

MORSy – SPARSE MATRIX ORDERING SOFTWARE

User Guide

Anna Yu. Pirova1

1
Lobachevsky State University of Nizhni Novgorod
23 Gagarin av., 603950, Nizhni Novgorod, Russia

pirova@vmk.unn.ru

Keywords: multilevel nested dissection, sparse matrix ordering, reducing fill- in, vertex

separator.

Abstract. MORSy – a tool for reordering symmetric sparse matrix to reduce its fill-in. It is
based on multilevel nested dissection algorithm with modifications for vertex separators.

mailto:pirova@vmk.unn.ru

1. What is MORSy

MORSy is an open source library for computing fill-reducing ordering of sparse matrix. It

can be used when direct methods is used to solve system of linear equations with sparse

symmetric matrix. MORSy is based on the multilevel nested dissection algorithm with

modifications for using vertex separator at all steps of multilevel scheme [1]. MORSy has been

developed at the Department of Computational Mathematics and Cybernetics at the State

University of Nizhny Novgorod. It is used in the High Performance Computing Center of the

State University of Nizhny Novgorod [2] for solving sparse systems of linear equations in the

process of finite element simulation of heart activity.

MORSy is freely available [1]. It is cross-platform and can be used under Linux and

Windows operating systems.

2. MORSy installation

MORSy is written in C so it required a C compiler. To use MORSy in your application you

need to build it as the library file and to link it to your application. Archive “MORSy_1.0”

contains files for building the library on Linux and Windows operating systems.

To link MORSy to your program you need include file morsy.h and add dependencies to

libMORSy.a (Linux) or morsy.lib (Windows).

2.1 Building on Linux

In order to build MORSy under Linux, you need a GNU make and a C compiler. The folder

MORSy/Linux contains Makefile.txt and Makefile.inc. To build MORSy, type

$ make

To remove compiled binaries, type

$ make clean

To set configuration options such as compiler and defines, edit Makefile.inc. The default

compiler is gcc (http://gcc.gnu.org/). For the defines description see Section 2.3.

Compiled binaries libMORSy.a will appear at MORSy / libmorsy folder.

2.2 Building on Windows

In order to build MORSy using Microsoft Visual Studio you need Visual Studio version

2008 or later. The folder MORSy / Windows contains projects MORSy.vcproj and MORSy.icproj

for Intel C++ Composer.

Compiled binaries MORSy.lib will appear at MORSy / libmorsy / $(PlatformName) /

$(ConfigurationName) folder.

2.3 Configuration options

MORSy has configuration properties that can be set before compiling the library.

http://gcc.gnu.org/

MKL random generator

If you have Intel MKL library or Intel C++ Composer, you can link it for MORSy' internal

use for random numbers generation. To take advantage of MKL, you need to define USE_MKL

at morsy.h file or Makefile.inc file and then link MKL to your application.

Our experiments have shown that MKL random numbers generator provides sometimes

better orderings then standard rand(). It also reduces the run time of reordering.

Printing

To allow MORSy to print information about its parameters and compression, define PRINT

at the morsy.h file or Makefile.inc file.

3. MORSy interface

3.1 Input data structure

Let A = (aij) be the sparse symmetric n by n matrix. It is assigned to the graph G = (V, E)

with the set of vertexes V and the set of edges E where each vertex vi is associated with matrix

row i (i = 1, 1, ..., n), and each edge(vi, v j) is associated with non-zero element of matrix, i.e. (vi,

v j) ∊E if and only if aij ≠ 0 (i, j = 1, 2, ..., n; i≠j) (Figure 1, a).

