
PMORSy: Parallel Sparse Matrix Ordering Software for Fill-in

Minimization
1

Anna Pirova
2
, Iosif Meyerov, Evgeniy Kozinov, Sergey Lebedev

Lobachevsky State University of Nizhni Novgorod, Institute of Information Technology,

Mathematics and Mechanics, Nizhni Novgorod, Russia

Abstract.
In this paper we present PMORSy – a new parallel software package for

symmetric sparse matrix ordering on shared memory systems. The NP-complete

fill-in minimization problem is solved by means of multilevel nested dissection

algorithm with modifications for vertex separators. Parallel processing is done in a

task-based fashion with the granularity tuning. We employ threading techniques

on shared memory using OpenMP 3.0 technology as opposed to the MPI-based

approach widely used for parallel sparse matrix ordering. Experimental results on

symmetric matrices from the University of Florida Sparse Matrix Collection and

matrices from finite-element analysis of three-dimensional strength problems

show that our implementation is competitive to the ParMETIS and PT-Scotch

libraries both in ordering quality and performance. The PMORSy library is

publicly available from the UNN HPC Center web-site.

Keywords. Fill-in minimization, Multilevel nested dissection, Sparse matrix

ordering, Cholesky factorization, Parallel computing, Task-based parallel

processing

1. Introduction

Sparse systems of linear equations arise from numerical simulations in various scientific and

engineering applications. The order of such systems often attains 10
6
– 10

8
, which makes their

solution computationally intensive. Direct methods based on matrix factorization and

backward solvers for triangular systems are extensively used due to their accuracy and

robustness [25]. Nevertheless, the number of non-zero elements during the factorization step

can dramatically increase over the initial matrix. This so-called fill-in significantly enlarges

memory consumption and highly influences the run time of the most time consuming

factorization step. To diminish this effect, symmetric reordering of the initial matrix rows and

columns is performed.

Unfortunately, the problem of finding the ordering that minimizes the factor fill-in is NP-

complete [37]. As for many discrete optimization problems [[3, 8, 29], heuristic methods are

commonly applied. For the factor fill-in minimization problem two main approaches are

based on the minimum degree and nested dissection algorithms. The minimum degree

algorithm was proposed by Tinney and Walker in 1969 [36]. It models the Gaussian

elimination process and is based on the local factor minimization strategy. Since 1980s a

number of modifications of the minimum degree algorithm for improving its run time and

1 This work was presented at the 5th International Conference on Network Analysis, held in Nizhni Novgorod, Russia,

18–20 May, 2015.
2 Corresponding author. Email: pirova@itmm.unn.ru

quality have been developed, including Multiple Minimum Degree [27], Approximate

Minimum Degree [1], Column Approximate Minimum Degree [7] and others. The nested

dissection algorithm for finite element meshes was proposed by George in 1973 [12] and

generalized for irregular graphs by Lipton, Rose, Tarjian [26], and George, Liu [11]. It is

based on the global factor minimization strategy and divide-and-conquer principle. Since

1993 there have been lots of modifications of the nested dissection algorithm employing the

multilevel graph partitioning procedure. This approach was proposed by Bui and Jonse [4]

and improved by Hendrickson and Leland [14], Hendrickson and Rothberg [15], Karypis and

Kumar [21], and others.

Both minimum degree and nested dissection methods are widely used in practice. The main

peculiarity of the minimum degree algorithm is its sequential nature, while divide-and-

conquer nested dissection algorithm has a good potential for parallel processing and

additionally benefits parallelization in further matrix factorization [10]. The major challenge

in the implementation of the nested dissection algorithm is in finding a trade-off between the

resulting fill-in and run time on modern computational systems. As for many graph

algorithms, there are several factors that significantly affect computational time: list

processing, indirect memory accesses, domination of memory operations over arithmetic

operations, computational imbalance during divide-and-conquer procedure. These kinds of

computations do not naturally fit present-day architectures. Thus, special efforts are required

to create an efficient implementation and there is a great interest in new advancements in this

area.

There are remarkable achievements in high-performance implementation of the nested

dissection algorithm. METIS library employs a sequential version of the multilevel nested

dissection scheme [18, 21]. METIS is broadly used in various research and development

projects, e.g. as part of Intel MKL PARDISO [16]. Scotch is another software library that

offers sequential implementation of sparse matrix ordering algorithms. Scotch utilizes a

hybrid approach based on the combination of the incomplete multilevel nested dissection and

a modified minimum degree algorithm [30, 31]. Applications usually employ parallel versions

of both libraries, ParMETIS [19, 20, 35] and PT-Scotch [5]. These versions are designed for

distributed memory systems, take advantage of MPI and demonstrate reasonable speedup.

The advancements of computer architectures over the last decade, especially the

development of multicore and manycore architectures, create new opportunities and new

challenges in the optimization of ordering algorithms. The simplest way to utilize such

architectures in existing MPI-based software is to run an appropriate number of processes on

shared memory without any code modification. . A significant drawback of this decision is

potential performance loss due to non-use of the most effective parallel technologies for

shared memory systems (pthreads, OpenMP, Cilk Plus, and TBB). Another possible solution

is to parallelize certain steps of multilevel nested dissection algorithm for shared memory

systems. Related work in this field concerns the graph partitioning problem and is

implemented in mt-Metis [23]and PT-Scotch [32]. However, even for graphs with 10
7

vertices, the run time of an individual step of the method can be under one second, which

remarkably decreases the parallelization potential. A successful OpenMP-based parallel

implementation of the nested dissection algorithm is done in commercial MKL PARDISO

[17] solver. However, to the authors’ knowledge, the algorithm is not published yet and

cannot be used aside the solver mentioned.

In this paper we address the problem of parallelization of the nested dissection algorithm

for shared memory systems. The key idea is to utilize computational cores via threading

techniques employing load balancing in task-based paradigm with the granularity tuning. The

proposed algorithm is implemented in software package PMORSy extending the previously

developed MORSy library [33], which applies the classical multilevel nested dissection

algorithm with modifications for vertex separators. Parallel version of the library is publicly

available from the UNN HPC Center web-site [28].

