varphi \cos^2 \varphi, \\ \widetilde{C}_{22} &= C_{11} \sin^4 \varphi + C_{22} \cos^4 \varphi + 2(C_{12} + 2G_{12}) \sin^2 \varphi \cos^2 \varphi, \\ \widetilde{C}_{12} &= C_{12} + \left[C_{11} + C_{22} - 2(C_{12} + 2G_{12}) \right] \sin^2 \varphi \cos^2 \varphi, \\ \widetilde{C}_{13} &= C_{13} \cos^2 \varphi + C_{23} \sin^2 \varphi, \\ \widetilde{C}_{23} &= C_{13} \sin^2 \varphi + C_{23} \cos^2 \varphi, \\ \widetilde{G}_{13} &= G_{13} \cos^2 \varphi + G_{23} \sin^2 \varphi, \\ \widetilde{G}_{23} &= G_{13} \sin^2 \varphi + G_{23} \sin^2 \varphi, \\ \widetilde{G}_{23} &= G_{13} \sin^2 \varphi + G_{23} \sin^2 \varphi. \end{split}$$
(13)

Изотропные слои конструкции

$$\sigma_{ij} = \lambda e \delta_{ij} + 2\mu e_{ij}'; e_{ij} = e_{ij}' + e_{ij}''; e = e_{11} + e_{22} + e_{33}; \dot{e}_{ij}'' = \dot{\gamma} S_{ij}; \sum_{i,j=1}^{3} S_{ij} S_{ij} = \frac{2}{3} \sigma *^{2}; S_{ij} = \sigma_{ij} - \sigma \delta_{ij} - \rho_{ij};$$

$$\sigma = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3; \ \rho_{ij} = 2g e_{ij}''; e_{ij}'' = \int_{0}^{t} \dot{e}_{ij} dt$$
(14)

где λ, μ - параметры Ламе; δ_{ij} - символ Кронекера, σ^* - предел текучести материала, ρ_{ij} тензор остаточных микронапряжений, **g** - модуль линейного упрочнения материала, $\dot{\gamma}$ - скалярный параметр.

Уравнения динамики многослойных оболочек

$$\begin{split} & L_{1}(T^{1}) + (T_{13}^{**}k_{1}^{1} + T_{13}^{1})A_{1}^{1}A_{2}^{1} + F_{1}^{1} = A_{1}^{1}A_{2}^{1}(2I^{1}ii_{1}^{1} + I^{1}ii_{1}^{2}), \\ & L_{1}(T^{k}) + (T_{13}^{**}k_{1}^{k} - T_{13}^{*})A_{1}^{k}A_{2}^{k} = A_{1}^{k}A_{2}^{k} \Big[I^{k}ii_{1}^{k-1} + 2(I^{k} + I^{k-1})ii_{1}^{k} + I^{k}ii_{1}^{k+1} \Big], \\ & (1 \leftrightarrow 2) \quad (k = \overline{2, N}) \\ & L_{1}(T^{N+1}) + (T_{13}^{**N+k}k_{1}^{N+1} - T_{13}^{N+1})A_{1}^{N+1}A_{2}^{N+1} + F_{1}^{N+1} = A_{1}^{N+4}A_{2}^{N+1}(I^{N}ii_{1}^{N} + 2I^{N}ii_{1}^{N+1}), \\ & \frac{\partial(A_{2}^{1}T_{13}^{*})}{\partial\alpha_{1}} + \frac{\partial(A_{1}^{1}T_{23}^{*})}{\partial\alpha_{2}} - A_{1}^{1}A_{2}^{1}(T_{11}^{1}k_{1}^{1} + T_{22}^{1}k_{2}^{1} + T_{33}^{1}) + F_{3}^{1} = \\ & = A_{1}^{1}A_{2}^{1}(2I^{1}ii_{3}^{1} + I^{1}ii_{3}^{2}), \\ & \frac{\partial(A_{2}^{k}T_{13}^{**})}{\partial\alpha_{2}} + \frac{\partial(A_{1}^{k}T_{23}^{**})}{\partial\alpha_{2}} - A_{1}^{k}A_{2}^{k}(T_{11}^{k}k_{1}^{k} + T_{22}^{k}k_{2}^{k} + T_{33}^{k}) = \\ & = A_{1}^{k}A_{2}^{k} \Big[I^{k}ii_{3}^{k-1} + 2(I^{k} + I^{k-1})ii_{3}^{k} + I^{k}ii_{3}^{k+1} \Big], \quad (k = \overline{2, N}) \\ & \frac{\partial(A_{2}^{N+1}T_{13}^{**N+1})}{\partial\alpha_{1}} + \frac{\partial(A_{1}^{N+1}T_{23}^{**N+1})}{\partial\alpha_{2}} - A_{1}^{N+1}A_{2}^{N+1}(T_{11}^{N+1}k_{1}^{N+1} + T_{22}^{N+1}k_{2}^{N+1} + T_{22}^{N+1}k_{2}^{N+1} + \\ & + T_{33}^{N+1}) + F_{3}^{N+1} = A_{1}^{N+1}A_{2}^{N+1}(I^{N}ii_{3}^{N} + 2I^{N}ii_{3}^{N+1}) \end{split}$$

