Рассмотрим возможные способы организации параллельных вычислений для сеточных методов на многопроцессорных вычислительных системах с общей памятью. При изложении материала будем предполагать, что имеющиеся в составе системы процессоры обладают равной производительностью, являются равноправными при доступе к общей памяти и время доступа к памяти является одинаковым (при одновременном доступе нескольких процессоров к одному и тому же элементу памяти очередность и синхронизация доступа обеспечивается на аппаратном уровне). Многопроцессорные системы подобного типа обычно именуются симметричными мультипроцессорами (symmetric multiprocessors, SMP).
Обычный подход при организации вычислений для подобных систем – создание новых параллельных методов на основе обычных последовательных программ, в которых или автоматически компилятором, или непосредственно программистом выделяются участки не зависимых друг от друга вычислений. Возможности автоматического анализа программ для порождения параллельных вычислений достаточно ограничены, и второй подход является преобладающим. При этом для разработки параллельных программ могут применяться как новые алгоритмические языки, ориентированные на параллельное программирование, так и уже имеющиеся языки программирования, расширенные некоторым набором операторов для параллельных вычислений.
Оба указанных подхода приводят к необходимости значительной переработки существующего программного обеспечения, и это в значительной степени затрудняет широкое распространение параллельных вычислений. Как результат, в последнее время активно развивается еще один подход к разработке параллельных программ, когда указания программиста по организации параллельных вычислений добавляются в программу при помощи тех или иных внеязыковых средств языка программирования – например, в виде директив или комментариев, которые обрабатываются специальным препроцессором до начала компиляции программы. При этом исходный операторный текст программы остается неизменным, и по нему в случае отсутствия препроцессора компилятор построит исходный последовательный программный код. Препроцессор же, будучи примененным, заменяет директивы параллелизма на некоторый дополнительный программный код (как правило, в виде обращений к процедурам какой-либо параллельной библиотеки).
Рассмотренный выше подход является основой технологии OpenMP (см., например, Chandra R (2000)), наиболее широко применяемой в настоящее время для организации параллельных вычислений на многопроцессорных системах с общей памятью. В рамках данной технологии директивы параллелизма используются для выделения в программе параллельных областей (parallel regions), в которых последовательный исполняемый код может быть разделен на несколько раздельных командных потоков (threads). Далее эти потоки могут исполняться на разных процессорах вычислительной системы. В результате такого подхода программа представляется в виде набора последовательных (однопотоковых) и параллельных (многопотоковых) участков программного кода. Подобный принцип организации параллелизма получил наименование "вилочного" (fork-join) или пульсирующего параллелизма. Более полная информация по технологии OpenMP может быть получена разделе 5 данного учебного материала, а также в литературе (см., например, Roosta S (2000)) или в информационных ресурсах сети Интернет; в данном разделе возможности OpenMP будут излагаться в объеме, необходимом для демонстрации возможных способов разработки параллельных программ для рассматриваемого учебного примера решения задачи Дирихле.
Базовый вариант параллельного алгоритма для метода сеток может быть получен, если разрешить произвольный порядок пересчета значений ui, j. Программа для данного способа вычислений может быть представлена с использованием технологии OpenMP в следующем виде:
omp_lock_t dmax_lock; omp_init_lock (&dmax_lock); do { dmax = 0; // максимальное изменение значений u #pragma omp parallel for shared(u,n,dmax) \ private(i,j,temp,d) for ( i=1; ieps );
Аналогичную реализацию можно получить с применением и других технологий.
Представленный алгоритм базовый, в реализации рассматриваются модификации метода.