The rest of the paper is organized as follows: we give a formal problem statement and a

brief description of the modified nested dissection algorithm in MORSy, present our parallel

algorithm and analyze quality, performance and scalability of the implementation described in

comparison to ParMETIS and PT-Scotch on a 16-core CPU. All computational experiments

are performed on matrices from the University of Florida Sparse Matrix Collection [6] and

matrices generated by LOGOS software [34] during finite-element analysis of three-

dimensional strength problems (LOGOS-FEM Collection).

2. Problem Statement

Let A = (aij) be a sparse symmetric n by n matrix. A matrix graph G = (V, E) is defined as

follows. Each vertex vi∊V corresponds to a matrix row i (i = 1, 2, ..., n). Each edge

corresponds to a non-diagonal non-zero element of the matrix, i.e. (vi, vj) ∊E if and only if

aij ≠ 0 (i, j = 1, 2, ...,n; i ≠ j). The set of vertices adjacent to a vertex v is denoted by Adj(v).

When elimination of a vertex v from a graph G is performed, the edges between vertices

adjacent to the vertex v are added to the graph so that they form a clique, the vertex v is

deleted from the set of vertices together with all incident edges:

V = V \ v; E = E \ {(u, v): u∊Adj(v)} ∪ {(u1, u2): u1, u2∊Adj(v)}.

The added edges are associated with the elements that become non-zero during the Gaussian

elimination of v-th matrix row.

Let π = (π1, π2, ..., πn) be a permutation of the set of vertices V. Fill-in F(π) generated by the

permutation π is a set of edges added during the consecutive elimination of vertices π1, π2, ...,

πn. The problem is to find the permutation π
*

that minimizes the number of edges in the

produced fill-in:

π
*
 = argmin {|F(π)|}.

This problem is NP-complete [37] and is usually solved using heuristic approaches.

3. Multilevel Nested Dissection in MORSy

Earlier we presented MORSy – a sequential library for sparse symmetric matrix ordering for

fill-in minimization [28, 33] MORSy is written in C and runs under Windows and Linux.

Sparse matrix ordering in MORSy applies the classical multilevel nested dissection method

(see the Algorithm 1). The nested dissection algorithm is built on a divide-and-conquer

principle. At each step of the method a separator is found, that is, a small number of vertices

whose elimination divides the graph into disconnected parts. After that, the algorithm operates

recursively on those parts. Finding a graph separator using the multilevel method consists of

three stages: coarsening, partitioning, and uncoarsening. At the coarsening stage, a sequence

of graphs G1, G2, …, Gm is constructed, where the structure of Gi+1 coarsens the structure of

Gi. At the partitioning stage, the separator and two disconnected parts of the coarsest graph

Gm are determined. At the uncoarsening stage, the separator of the coarsest graph is projected

back to the original graph G1 through the sequence of intermediate graphs Gm-1, Gm-2, …, G2.

Obtaining a separator of the graph Gi is performed by projecting the separator of the graph

Gi+1 to Gi and refining it to reduce the separator size and balance the subgraphs. For this

purpose, different modifications of iterative methods by Kernighan, Lin [22] and Fiduccia,

Mattheyses [9] are applied.

Algorithm 1 Multilevel Nested Dissection in MORSy

Input: Graph GA(VA, EA) constructed from a sparse symmetric matrix A. VA is a set of graph

vertices, EA is a set of graph edges. Parameter m defines the number of coarsening steps.

Output: Iperm – a new numbering of vertices of GA (rows of A).

 1: function NDStep(graph G0(V0, E0), parameter m) // the step of the multilevel nested

dissection

 2: if |V0| is small enough then

 3: Save the order of separators obtained by automatic nested dissection into S0.

 4: else

 5: for i = 0 to m do

 6: Coarse Gi(Vi, Ei) to Gi+1(Vi+1, Ei+1)

 7: end for

 8: Initialize Partition Pm(Sm, Vm,1, Vm,2) of Gm with separator Sm and disconnected parts

Vm,1, Vm,2

 9: for i = m downto 1 do

10: Project Partition Pi of Gi to partition Pi-1(Si-1, Vi-1,1, Vi-1,2) of Gi-1

11: Refine Partition Pi-1

12: end for

13: Find subgraphs G1
*
, G2

*
, ..., Gk

*
 obtained after removing S0 from G0

14: end if

15: return (S0, G1
*
, G2

*
, ..., Gk

*
)

16: end function

17: function MORSyOrdering(graph GA, parameter m) // main ordering function

18: Compress GA to obtain graph G(V, E)

19: Create an empty queue of subgraphs Q, add G to it

20: while queue Q is not empty do

21: Dequeue G0(V0, E0)

22: (S0, G1
*
, G2

*
, ..., Gk

*
) = NDStep(G0(V0, E0), m)

23: Enqueue G1
*
, G2

*
, ..., Gk

*

24: Save S0 into a shared array S

25: end while

26: Number vertices from separator array S in reverse order

27: Form Iperm by projecting vertices numbers of from G to GA

28: return Iperm

29: end function

Before the start of the multilevel nested dissection, graph compression is executed by the

algorithm described in [15] to reduce the ordering time (line 18 of the Algorithm 1). During

the multilevel nested dissection method heavy edge matching or random matching [21] is

used at the coarsening stage (lines 5–7 of the Algorithm 1), finding the separator from the

rooted level structure is employed at the partitioning stage (line 8 of the Algorithm 1), the

modification of the Primitive moves algorithm by Ashcraft and Liu [2] and Hendrickson and

Rothberg [15] is used at the refinement stage (lines 9–12 of the Algorithm 1).