$$\begin{split} T_{11}^{1} = \overline{T}_{11}^{11}; \ T_{11}^{k} = \overline{T}_{11}^{0k-1} + \overline{T}_{11}^{1k}; \quad T_{11}^{N+1} = \overline{T}_{11}^{0N}; \quad T_{12}^{1} = \overline{T}_{12}^{11}; \\ \Gamma pahuuhbie yclosus: \ T_{12}^{k} = \overline{T}_{12}^{0k-1} + \overline{T}_{12}^{1k}; \quad T_{12}^{N+1} = \overline{T}_{12}^{0N}; \quad T_{13}^{1} = \overline{T}_{13}^{11}; \\ T_{13}^{k} = \overline{T}_{13}^{0k-1} + \overline{T}_{13}^{1k}; \quad T_{13}^{N+1} = \overline{T}_{13}^{0N}. \end{split}$$

Начальные условия:

$$: \begin{array}{l} u_i^k(\alpha_1,\alpha_2,0) = u_i^{0k}(\alpha_1,\alpha_2) & (i=\overline{1,3}) \\ \dot{u}_i^k(\alpha_1,\alpha_2,0) = \dot{u}_i^{0k}(\alpha_1,\alpha_2) & (k=\overline{1,N+1}) \end{array}$$

Критерий Хоффмана

$$f\left(\sigma_{ij}, F_{ij}\right) = C_{1}\left(\sigma_{22} - \sigma_{33}\right)^{2} + C_{2}\left(\sigma_{33} - \sigma_{11}\right)^{2} + C_{3}\left(\sigma_{11} - \sigma_{22}\right)^{2} + C_{4}\sigma_{33} + C_{5}\sigma_{22} + C_{6}\sigma_{11} + C_{7}\sigma_{23}^{2} + C_{8}\sigma_{13}^{2} + C_{9}\sigma_{12}^{2} \ge 1$$

$$C_{1} = \frac{1}{2}\left(\frac{1}{F_{33}^{P}F_{33}^{C}} + \frac{1}{F_{22}^{P}F_{22}^{C}} - \frac{1}{F_{11}^{P}F_{11}^{C}}\right), C_{2} = \frac{1}{2}\left(\frac{1}{F_{33}^{P}F_{33}^{C}} + \frac{1}{F_{11}^{P}F_{11}^{C}} - \frac{1}{F_{22}^{P}F_{22}^{C}}\right), \qquad (16)$$

$$C_{3} = \frac{1}{2}\left(\frac{1}{F_{11}^{P}F_{11}^{C}} + \frac{1}{F_{22}^{P}F_{22}^{C}} - \frac{1}{F_{33}^{P}F_{33}^{C}}\right), C_{4} = \frac{1}{F_{33}^{P}} - \frac{1}{F_{33}^{C}}, C_{5} = \frac{1}{F_{22}^{P}} - \frac{1}{F_{22}^{C}}, \\C_{6} = \frac{1}{F_{11}^{P}} - \frac{1}{F_{11}^{C}}, C_{7} = \frac{1}{F_{23}^{P}}, C_{8} = \frac{1}{F_{13}^{P}}, C_{9} = \frac{1}{F_{12}^{P}}, \qquad (16)$$

*σ*_{*ij*} - компоненты тензора напряжений в осях ортотропного слоя, *F*^{*P*}_{*ij*}, *F*^{*C*}_{*ij*} - пределы прочности при растяжении и сжатии.