We assume that matrix A is stored using the Compress Rows Storage (CRS) format and

numbering starts from 0.Matrix of size n is represented via three arrays: rows of size n + 1,

columns of size rows[n] and values of size rows[n]. Values array contains all non-

zero elements of the matrix have been written row by row, columns array contains numbers of

column of non-zero elements from array values, and elements of row i is stored in the arrays

columns and values from index rows[i] to index rows[i + 1] - 1 for i = 0, 1,

…, n – 1 (Figure 1, b). The adjacency lists of the graph G is the same as a pair (rows,

columns) where vertices adjacent to the vertex i is stored in array columns from indexes

rows[i] to index rows[i + 1] - 1 for i = 0, 1, …, n – 1.

n = 5

10 1 3 4

1 5

 4 5

3 9

4 5 7

 10 1 3 4 1 5 4 5 3 9 4 5 7

values

0 1 3 4 0 1 3 4 0 3 0 2 4

columns

0 4 6 8 10 13

rows

a) Sparse matrix and its correspondent graph b) Sparse matrix storage

Firure 1. Sample matrix and its storage structure

Ordering routine input is graph represented by adjacency lists were each list is sorted in

increasing order. Numbering starts from 0.

3.2 Ordering routine

Synopsis:

int MORSY_NestedDissection(int n, int* xadj, int* adjncy,

 int* perm, int* iperm, int* options)

4

3

2

1

0

Description:

This function computes the ordering of sparse matrix that minimize its fill- in. It is based on

multilevel nested dissection algorithm [1].

Function interface is similar to that on METIS_NodeND function from METIS library [4].

Parameters:

 n - number of matrix rows or number of vertexes in the graph;

 xadj, adjncy – structure of sparse matrix or adjacency lists of the graph as they were

described in Section 3.1.xadj is array of size n + 1, adjncy is array of size xadj[n].

 perm – array of size n that contain the inverse fill reducing ordering. IfAis the initial matrix

and A* is A after reordering then row i of matrix A* is row perm[i]of matrix A.

 iperm – array of size n that contain fill reducing ordering. If A is the initial matrix and A*

is A after reordering when row iperm[i] of matrix A* is row i of matrix A.

Arrays perm and iperm should have been allocated before calling

MORSY_NestedDissection(). One of these arrays may be set to NULL, but not both.

 options – array of size MORSY_NUM_OPTIONS that contains parameters of ordering as

they described in Section 0. If options is set to NULL, the default parameters will be used.

Return value:

Error code of reordering:

MORSY_OK – no errors occurred during reordering,

MORSY_MEMORY_ERROR – error occurred while memory was allocated,

MORSY_INTERNAL_ERROR – error occurred while reordering was performed,

MORSY_OPTIONS_ERROR – input parameters error.

3.3 Options array

All parameters of ordering routine is combined into options array. The size of array is

specified by MORSY_NUM_OPTIONS:

int options[MORSY_NUM_OPTIONS];

The meanings of its entries are as follows:

 options[MORSY_IS_COMPRESS] – specifies that graph structure should be compressed

by contracting vertices with the same adjacency lists before applying multilevel nested
dissection algorithm. This preprocessing allows to reduce reordering time.

0 – does not compress graph,
1 – try to compress graph (the default value).

 options[MORSY_MATCHING_TYPE] – specifies the matching algorithm to be used at

the coarsening stage.
0 – random matching,
1 – heavy edge matching (the default value).

 options[MORSY_COARSE_TO] – specifies the minimum number of vertices in the

coarsest graph at the coarsening stage and the maximum number of vertices in the graph that
will be ordered by automatic nested dissection algorithm instead of multilevel scheme.
The minimum value is 3, the default value is 20.

 options[MORSY_COARSERNING_STEPS] – specifies maximum number of steps

during the coarsening stage.

The value must be nonnegative.

 options[MORSY_DISBALANCE_COEFF] – specifies the influence of imbalance for the

refinement algorithm. Let S, V1, V2 be the separator size and the sizes of produced
disconnected parts of the graph after removing this separator, respectively. The parameter

value determines k * 100 in the formula S * (1 + k * max(V1, V2) / min(V1, V2)). For example,
if k = 0.2, then parameter is set to 20.
The value must be greater than 10 and less than 90. Our experiments shows that the best

orderings were obtained with values from 20 to 30. The default value is 20.

 options[MORSY_REFINEMENT_STEP] – specifies the step with whom the separator

refinement at the uncoarsening stage should be processed.