The Primitive moves algorithm includes two nested loops. Each iteration of the outer loop

over partitions is done as follows. First, we fix the current partition of the graph that defines

the separator and two disconnected subgraphs. It is succeeded by moving vertices from the

separator to one of the subgraphs according to the rule [2][9] in the inner loop to improve the

quality of the partition. If a better partition is found, the outer loop continues with that

partition, otherwise it stops.

http://www.multitran.ru/c/m.exe?t=3497519_1_2&s1=%F1%20%EF%EE%F1%EB%E5%E4%F3%FE%F9%E8%EC

Algorithm 2 Parallel Multilevel Nested Dissection in PMORSy

Input: Graph GA(VA, EA) constructed from a sparse symmetric matrix A. VA is a set of graph

vertices, EA is a set of graph edges. Parameter m defines the number of coarsening steps.

Output: Iperm – a new numbering of vertices of GA (rows of A).

 1: function NDStepParallel(graph G0(V0, E0), parameter m) // the step of the multilevel

nested dissection

 2: (S0, G1
*
, G2

*
, ..., Gk

*
) = NDStep(G0(V0, E0), m)

 3: for i = 0 to k do

 4: #pragma omp task if (Gi
*
is big enough)

 5: NDStepParallel(Gi
*
(Vi, Ei), m)

 6: end for

 7: end function

 8: function MORSyOrdering(graph GA, parameter m) // main ordering function

 9: Compress GA to graph G(V, E)

10: #pragma omp parallel

11: #pragma omp single

12: NDStepParallel(G(V, E), m)

13: end omp parallel

14: Number vertices from separator array S in reverse order

15: Form Iperm by projecting vertices numbers of from G to GA

16: return Iperm

17: end function

Our modification of the Primitive moves algorithm is the revised condition of performing

the vertex move from the separator to one of the disconnected parts. As opposed to the

original scheme, we perform moves only to the smaller part of the graph at the beginning of

the current iteration of the outer loop.

A more detailed description of the algorithm is presented in [33].

4. Parallel Algorithm for Shared Memory Systems

Parallel ordering in PMORSy is developed in a task-based fashion employing threading

techniques and granularity tuning. We parallelize the nested dissection algorithm in MORSy

(Algorithm 1) for shared memory systems using task parallelism in OpenMP. For this purpose

we modify the reordering algorithm from the iterative form into a recursive one, in which

every NDStep() call corresponds to a logical task that can be solved independently by a free

thread. Small enough subgraphs are processed as part of the same task (granularity tuning).

The automatic OpenMP scheduler provides load balancing and distributes tasks among

threads (Algorithm 2).

5. Experimental Results and Discussion

5.1 Test environment

PMORSy was tested using symmetric positive definite matrices from the University of

Florida Sparse Matrix Collection [6] (Table 1) and LOGOS-FEM Collection (Table 2). We

compared PMORSy with two state-of-the-art libraries: ParMETIS v.4.0.3 and PT-Scotch

v.6.0.3. For ParMETIS and PT-Scotch, each matrix was equally distributed between

processes. PT-Scotch was run under METIS-comparable interface. ParMETIS and PT-Scotch

was run with the default parameters of ordering routines.

Table 1. Description of the test matrices from the University of Florida Sparse

Matrix Collection. N is the number of matrix rows, NZ is the number of matrix

non-zeros.

Matrix N NZ NZ/N
2

Pwtk 217 918 5 926 171 1.25E-04

Msdoor 415 863 10 328 399 5.97E-05

parabolic_fem 525 825 2 100 225 7.60E-06

tmt_sym 726 713 2 903 835 5.50E-06

boneS10 914 898 28 191 660 3.37E-05

Emilia_923 923 136 20 964 171 2.46E-05

audkiw_1 943 695 39 297 171 4.41E-05

bone010 986 703 36 326 514 3.73E-05

ecology2 999 999 2 997 995 3.00E-06

thermal2 1 228 045 4 904 179 3.25E-06

StocF-1465 1 465 137 11 235 263 5.23E-06

Hook_1498 1 498 023 31 207 734 1.39E-05

Flan_1565 1 564 794 59 485 419 2.43E-05

G3_circuit 1 585 478 4 623 152 1.84E-06

Table 2. Description of the test matrices from LOGOS-FEM Collection.

N is the number of matrix rows, NZ is the number of matrix non-zeros.

Matrix N NZ NZ/N
2

cyclik 60 984 1 909 788 5.14E-04

Kamaz_kollekt 135 669 2 168 968 1.18E-04

podves 269 178 2 333 392 3.22E-05

lopatka1 274 104 10 370 664 1.38E-04

Kamaz_gusev 1 429 158 50 191 148 2.46E-05

trubka 2 428 323 70 338 539 1.19E-05

Korpus 2 504 934 93 368 914 8.14E-06

lopatka2 2 545 314 88 273 521 1.36E-05

49_750 2 615 169 97 081 773 1.42E-05

p4_6 4 216 212 144 714 294 8.14E-06

The quality of orderings was evaluated with respect to the number of non-zero elements in

the factor of the reordered matrix. The quality of ordering produced by ParMETIS and PT-

Scotch depends on the number of processes and usually decreases as this number grows. The

quality of PMORSy ordering is the same for serial and parallel implementations. .

PMORSy was tested in two configurations. In the first configuration for each matrix we

found the best parameters with respect to factor fill-in. We denote this configuration as 'best

quality'. The second configuration allows taking orderings with the quality similar to

ParMETIS. We denote this configuration as 'ParMETIS quality'. It shows the time needed by

PMORSy for obtaining the ordering with ParMETIS-like quality.

Our experiments were performed on a cluster node with two 8-core Intel Sandy Bridge E5-

2660 2.2 GHz, 64GB RAM, running Linux CentOS 6.4. The code was compiled using Intel

C++ Compiler from Intel Cluster Studio XE 2013 SP1. Intel MKL library was used for

random number generation.

Table 3. The performance of ParMETIS on test matrices using 1, 8 and 16

processes on a single node. NZ is the number of matrix non-zeros.