Модельные диаграммы деформирования однонаправленного материала в составе пакета слоев многослойного композита

Схема редуцирования модулей упругости слоя

Ne	Характер разрушения	Текущее значение поперечных деформаций	E_1	E_2	E3	G_{12}	G_{13}	$G_{\rm 23}$
1	$\sigma_{11}>F_{11}^P$		0	0	0	0	0	0
2	$\left \sigma_{11}\right > F_{11}^{\ C}$	$e_{11}^{}+e_{22}^{}+e_{33}^{}>0$	0	0	0	0	0	0
3		$e_{11}^{}+e_{22}^{}+\dot{e}_{33}^{}<0$	0	E_2^0	E_3^0	0	0	0
4	$f(\sigma_{ij},F_{ij})\!\geq\!1$	$e_{11}^{}+e_{22}^{}+e_{33}^{}>0$	E_1^0	E'_2	E'_3	G'_{12}	G'_{13}	G'_{23}
5		$e_{11} + e_{22} + e_{33} < 0$	E_1^0	E_2^0	E_3^0	G'_{12}	G'_{13}	G'_{23}

где

$$E_{2}' = \left| \frac{e_{22}^{\max}}{F_{22}^{P}} + \frac{(v_{12})^{2}}{E_{11}^{0}} \right|^{-1}; \qquad E_{3}' = \left| \frac{e_{33}^{\max}}{F_{33}^{P}} + \frac{(v_{13})^{2}}{E_{11}^{0}} \right|^{-1}; \qquad G_{ij}' = \left| \frac{e_{ij}^{\max}}{F_{ij}} \right|$$
(17)

*E*⁰_{*i*} – значения модулей упругости в начальном неповрежденном состоянии,

V_{ij} – коэффициенты Пуассона,

E'_{*i*}, *G*'_{*ij*} – модули упругости и сдвига пересчитанные по формуле,

*е*_{*ij*} – текущее значении деформации,

*е*_{*iii} – максимальные значения деформаций за предысторию деформирования.*</sub>

Вариационно-разностный метод решения задач динамического деформирования оболочечных конструкций

$$f \approx d_{0}f = \sum_{k=1}^{n} \beta_{k} f_{k}, \qquad \sum_{k=1}^{n} \beta_{k} = 1, \qquad \beta_{k} = 1/n(k = \overline{1, n}),$$

$$\frac{\partial f}{\partial \alpha_{j}} \approx d_{j}f = (-1)^{j} \frac{\sum_{k=1}^{n} (\alpha_{3-j}^{k+1} - \alpha_{3-j}^{k-1})f_{k}}{\sum_{k=1}^{n} (\alpha_{1}^{k+1} - \alpha_{1}^{k-1})\alpha_{2}^{k}}, (j = 1, 2) \quad \Delta S_{*} = \frac{1}{m} \sum_{j=1}^{m} \Delta S_{j},$$

$$\Delta \Gamma^{*} = (\Delta \Gamma^{*+1/2} + \Gamma^{*-1/2})/2; \qquad \Delta S = \frac{1}{2} \left[\sum_{k=1}^{n} \alpha_{1}^{k} (\alpha_{2}^{k+1} - \alpha_{2}^{k-1}) \right] \langle A_{1} \rangle \langle A_{2} \rangle,$$

$$\Delta \Gamma^{*+1/2} = \frac{1}{2} \sqrt{(A_{1}^{k} + A_{1}^{k+1})^{2} (\alpha_{1}^{k+1} - \alpha_{1}^{k})^{2} + (A_{2}^{k} + A_{2}^{k+1})^{2} (\alpha_{2}^{k+1} - \alpha_{2}^{k})^{2}}$$

$$\frac{\partial^{2} f}{\partial t^{2}} = \left[f(t + \Delta t) - 2f(t) + f(t - \Delta t) \right] / \Delta t^{2}, \quad \Delta t \leq 2 / \omega_{\max}$$
(18)

Рис. 6.