 Factor NZ Time, sec.

 # processes

matrix
1 8 16 1 8 16

The University of Florida Sparse Matrix Collection

pwtk 47 124 530 48 948 344 50 763 733 1.26 0.68 0.76

msdoor 51 483 893 52 234 967 53 160 419 2.13 1.09 1.02

parabolic_fem 25 607 853 25 626 615 25 600 254 4.08 1.09 0.74

tmt_sym 29 507 621 29 283 199 29 872 816 5.91 1.24 0.92

boneS10 268 565 124 268 893 070 275 620 364 10.62 3.13 2.50

Emilia_923 1 636 886 316 1 801 164 151 1 909 074 078 10.39 3.37 2.85

audikw_1 1 216 865 448 1 232 975 819 1 415 589 740 15.89 8.11 5.88

bone010 1 037 288 274 1 101 282 758 1 189 532 331 14.13 4.82 3.95

ecology2 35 641 736 33 907 697 35 058 149 6.72 1.42 0.96

thermal2 50 430 085 50 258 433 50 366 476 10.77 2.07 1.48

StocF-1465 1 035 811 119 1 062 713 367 1 056 205 648 21.79 4.28 3.15

Hook_1498 1 495 017 138 1 553 275 512 1 656 017 944 17.32 5.11 3.80

Flan_1565 1 456 370 148 1 522 924 200 1 582 973 048 22.82 6.09 4.75

G3_circuit 90 625 664 95 168 941 95 711 155 13.40 2.78 2.00

LOGOS-FEM Collection

cyclik 21 738 321 24 708 907 24 527 841 1.21 0.78 1.36

Kamaz_kollekt 21 201 625 21 762 875 21 635 358 0.92 0.52 0.71

podves 27 510 284 29 252 522 28 549 496 3.06 0.79 0.87

lopatka1 221 594 040 242 367 410 239 491 446 3.54 1.51 1.90

Kamaz_gusev 599 222 021 797 046 640 848 729 839 21.00 7.85 6.32

trubka 1 313 242 750 1 343 085 976 1 379 674 538 49.74 15.01 8.54

Korpus 2 529 773 425 2 655 859 137 2 790 940 899 37.48 10.55 8.13

lopatka2 1 390 295 013 1 523 333 132 1 514 489 295 34.44 9.31 6.86

49_750 2 212 802 334 2 355 219 294 2 406 528 129 37.85 11.46 8.36

p4_6 2 401 305 585 2 438 307 255 2 568 883 906 59.80 15.90 12.78

5.2 ParMETIS and PT-Scotch orderings

Table 3 shows the quality and processing time of ParMETIS on test matrices. For most

matrices the factor fill-in increases as the number of processes grows. The average speedup

for 16 processes is 4.8 for the University of Florida Sparse Matrix Collection matrices and 3.6

on matrices from LOGOS-FEM Collection.

Table 4 shows the quality and processing time of PT-Scotch on test matrices. The average

speedup for 16 processes is 6.9 for matrices from the University of Florida Sparse Matrix

Collection and 6.7 on matrices from LOGOS-FEM Collection.

Table 4. The performance of PT-Scotch on test matrices using 1, 8 and 16

processes on a single node. NZ is the number of matrix non-zeros.

 Factor NZ Time, sec.

 # processes

matrix
1 8 16 1 8 16

The University of Florida Sparse Matrix Collection

pwtk 49 522 203 50 432 471 52 020 654 3.42 0.69 0.50

msdoor 60 790 300 62 840 085 64 561 972 6.50 1.68 1.30

parabolic_fem 29 078 475 29 944 981 30 622 333 2.58 0.83 0.64

tmt_sym 36 914 916 38 315 065 39 067 222 3.63 0.68 0.46

boneS10 295 951 174 329 567 485 351 489 532 23.80 4.10 2.92

Emilia_923 1 762 468 827 1 799 143 533 1 858 065 713 19.69 3.87 2.97

audikw_1 1 248 785 099 1 253 055 438 1 271 564 572 37.18 9.85 7.02

bone010 1 232 014 110 1 334 369 612 1 254 340 494 28.57 5.26 3.87

ecology2 45 319 057 46 989 800 46 520 507 4.26 0.82 0.60

thermal2 59 264 373 61 301 047 63 325 339 7.16 1.35 0.93

StocF-1465 1 124 071 466 1 166 743 560 1 168 194 673 18.08 3.30 2.32

Hook_1498 1 675 608 963 1 773 634 758 1 834 874 754 31.76 5.78 4.19

Flan_1565 1 548 018 276 1 585 325 535 1 625 188 876 49.19 8.18 5.59

G3_circuit 108 971 392 111 764 770 111 703 925 8.89 2.24 1.46

LOGOS-FEM Collection

cyclik 24 123 440 27 145 380 26 814 364 1.53 0.41 0.35

Kamaz_kollekt 23 004 028 24 145 762 25 946 752 1.71 0.45 0.37

podves 33 213 664 36 059 421 36 437 044 2.24 0.56 0.47

lopatka1 234 178 088 260 651 063 248 632 544 7.58 1.58 1.27

Kamaz_gusev 631 697 329 663 903 867 704 744 769 42.46 10.86 8.06

trubka 1 540 544 221 1 591 819 760 1 673 724 390 76.81 15.76 10.31

Korpus 3 045 599 880 3 033 801 023 3 229 321 942 82.82 13.76 9.06

lopatka2 1 549 586 946 1 687 010 537 1 737 497 254 75.14 12.23 8.04

49_750 2 476 555 151 2 690 546 946 2 774 807 964 83.98 17.02 10.92

p4_6 3 006 381 215 3 363 028 106 3 266 817 392 126.60 23.61 17.38

5.3 PMORSy with 'best quality' parameters

This subsection presents a comparison of the time and quality of PMORSy orderings with

'best quality' parameters with ParMETIS and PT-Scotch results (Table 5).

First consider the matrices from the University of Florida Sparse Matrix Collection.

Compared to ParMETIS, PMORSy produces orderings of 2% to 16% better quality for 11

matrices out of 14 in case 16 cores are used. As the fill-in advantage usually grows when the

number of cores increases, the average gain in factor non-zeros is 8% for 16 cores. For the

remaining matrices the size of the factor is 2% to 6% larger compared to ParMETIS.

Compared to PT-Scotch using 16 cores, PMORSy gives orderings of better quality for 13

matrices out of 14 (8% to 37%). The factor fill-in disadvantage on the rest matrix is 4%.

For the matrices from LOGOS-FEM Collection, the difference between PMORSy,

ParMETIS and PT-Scotch quality is smaller. Compared to ParMETIS, PMORSy produces

orderings of 2% to 12% better quality for 9 matrices out of 10 when 16 cores are used.

Table 5. The factor fill-in after PMORSy ordering with 'best quality' settings

relative to ParMETIS and PT-Scotch. NZ_PMORSy, NZ_ParMETIS, NZ_PT-

Scotch are number of non-zeros after PMORSy, ParMETIS, PT-Scotch ordering

respectively. Results less than or equal to 1.0 are better for PMORSy and

emphasized in bold italic.

 NZ_PMORSy / NZ_ParMETIS NZ_PMORSy / NZ_PT-Scotch

 # cores

matrix
1 8 16 1 8 16

The University of Florida Sparse Matrix Collection

Pwtk 0.98 0.95 0.91 0.94 0.92 0.89

Msdoor 1.01 1.00 0.98 0.86 0.83 0.81

parabolic_fem 0.97 0.97 0.97 0.86 0.83 0.81

tmt_sym 0.97 0.98 0.96 0.78 0.75 0.74

boneS10 1.08 1.08 1.06 0.98 0.88 0.83

Emilia_923 1.01 0.92 0.86 0.94 0.92 0.89

audikw_1 1.08 1.07 0.93 1.06 1.05 1.04

bone010 0.99 0.93 0.86 0.83 0.77 0.82

ecology2 0.83 0.87 0.84 0.65 0.63 0.63

thermal2 1.02 1.02 1.02 0.87 0.84 0.81

StocF-1465 1.04 1.01 1.02 0.95 0.92 0.92

Hook_1498 1.06 1.02 0.96 0.95 0.89 0.86

Flan_1565 0.97 0.93 0.89 0.91 0.89 0.87

G3_circuit 0.99 0.95 0.94 0.83 0.80 0.81

LOGOS-FEM Collection

Cyclik 1.00 0.88 0.88 0.90 0.80 0.81

Kamaz_kollekt 1.04 1.02 1.02 0.96 0.92 0.85

podves 0.96 0.90 0.93 0.80 0.73 0.73

lopatka1 0.97 0.89 0.90 0.92 0.82 0.86

Kamaz_gusev 1.14 0.86 0.81 1.08 1.03 0.97

Trubka 1.03 1.01 0.98 0.88 0.85 0.81

Korpus 1.03 0.98 0.93 0.85 0.86 0.80

lopatka2 1.07 0.97 0.98 0.96 0.88 0.85

49_750 0.98 0.92 0.90 0.88 0.81 0.78

p4_6 0.96 0.95 0.90 0.77 0.69 0.71

For the remaining matrix the size of the factor is 2% larger. Compared to PT-Scotch,

PMORSy works 3% to 29% better on all matrices.

Ordering time of PMORSy compared to ParMETIS and PT-Scotch is shown in Table 6.

Considering the matrices from the University of Florida Sparse Matrix Collection,

PMORSy works faster than ParMETIS and PT-Scotch on 8 matrices out of 14. The average

advantage is 2.4 times compared to ParMETIS and 3.6 times compared to PT-Scotch. For the

rest 6 matrices, PMORSy works slower than ParMETIS and PT-Scotch. The average

disadvantage is 1.5 to 2.5 times compared to ParMETIS and 2.2 to 3.8 times compared to PT-

Scotch depending on the number of cores.

Table 6. The comparison of PMORSy reordering time with 'best quality' settings

compared to ParMETIS and PT-Scotch. T_PMORSy, T_ParMETIS, T_PT-

Scotch are reordering time of PMORSy, ParMETIS, PT-Scotch respectively.

Results smaller than 1.0 are better for PMORSy and emphasized in bold italic.

 T_PMORSy / T_ParMETIS T_PMORSy / T_PT-Scotch

 # cores

matrix
1 8 16 1 8 16

The University of Florida Sparse Matrix Collection

Pwtk 0.29 0.22 0.20 0.11 0.22 0.30

Msdoor 0.37 0.26 0.26 0.12 0.17 0.20

parabolic_fem 1.27 1.35 1.71 2.02 1.77 1.97

tmt_sym 1.65 2.22 2.58 2.68 4.06 5.20

boneS10 0.44 0.47 0.52 0.20 0.36 0.45

Emilia_923 0.45 0.51 0.56 0.24 0.44 0.53

audikw_1 0.51 0.34 0.41 0.22 0.28 0.35

bone010 0.54 0.54 0.65 0.27 0.50 0.67

ecology2 1.44 2.11 2.98 2.28 3.64 4.75

thermal2 1.63 2.31 2.75 2.45 3.57 4.40

StocF-1465 1.78 2.54 2.99 2.15 3.30 4.07

Hook_1498 0.56 0.65 0.86 0.31 0.57 0.78

Flan_1565 0.55 0.63 0.71 0.26 0.47 0.61

G3_circuit 1.20 1.56 1.78 1.80 1.94 2.45

LOGOS-FEM Collection

cyclik 0.49 0.35 0.18 0.39 0.66 0.72

Kamaz_kollekt 0.53 0.40 0.31 0.29 0.46 0.60

podves 1.03 1.35 1.32 1.41 1.92 2.40

lopatka1 0.33 0.30 0.23 0.16 0.29 0.34

Kamaz_gusev 0.40 0.35 0.40 0.20 0.26 0.31

trubka 0.95 0.87 1.28 0.62 0.83 1.06

Korpus 0.39 0.46 0.53 0.18 0.35 0.47

lopatka2 0.66 0.73 0.93 0.30 0.56 0.79

49_750 0.46 0.46 0.54 0.21 0.31 0.41

P4_6 0.59 0.64 0.68 0.28 0.43 0.50

Finally, consider the matrices from LOGOS-FEM Collection. PMORSy works faster than

ParMETIS and PT-Scotch on all but one matrix for 1 to 8 cores and on 8 of 10 matrices for 16

cores. The disadvantage on the rest matrices is up to 1.3 times compared to ParMETIS and is

1.4 to 2.4 times compared to PT-Scotch.