Дискретная формулировка уравнений движения оболочечного элемента конструкций для модели

с разложением в ряд

$$\sum_{m=0}^{N} B_{10}^{m} \tilde{u}_{1}^{m} = d_{1} \left(\frac{N_{11}^{\star}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{N_{21}^{\star}}{\langle A_{2} \rangle} \right) - d_{0} \left(\frac{N_{22}^{\star} d_{1} A_{2}}{\langle A_{1} \rangle \langle A_{2} \rangle} - \frac{N_{12}^{\star} d_{2} A_{1}}{\langle A_{1} \rangle \langle A_{2} \rangle} - \mathcal{Q}_{13}^{\star} \langle k_{1} \rangle \right) +$$

$$+ F_{1} + N_{1}^{0} \Delta \Gamma / \Delta S_{\star}; (\mathbf{1} \leftrightarrow 2)$$

$$\sum_{m=1}^{N} B_{31}^{m} \tilde{u}_{3}^{m} = d_{1} \left(\frac{\mathcal{Q}_{13}^{\star}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{\mathcal{Q}_{23}^{\star}}{\langle A_{2} \rangle} \right) - d_{0} \left(N_{11}^{\star} \langle k_{1} \rangle + N_{22}^{\star} \langle k_{2} \rangle \right) +$$

$$+ F_{3} + N_{3}^{0} \Delta \Gamma / \Delta S_{\star};$$

$$\sum_{m=0}^{N} B_{11}^{m} \tilde{u}_{1}^{m} = d_{1} \left(\frac{M_{11}^{\star}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{M_{21}^{\star}}{\langle A_{2} \rangle} \right) - d_{0} \left(\frac{M_{22}^{\star} d_{1} A_{2}}{\langle A_{1} \rangle \langle A_{2} \rangle} - \frac{M_{12}^{\star} d_{2} A_{1}}{\langle A_{1} \rangle \langle A_{2} \rangle} - M_{13}^{2} \langle k_{1} \rangle + \mathcal{Q}_{31}^{1} \right) +$$

$$+ M_{1} + M_{1}^{0} \Delta \Gamma / \Delta S_{\star}; (\mathbf{1} \leftrightarrow 2)$$

$$(19)$$

13

$$\sum_{m=1}^{N} B_{32}^{m} \tilde{u}_{3}^{m} = d_{1} \left(\frac{M_{13}^{2}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{M_{23}^{2}}{\langle A_{2} \rangle} \right) - d_{0} \left(M_{11}^{*} \langle k_{1} \rangle + M_{22}^{*} \langle k_{2} \rangle + Q_{33}^{*} \right) + \\ + M_{3} + M_{3}^{0} \Delta \Gamma / \Delta S_{*};$$

$$\sum_{m=0}^{N} B_{1n}^{m} \tilde{u}_{1}^{m} = d_{1} \left(\frac{M_{11}^{n}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{M_{21}^{n}}{\langle A_{2} \rangle} \right) - d_{0} \left(\frac{M_{22}^{n} d_{1} A_{2}}{\langle A_{1} \rangle \langle A_{2} \rangle} - \frac{M_{12}^{n} d_{2} A_{1}}{\langle A_{1} \rangle \langle A_{2} \rangle} - M_{13}^{n} \langle k_{1} \rangle + M_{31}^{n} \right) + \\ + F_{1}^{n} + S_{1}^{n} \Delta \Gamma / \Delta S_{*}; (\mathbf{1} \leftrightarrow 2) (n = \overline{2, N})$$

$$\sum_{m=1}^{N} B_{3n}^{m} \tilde{u}_{3}^{m} = d_{1} \left(\frac{M_{13}^{n}}{\langle A_{1} \rangle} \right) + d_{2} \left(\frac{M_{23}^{n}}{\langle A_{2} \rangle} \right) - d_{0} \left(M_{11}^{'n} \langle k_{1} \rangle + M_{22}^{'n} \langle k_{2} \rangle + M_{33}^{n} \right) + \\ + F_{3}^{n} + S_{3}^{n} \Delta \Gamma / \Delta S_{*} (n = \overline{3, N}).$$
Coothollehus явной схемы «крест» интегрирования по времени

$$(\dot{u}_{1}^{m})^{\kappa+\frac{1}{2}} = (\dot{u}_{1}^{m})^{\kappa-\frac{1}{2}} + F_{u_{1}^{m}} \cdot \Delta t, \quad (m = \overline{0, N}), \quad (1 \leftrightarrow 2)$$

$$(u_{1}^{m})^{\kappa+1} = (u_{1}^{m})^{\kappa} + (\dot{u}_{1}^{m})^{\kappa+\frac{1}{2}} \cdot \Delta t, \quad (\kappa = \overline{0, \infty});$$