As a result, PMORSy works better than ParMETIS in the matter of both quality and time

on 5 matrices out of 14 from the University of Florida Sparse Matrix Collection and on 4

matrices out of 10 from LOGOS-FEM Collection. Compared to PT-Scotch, it works better on

5 matrices out of 14 from the University of Florida Sparse Matrix Collection and on 7

matrices out of 10 from LOGOS-FEM Collection. Only on one matrix from two collections

PMORSy is behind ParMETIS in both speed and quality.

Table 7. The comparison of PMORSy reordering time with 'ParMETIS quality'

settings relative to ParMETIS. T_PMORSy, T_ParMETIS are reordering time of

PMORSy and ParMETIS respectively. Results smaller than 1.0 are better for

PMORSy and emphasized in bold italic.

 T_PMORSy / T_ParMETIS

 # cores

matrix
1 8 16

The University of Florida Sparse Matrix Collection

Pwtk 0.29 0.20 0.17

Msdoor 0.29 0.23 0.21

parabolic_fem 0.85 0.94 1.19

tmt_sym 0.97 1.28 1.43

boneS10 0.44 0.48 0.52

Emilia_923 0.47 0.40 0.32

audikw_1 0.51 0.34 0.25

bone010 0.48 0.54 0.36

ecology2 0.87 1.15 1.48

thermal2 1.63 2.32 2.71

StocF-1465 1.31 1.88 2.22

Hook_1498 0.56 0.64 0.54

Flan_1565 0.35 0.40 0.44

G3_circuit 0.90 0.99 1.16

LOGOS-FEM Collection

cyclik 0.49 0.26 0.14

Kamaz_kollekt 0.53 0.38 0.29

podves 0.96 0.96 1.02

lopatka1 0.30 0.29 0.22

Kamaz_gusev 0.40 0.34 0.36

trubka 0.77 0.71 1.05

Korpus 0.39 0.37 0.54

lopatka2 0.66 0.54 0.49

49_750 0.46 0.42 0.51

p4_6 0.34 0.42 0.42

5.4 PMORSy with 'ParMETIS quality' parameters

We compare PMORSy and ParMETIS with close orderings in terms of factor fill-in (Table 7).

In this case, for the majority of matrices processing time is reducing, because it is allowed to

obtain more non-zero elements in the factor, than with better quality adjustments. Exception

to this tendency applies when PMORSy with maximal quality adjustments is behind

ParMETIS.

Our experiments show that for the University of Florida Sparse Matrix Collection PMORSy

works faster than ParMETIS on 12, 10 and 8 matrices out of 14 when ParMETIS uses 1, 8

and 16 cores, respectively. For LOGOS-FEM Collection, PMORSy works faster than

ParMETIS on all matrices when 1 to 8 cores are used and on all but two matrices on 16 cores.

On the remaining matrices PMORSy works 2% to 5% slower.

6. Results and Discussion

6.1 Performance and scalability

First we investigate behaviour of the parallel algorithm, particularly in terms of task mapping

to threads. For that purpose we run multithreaded PMORSy on the pwtk matrix (8 threads)

and on the G3_circuit matrix (16 threads). Then we build a task tree: nodes of the tree

correspond to logical tasks (each task executed in a NDStepParallel() function call). Each

node gets a value that is the number of vertices in the subgraph considered. For each

generation of a subtask there is an edge of the tree. The task tree is essentially a recursion tree.

Subtasks executed in the same thread are marked with the same color. The root vertex is

placed in the center of the figure. Radial tree levels correspond to the depth of recursion.

Tasks with the number of vertices under the granularity limit do not generate new tasks and

thus are leaves of the tree. They are solved completely in the same thread. GraphViz library

[13] was utilized to build the trees presented in this subsection.

The tree shown on Figure 1 is built for a relatively small matrix pwtk, so the described task

tree building concepts can be observed. For a good understanding of the whole picture we

consider a similar run for 16 threads and the matrix G3_circuit (figure 2). In distinction with

the graph with a small number of vertices, black circles correspond to edges of the graph and

visually separate levels from each other. Appearance of colored sectors implies subtrees are

usually processed by the same thread as their root vertex. This results in a favorable memory

access pattern as threads can reuse data in cache. The figure also shows that the algorithm

creates a balanced task tree, in which the number of levels for different subtrees varies

insignificantly.

For a more detailed analysis we continue by running the profiler Intel Amplifier XE to find

the hotspots. We found that partition refinement is the most time consuming step of the

algorithm taking 35% to 55% of the total time depending on the test matrix. Running time of

that step is proportional to the number of the partition improvement attempts significantly

affecting the fill-in. We found that introducing additional bounds on iteration number allowed

twofold speedup of this step without significant quality degradation for most matrices. The

second most time consuming stage of the algorithm is graph coarsening, which takes 20% to

30% of reordering time. Its execution time depends on the quantity of random numbers used

for building a matching. Further analysis shows that, as quite usual for graph algorithms, poor

branch prediction and irregular memory access pattern resulting in significant number of the

last level cache and translation look aside buffer misses are the main reasons influencing the

execution time. Thus, despite quite good task mapping, generally the problem of working

with memory in graph-based algorithms is not resolved entirely in PMORSy and is one of the

most promising fields to research.