$$(\dot{u}_{3}^{m})^{\kappa+\frac{1}{2}} = (\dot{u}_{3}^{m})^{\kappa-\frac{1}{2}} + F_{u_{3}^{m}} \cdot \Delta t, \quad (m = \overline{1, N})$$

$$(u_{3}^{m})^{\kappa+1} = (u_{3}^{m})^{\kappa} + (u_{3}^{m})^{\kappa+\frac{1}{2}} \cdot \Delta t,$$
Ypabheening JBukeening Y3JOB ha Juhunga crisikobsku JJeementrob Kohcrpykuuu
$$\sum_{l=1}^{M} (Aq^{T}) = q_{*,}^{T} \qquad q^{T} = (U_{1}, U_{2}, U_{3}, \varphi_{1}, \varphi_{2}, \varphi_{3})^{T}; q_{*}^{T} = (U_{1}^{*}, U_{2}^{*}, U_{3}^{*}, \varphi_{1}^{*}, \varphi_{2}^{*}, \varphi_{3}^{*})$$
Ycrpahenue heycroйчивости по типу "песочных часов"
$$F_{im} = \alpha \overline{F_{im}} + (1 - \alpha) \overline{F_{im}}$$
(23)

 $F_{U_i^m} = \alpha \overline{F}_{U_i^m} + (1 - \alpha) \widehat{F}_{U_i^m}$ где \overline{F} , \widehat{F} - обобщенные силы на четырехугольных и треугольных ячейках соответственно, $0,9 \le \alpha \le 1$.

Методика идентификации механических характеристик и параметров моделей определяющих соотношений

Набор параметров:

$$\overline{E} = \left(e_1, \dots, e_r\right)^T \tag{24}$$

Функционал:

$$F(\overline{E}) = \sum_{m=1}^{M} \int_{S} \left[\sum_{i=1,3} \left(a_i \left(u_i^m - u_i^{*m} \right)^2 + b_i \left(t_i^m - t_i^{*m} \right)^2 \right) + \sum_{i=1,2} \left(c_i \left(e_{ii}^m - e_{ii}^{*m} \right)^2 + d_i \left(\tau_i^m - \tau_i^{*m} \right)^2 \right) \right] dS, \quad (25)$$

Функция нескольких переменных:

$$C(\overline{E}) = \sum_{k=1}^{K} \left\{ \left[\sum_{m=1}^{M} \left[\sum_{i=1,3}^{M} \left(a_i \left(u_i^m - u_i^{*m} \right)^2 + b_i \left(t_i^m - t_i^{*m} \right)^2 \right) + \sum_{i=1,2}^{M} \left(c_i \left(e_{ii}^m - e_{ii}^{*m} \right)^2 + d_i \left(\tau_i^m - \tau_i^{*m} \right)^2 \right) \right] \right\}_k$$
(26)

K-число точек, в которых определяются экспериментальные значения перемещений и деформаций M-число максимальных и минимальных значений расчетных деформаций (и/или перемещений) $a_i, b_i, c_i, d_i -$ весовые коэффициенты

 u_i^m, e_{ii}^m – максимальные и минимальные значения расчетных перемещений и деформаций

 t_i^m, τ_i^m – соответствующие моменты времени в которые достигаются u_i^m, e_{ii}^m

 u_i^{*m}, e_{ii}^{*m} максимальные и минимальные значения экспериментальных перемещений и деформаций t_i^{*m}, τ_i^{*m} соответствующие моменты времени в которые достигаются u_i^{*m}, e_{ii}^{*m}

Задача нелинейного математического программирования

Найти значения компонент вектора управляемых параметров:

$$\overline{E} = \left(E_{11}, \ E_{22}, \ E_{33}, \ G_{12}, \ G_{13}, \ G_{23}, \ \nu_{12}, \ \nu_{13}, \ \nu_{23} \right)^{T};$$
(27)

соответствующее минимальному значению целевой функции:

$$C(E^*) = \min C(\overline{E}), \qquad (28)$$

$$C(\overline{E}) = \sum_{k=1}^{K} \left\{ \left[\sum_{m=1}^{M} \left[\sum_{i=1,3}^{M} \left(a_i \left(u_i^m - u_i^{*m} \right)^2 + b_i \left(t_i^m - t_i^{*m} \right)^2 \right) + \sum_{i=1,2}^{M} \left(c_i \left(e_{ii}^m - e_{ii}^{*m} \right)^2 + d_i \left(\tau_i^m - \tau_i^{*m} \right)^2 \right) \right] \right\}_k; \quad (29)$$

в области допустимых значений:

$$A = \left\{ \overline{E} : C\left(\overline{E}\right) \le 1, \overline{E} \in B \right\}, \tag{30}$$

принадлежащей области поиска:

$$B = \left\{ \overline{E} : e_j^- \le e_j \le e_j^+, j = \overline{1, r} \right\}.$$
(31)

Идентифицируемые параметры материала выражаются через безразмерные величины:

$$e_{j} = \frac{x_{j} - e_{j}^{-}}{e_{j}^{+} - e_{j}^{-}};$$
(32)

обратные зависимости имеют вид:

$$x_{j} = e_{j}^{-} + e_{j} \cdot \left(e_{j}^{+} - e_{j}^{-}\right), \tag{33}$$

e^{*j*}_{*j*}, *e*^{*j*}_{*j*} – верхние и нижние ограничения на параметры идентификации, которые выбираются исходя из условия 16 устойчивости материала.

Методы глобальной оптимизации целевой функции

ПЕРВЫЙ ПОДХОД

Глобальный анализ чувствительности

1. Выявление параметров оказывающих существенное

влияние на целевую функцию

2. Определение начального приближения

второй подход

Адаптивный случайный поиск

Основной (глобальный) метод оптимизации,

на основе генетического алгоритма

Глобальные показатели чувствительности

$$S_{i_{1}\dots i_{s}} = \frac{D_{i_{1}\dots i_{s}}}{D}; \qquad D_{i_{1}\dots i_{s}} = \int_{0}^{1} C_{i_{1},\dots,i_{s}}^{2} de_{i_{1}}\dots de_{i_{s}}; \qquad D = \int_{0}^{1} C^{2}(\overline{E}) d\overline{E} - C_{0}^{2}; \qquad C_{0} = \int_{0}^{1} C(\overline{E}) d\overline{E}.$$

$$\overline{E} = \left(\underbrace{e_{1},\dots,e_{m}}_{Y},\underbrace{e_{m+1},\dots,e_{r}}_{Z}}_{Y}\right) = (Y,Z) \qquad (34)$$

$$\eta_{k}, \eta_{k}' \in M, \, \xi_{k}, \xi_{k}' \in (R - M): \quad C(\eta_{k}, \xi_{k}), \, C(\eta_{k}, \xi_{k}'), \, C(\eta_{k}', \xi_{k}) \\ \varphi_{k} = C(\eta_{k}, \xi_{k}), \, \varphi^{2}_{k}, \, \psi_{k} = \varphi_{k}C(\eta_{k}, \xi_{k}'), \, \chi_{k} = \frac{1}{2}[\varphi_{k} - C(\eta_{k}', \xi_{k})]^{2}.$$

Метод Монте-Карло:

$$\frac{1}{N}\sum_{k=1}^{N}\varphi_{k} \to C_{0}, \quad \frac{1}{N}\sum_{k=1}^{N}\varphi_{k}^{2} - C_{0}^{2} \to D, \quad \frac{1}{N}\sum_{k=1}^{N}\psi_{k} - C_{0}^{2} \to D_{y}, \quad \frac{1}{N}\sum_{k=1}^{N}\chi_{k} \to D_{y}^{tot}.$$

 $S_y = S_y^{tot} = 1$ означает, что $C(\overline{E})$ зависит только от Y; $S_y = S_y^{tot} = 0$ означает, что $C(\overline{E})$ зависит только от Z.

$$2^r N$$
, $(N \to \infty)$ \longrightarrow MPI(Message Passing Interface)

r – кол – во переменных,

N-число независимых испытаний,

Глобальные показатели чувствительности

г – кол – во переменных,

q – кол – во процессоров,

N-число независимых испытаний,

 T_1 – время счета на одном процессоре,

Т_а-время счета на *q* процессорах.

<u>MPI</u>(Message Passing Interface)

Ускорение параллельного алгоритма:

Эффективность параллельного алгоритма:

Результаты анализа эффективности геометрического распараллеливания

20

Идентификация вязкоупругих характеристик цилиндрической оболочки по результатам экспериментальных испытаний

Геометрические параметры оболочки: $h = 0,016 \, M$; $R = 0,1 \, M$; $L = 0,4 \, M$.