Bringing scaling issue into analysis, mediocre speedup should be noted on 16 cores against

1 core. The reason behind it is that few largest tasks group near the root of the tree causing

undersaturation of 16 threads for a significant portion of the computational time. This

problem can be addressed by parallelization in the intra-task level. Two-level parallel scheme,

combining data and task parallelism for solving large problems is planned to be developed to

eliminate the effect described.

Fig. 1.Task mapping for pwtk matrix (Florida Matrix Collection) on 8 threads. Logical tasks

are nodes of the graph, dependencies between them are edges. Descendant nodes correspond

to the tasks generated after parent node calculating. Same colored nodes are processed by the

same thread. Values of the nodes correspond to the number of graph nodes for which the

separator search took place. Tasks for graph with less than 1000 nodes are considered as non-

generating.

Fig. 2.Task mapping for G3_circuit matrix (Florida Matrix Collection) on 16 threads. Logical

tasks are nodes of the graph, dependencies between them are edges. Descendant nodes

correspond to the tasks generated after parent node calculating. Same colored nodes are

processed by the same thread. Digits in the nodes coincide with the number of graph nodes

for which the separator search took place. Tasks for graph with less than 3000 nodes are

considered as non-generating.

6.2 Comparison to the state-of-the-art libraries

In this subsection we summarize the numerical results of PMORSy in two configurations,

ParMETIS, and PT-Scotch. All the runs used 16 cores of the cluster node. The comparison of

performance is shown on the left-hand side of Figure 3. Each bar of the graph corresponds to

run time given in seconds. On average, PMORSy in the ‘ParMETIS quality’ configuration

performs 40% faster than in the ‘best quality’ configuration. PMORSy in both configurations

outperforms ParMETIS and PT-Scotch on 16 matrices out of 24 with the maximum advantage

about 7.0 times on the cyclik matrix. Nonetheless, on the remaining 8 matrices ParMETIS and

PT-Scotch work faster than PMORSy, up to 5.2 times on the tmt_sym matrix. The comparison

of orderings quality is presented on the right-hand side of Figure 3. Each bar of the graph

corresponds to the number on non-zero elements after factorization given in millions.

Fig. 3. The comparison of PMORSy, ParMETIS, and PT-Scotch with respect to run time

(on the left) and orderings quality (on the right). The results are given on 24 test matrices

from the University of Florida and LOGOS-FEM sparse matrix collections. 16 cores were

used in all runs. Run time is given in seconds. Orderings quality is shown in the number (in

million) of non-zero elements after factorization. Test matrices are ranked as follows:

matrices, better for PMORSy in terms of run time compared to ParMETIS and PT-Scotch, are

shown on the top.

PMORSy in the best configuration of the parameters produces up to 20% better or

competitive orderings compared to ParMETIS on 20 matrices out of 24 and compared to PT-

Scotch on 23 matrices out of 24. The disadvantage on the other matrices is at most 6%.

Compared to ParMETIS and PT-Scotch our implementation is better on the matrices that

allow structure compression and have quite a large average number of vertices after

compression (from 10 to 26 in our experiments). On the contrary, for the matrices with a large

number of vertices and a small number of edges after the compression, ParMETIS

outperforms our implementation. A possible reason is that the data structures used in our

implementation are not well-suited for matrices with a small average vertex degree after

structure compression due to relatively low cache efficiency and poor branch prediction. We

plan to try other data structures and, probably, implement some heuristic rules to choose a

data structure depending on graph properties.

7. Summary and Future Work

We have presented a new parallel nested dissection algorithm for shared memory systems.

Parallel processing is performed using task-based technique. The algorithm is implemented

using OpenMP technology as an extension to MORSy library [33].

Experimental results on matrices from the University of Florida Sparse Matrix Collection

and LOGOS-FEM Collection show the competitiveness of our implementation with the

widely used ParMETIS and PT-Scotch libraries. The quality of orderings produced by

PMORSy is independent on the number of threads. For the most of test matrices, the number

of non-zeros in the resulting factor obtained by PMORSy is better than that of ParMETIS and

PT-Scotch. In terms of performance parallel PMORSy works faster on a half of test matrices.

When PMORSy and ParMETIS give orderings with close number of non-zeros, PMORSy

works faster on most test matrices.

While the paper was under review, a new version of mt-Metis library was introduced at the

Euro-Par conference [24]. The authors of the library presented a two-level parallelization

scheme of the multilevel nested dissection method. The scheme combines a custom task

scheduling and parallelism of computationally intensive steps of the multilevel method. Our

first experiments show that mt-Metis outperforms ParMETIS 1.5 times on average which is in

good agreement with [24]. The trend of performance of PMORSy compared to mt-Metis is

generally the same as for comparison to ParMETIS, with PMORSy being advantageous on

matrices with greater average vertex degree after structure compression. However, the

advantage on these matrices is smaller and the disadvantage on other matrices is larger.

The fact that the new version of mt-Metis, as well as PMORSy, outperforms ParMETIS on

shared memory shows that hybrid (e.g. MPI + OpenMP) parallel algorithms are likely best

suited for modern cluster systems with multicore nodes. Developing such an algorithm and its

efficient implementation is the main direction of our future work.

Acknowledgments

The authors would like to thank Dmitry Akhmedzhanov, Sergey Bastrakov, Alexey Liniov,

Alexander Sysoyev, and Nikolai Zolotykh for useful comments and discussions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The study was partially supported by the RFBR, research project No. 14-01-3145514 and by

the grant 02.В.49.21.0003 of The Ministry of education and science of the Russian

Federation.

References

[1] P.R. Amestoy, T. Davis, and I. Duff, An approximate minimum degree ordering

algorithm, SIAM J. Matrix Anal. Appl. 17(4) (1996), pp. 886–905.