Рис. 14

Изотропная модель

 $E = 28,5\Gamma\Pi a;$ $\nu = 0,194;$ $E_{\infty} = 25,94\Gamma\Pi a;$ $\beta = 302014 c^{-1}.$

Ортотропная модель

$E_1 = 26,7 \Pi a;$	$E_1^{\infty} = 23,0 \ \Gamma \Pi a;$
$E_2=28,8\Pi\Pi a;$	$E_2^{\infty} = 25,9 \ \Gamma \Pi a;$
$E_3 = 9,9 \Gamma \Pi a;$	$E_3^{\infty} = 8,3 \Gamma \Pi a;$
$G_{13} = 7,1 \Pi a;$	$G_{13}^{\infty}=5,9\Gamma\Pi a;$
$v_{12} = 0,14;$	$v_{13} = 0,45;$
$v_{23} = 0,43;$	$\beta = 244160 c^{-1}$

² Федоренко А.Г., Цыпкин В.И., Иванов А.Г. и др. Особенности динамического деформирования и разрушения цилиндрических стеклопла стиковых оболочек при внутреннем импульсном нагружении // Механика композитных материалов. – 1983. – № 1. С. 90-94.

Идентификация вязкоупругих характеристик полусферической оболочки по результатам экспериментальных испытаний

Геометрические параметры оболочки: $h = 0,006 \, M$; $R = 0,049 \, M$.

Рис. 16

Изотропная модель $E = 6,1 \Gamma \Pi a;$ v = 0,33;

 $E_{\infty} = 5,49 \ \Gamma \Pi a;$ $\beta = 20000 \ c^{-1}.$

22

¹ Володина Л.В., Гердюков Н.Н., Зотов Е.В., Чеверикин А.М. и др. Реакция полусферических оболочек из ВВ на действие импульсной нагрузки (экспериментально-расчетное исследование)// Тр. Междунар. конф. «V Харитоновские тематические научные чтения». – Саров, 2003. – С. 316-322.

Идентификация параметров моделей упругопластического и вязкоупругого деформирования изотропных и композитных материалов по результатам расчетно-экспериментального анализа импульсного нагружения круглых пластин

Рис. 20. Осцилограммы нормальных перемещений на срединной поверхности вязкоупругой пластины:

$$\begin{split} E_{1} &= 57 \ \Gamma \Pi a; \\ E_{2} &= 14 \ \Gamma \Pi a; \\ E_{3} &= 14 \ \Gamma \Pi a; \\ G_{13} &= 5,7 \ \Gamma \Pi a; \\ V_{12} &= 0,277; \\ V_{23} &= 0,4; \\ \rho &= 1990 \ \kappa \epsilon / M^{3}; \end{split} \qquad \begin{split} E_{1}^{\infty} &= 45,6 \ \Gamma \Pi a; \\ E_{2}^{\infty} &= 11,2 \ \Gamma \Pi a; \\ E_{3}^{\infty} &= 11,2 \ \Gamma \Pi a; \\ G_{13}^{\infty} &= 4,6 \ \Gamma \Pi a; \\ V_{13} &= 0,277; \\ \rho &= 50000 \ c^{-1}. \end{split}$$

Рис. 21. а) – нормальное перемещение в центре платины;

Рис. 21. б) - радиальная деформация лицевой поверхности пластины при $\alpha_1 = 5,4$ см.

Точки – результаты эксперимента,

сплошная линия – результаты численного расчета с идентифицированными параметрами определяющих соотношений дифференциальной теории пластичности с линейным упрочнением

Развитие во времени зон разрушения

- (а) кольцевое армирование,
- (б) спиральное армирование,
- (в) комбинированное армирование.

- зоны разрушения связующего
- зоны разрушения волокон

Деформированные конфигурации оболочек

Рис. 22

(а) - кольцевое армирование, (б) - спиральное армирование, (в) - комбинированное армирование.
 Здесь фоном показана интенсивность окружных деформаций.

Решение трехмерных задач гидро-газодинамики с целью определения внешних воздействий на элементы конструкции

ОПРЕДЕЛЯЮЩАЯ СИСТЕМА УРАВНЕНИЙ: Уравнения Эйлера (гидро-газодинамика) и Эйлера-Коши (упругопластическая сжимаемая среда)

МЕТОД ЧИСЛЕННОГО РЕШЕНИЯ:

модифицированная схема Годунова,

единая для гидро-газодинамики и упругопластической среды.