[2] C. Aschcraft and J.W.H. Liu, A partition improvement algorithm for generalized nested

dissection, Tech. Rep. BCSTECH-94-020, Boeing Computer Services, Seattle, WA,

1994.

[3] Ch.-Ed. Bichot, P. Siarry (eds.), Graph Partitioning, John Wiley and Sons, New York,

2013.

[4] T.N. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization,

No. DOE/ER/25151--1-Vol. 1; CONF-930331-Vol. 1. SIAM, Philadelphia, PA, 1993.

[5] C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,

Parallel Comput. 34(6) (2008), pp. 318–331.

[6] T.A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans.

Math. Software 38(1) (2011), pp. 1.

[7] T.A. Davis, J.R. Gilbert, S. I. Larimore, and E. G. Ng, A column approximate minimum

degree ordering algorithm, ACM Trans. Math. Software 30(3) (2004), pp. 353–376.

[8] A. Ferreira and P.M. Pardalos, Solving Combinatorial Optimization Problems in

Parallel-Methods and Techniques. Lecture Notes in Comput. Sci., Springer Verlag,

Berlin, Vol. 1054, 1996.

[9] C.M. Fiduccia and R.M. Mattheyses, A linear time heuristic for improving network

partitions, 19th IEEE Conference on Design Automation (1982), pp. 175–181.

[10] A. George, M.T. Heath, J.W.H. Liu, and E. Ng, Sparse Cholesky factorization on a

local-memory multiprocessor, SIAM J. on Scientific and Stat. Comp. 9(2) (1988),

pp. 327-340.

[11] A. George and J.W.H. Liu, An automatic nested dissection algorithm for irregular

finite element problems, SIAM J. Numer. Anal. 15(5) (1978), pp. 1053–1069.

[12] A. George, Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.

10(2) (1973), pp. 345–363.

[13] GraphViz, Graph Visualization Software; software available at

http://www.graphviz.org/.

[14] B. Hendrickson and R. Leland, A multi-level algorithm for partitioning graphs. Tech.

Rep. SAND93-1301, Sandia National Laboratories, 1993.

[15] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested

dissection ordering, SIAM J. Sci. Comput. 20 (1999), pp. 468–489.

[16] Intel Math Kernel Library Reference Manual. Available at

http://software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf

[17] Intel MKL PARDISO – Parallel Direct Sparse Solver Interface. Available at

https://software.intel.com/en-us/node/521677.

[18] G. Karipis, METIS. A software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices . V. 5.0.

Tech. Rep., University Of Minnesota, Department Of Computer Science And

Engineering, 2011.

[19] G. Karypis and V. Kumar, ParMetis: Parallel graph partitioning and sparse matrix

ordering library. Tech. Rep. TR 97-060, Department Of Computer Science, University

Of Minnesota, 1997.

[20] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and

sparse matrix ordering, J. Parallel Distrib. Comput. 48 (1998), pp. 71–85.

[21] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning

irregular graphs, SIAM J. Sci. Comput. 20(1) (1998), pp. 359–392.

[22] B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs,

The Bell System Technical J., 29 (1970), pp. 291–307.

[23] D. Lasalle and G. Karypis, Multi-threaded graph partitioning. Parallel & Distributed

Processing (IPDPS), 2013, pp. 225-236.

[24] D. LaSalle and G. Karypis, Efficient Nested Dissection for Multicore Architectures.

Euro-Par 2015: Parallel Processing, 2015, Springer Berlin Heidelberg, pp. 467–478.

[25] J.-Y. L'Excellent, Multifrontal methods: parallelism, memory usage and numerical

aspects, Doctoral diss., École normale supérieure de Lyon, 2012.

[26] R.J. Lipton, D.J. Rose, and R.E. Tarjan, Generalized nested dissection, SIAM J.

Numer. Anal. 16(2) (1979), pp. 346–358.

[27] J.W.H. Liu, Modification of the minimum-degree algorithm by multiple elimination,

ACM Trans. Math. Software 11(2) (1985), pp. 141–153.

[28] MORSy software; software available at http://hpc-

education.unn.ru/research/overview/sparse-algebra/morsy.

[29] P.M. Pardalos (Ed.), Parallel processing of discrete problems. The IMA Volumes in

Mathematics and its Applications, Springer-Verlag, Vol. 106, 1999.

[30] F. Pellegrini, J. Roman, and P. Amestoy, Hybridizing nested dissection and halo

approximate minimum degree for efficient sparse matrix ordering, Concurrency:

Practice And Experience 12 (2000), pp. 68–84.

[31] F. Pellegrini, Scotch and Libscotch 6.0 User’s guide, Tech. Rep., LABRI, 2012.

[32] F. Pellegrini, Shared memory parallel algorithms in Scotch 6. Available at

http://graal.ens-lyon.fr/mumps/doc/ud_2013/pellegrini.pdf.

[33] A. Pirova and I. Meyerov, MORSy – a new tool for sparse matrix reordering, An Int.

Conf. On Engineering And Applied Sciences Optimization, 2014, pp. 1952-1964.

[34] V.N. Rechkin, et al. Software package LOGOS. Module for solving the quasi-static

strength problems and modal analysis, Proc. of XIII International seminar

'Supercomputations and mathematical modeling', Sarov, 2011 (in Russian).

[35] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-

constraint graph partitioning, Euro-Par 2000 Parallel Processing, 2000, pp. 296–310.

[36] W. Tinney and J. Walker, Direct solutions of sparse network equations by optimally

ordered triangular factorization, Proc. of the IEEE 55(11), 1967, pp. 1801–1809.

[37] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic

and Discrete Methods 2(1) (1981), pp. 77–79.

http://hpc-education.unn.ru/research/overview/sparse-algebra/morsy
http://hpc-education.unn.ru/research/overview/sparse-algebra/morsy
http://graal.ens-lyon.fr/MUMPS/doc/ud_2013/Pellegrini.pdf