Это задачи, включающие инициирование и распространение детонации с последующим расширением продуктов детонации в газо-жидкостные и упругопластические среды, ударноволновое и импульсное нагружение упругопластических конструкций.

ОСНОВНЫЕ ДОСТОИНСТВА КОМПЛЕКСА:

- отсутствие 3D сеточных генераторов;

-задание расчетных областей сводится к заданию САD средствами поверхностей объектов.

Используема ОС - Linux Red Hat; Язык программирования - Intel Fortran; Распараллеливание - OPENMP; Ускорение на 1 узле L.C. – 12.

Цилиндр, детонация твердого ВВ (лучевая модель), 10.000.000 ячеек

Рис. 23

user: abouziar Fri May 17 12:45:40 2013

Давление (разрез Ү, 0,0,0)

Рис. 24

Давление (на поверхности конструкции)

Анализ сейсмических вибраций заглубленных сооружений в программном

комплексе «Динамика-3»

Программный комплекс «Динамика-3»

Описанные методы решения, алгоритмы моделирования контактного взаимодействия, учета поля сил тяжести и не отражающих волны граничных условий реализованы в сертифицированном программном комплексе «Динамика-3»

(сертификат соответствия №РОСС RU.ME20.HOO338 Госстандарта России, Регистрационный паспорт аттестации ПС №325 от 18.04.2013, выданный Научнотехническим центром по ядерной и радиационной безопасности)

Адаптация численной методики для многопроцессорных кластерных систем

Метод пространственной декомпозиции расчетной области

Численное моделирование взаимодействия сооружения и грунта при сейсмическом воздействии. Постановка задачи.

Численное моделирование взаимодействия сооружения и грунта при сейсмическом воздействии. Результаты.

Математические модель пороупругой среды

Пороупругая модель Био:

$$\sigma_{ij,j} + F_i = \rho \ddot{u}_i + \phi \rho_f \ddot{v}_i$$
, $\alpha \dot{\varepsilon}_{kk} + \frac{\phi^2}{R} \dot{p} + q_{l,l} = 0$, $i = \overline{1,3}$ – уравнения баланса
 $\sigma_{ij} = 2G\varepsilon_{ij} + \left(K - \frac{2}{3}G\right)\varepsilon_{kk}\delta_{ij} - \alpha \delta_{ij}p = \sigma_{ij}^{eff} - \alpha \delta_{ij}p$, $i, j = \overline{1,3}$ – определяющие соотношения
 $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$, $i, j = \overline{1,3}$ – геометрические соотношения
 $\phi \ddot{v}_i = q_i = -\kappa \left(p_{,i} + \rho_f \ddot{u}_i + \frac{\rho_a + \phi \rho_f}{\phi} \ddot{v}_i\right)$, $i = \overline{1,3}$ – обобщённый закон Дарси

<u>Параметры</u>: *К*, *G* – упругие модули, *p* – поровое давление, *q* – поровый поток, ϕ – пористость, *к* – проницаемость, $\alpha = 1 - \frac{K}{K_s}$ – коэффициент эффективных напряжений, $R = \frac{\phi^2 K_f K_s^2}{K_f (K_s - K) + \phi K_s (K_s - K_f)}$, K_s , K_f – объёмные модули упругого скелета и наполнителя, ρ , ρ_a , ρ_f – плотности тела, присоединённой массы и наполнителя, $\rho_a = C\phi\rho_f$, C = 0.66.

Гранично-элементная дискретизация

36

 ξ₁

Оценка эффективности распараллеливания

Ускорение
$$S_p = \frac{T_1}{T_p}$$

T₁ - время выполнения программы с использованием наибыстрейшей последовательной реализации алгоритма

T_p - время выполнения программы на *р* вычислительных узлах.

		Сетка				
		a	б	В		
Апгоритм	Последовательный (T ₁)	19	35	182		
лыоритм	Параллельный (T_p)	4	7	38		
Ускорение S _p		4.75	5.0	4.79		

ГЭ-сетка «а» - 224 элемента ГЭ-сетка «б» - 504 элемента ГЭ-сетка «в» - 896 элементов Результаты исследований докладывались на XV Международной конференции «Супервычисления и математическое моделирование», г. Саров, Октябрь 13-17, 2014 г.

Директор НИИМ Нижегородского университета Игумнов Л.А. был членом программного комитета конференции.

Спасибо за внимание!