1 – at every intermediate graph during,
2 – every other intermediate graph (the default value).
Setting this parameter to 2 reduces reordering time but potentially increases matrix fill- in.

 options[MORSY_IS_CONNECTED] – specifies if a number of connected components of

the graph is known.If there are more than one components, they would be determined and
ordered separately.
0 – graph is not connected (the default value),

1 – graph is connected.

 options[MORSY_IS_REFINEMENT_LIMITED] – specifies limit to the number of

iterations of the separator refinement algorithm.

0 – no limits (the default value),
1 – limited, not more than one iteration.

If one of the options entries is set to unsupported value, it will be reset to the default

value.

To use the ordering with the default parameters, you can set options array to NULL or use

MORSY_SetDefaultOptions() function (Section 3.4) . To modify a certain parameters of

the algorithm, we recommend you to call MORSY_SetDefaultOptions() previosly:

int options[MORSY_NUM_OPTIONS];

MORSY_SetDefaultOptions(options);

options[MORSY_IS_CONNECTED] = 1;

options[MORSY_MATCHING_TYPE] = 0;

...

3.4 Parameter setting routines

MORSy provides functions for defining specific sets of parameters: default set, parameters

set for maximizing the quality of ordering, parameters set for minimizing reordering time when

the quality of ordering is acceptable. All configurations were adjusted during our experiments [2]

with matrixes from The University of Florida Sparse Matrix Collection [5]. Thus, these

configurations are not universal but appropriate for the most of matrices. You can use an

arbitrary parameter setting function of this kind.

Synopsis:

void MORSY_SetDefaultOptions(int* options)

Description:

This function set the default values to the reordering parameters.

Parameters:

 options – array of size MORSY_NUM_OPTIONS that contains parameters of ordering as

they described in Section 3.3.

Synopsis:

void MORSY_SetTimePriorityOptions(int* options)

Description:

This function set reordering parameters for minimizing the time of finding the ordering with

the acceptable fill.

Parameters:

 options – array of size MORSY_NUM_OPTIONS that contains parameters of ordering as

they described in Section 0.

Synopsis:

void MORSY_SetQualityPriorityOptions(int* options)

Description:

This function set reordering parameters for maximizing the quality of ordering, i.e. for

minimizing number of non-zero elements in the matrix factor.

Parameters:

 options – array of size MORSY_NUM_OPTIONS that contains parameters of ordering as

they described in Section 0.

4. Examples

#include "morsy.h"

/* Input parameters:

* n - matrix size

* values, columns, rows represent CRS structure of the matrix

* values - non-zero elements have been written sequentially row by row

* columns - number of column of each element from values array

* rows - indexes indicated starting index of elements of row i

* in the arrays values and columns

* iperm - pointer to array contains a new permutation

* perm - pointer to array contains inverse permutation

*/

int MatrixReorderingDefault(int n, int* columns, int* rows, double* values,

 int** iperm, int** perm)

{

 int error; // error code

 // iperm must be allocated before reordering

 iperm = (int)malloc(sizeof(int)*n);

 // perm must be allocated before reordering

 perm = (int)malloc(sizeof(int)*n);

 // running MORSy with the default options

 error = MORSY_NestedDissection(n, rows, columns, *perm, *iperm, NULL);

 return error;

}

// running MORSy with the "quality-priority" options

// perm, ipers were allocated before this function

int MatrixReorderingBestQuality(int n, int* columns, int* rows,

 double* values, int* iperm, int* perm)

{

 int options[MORSY_NUM_OPTIONS];

 int error; // error code

 MORSY_SetQualityPriorityOptions(options);

 error = MORSY_NestedDissection(n, rows, columns, perm, iperm, options);

 return error;

}

// running MORSy with user parameters

int MatrixReorderingUserOptions(int n, int* columns, int* rows,

 double* values, int* iperm, int* perm)

{

 int options[MORSY_NUM_OPTIONS];

 int error; // error code

 MORSY_SetDefaultOptions(options); // set options by default values

 options[MORSY_IS_CONNECTED] = 1; // graph of matrix is connected

 options[MORSY_COARSERNING_STEPS] = 5; // not more then 5 steps at the

coarsening stage

 error = MORSY_NestedDissection(n, rows, columns, perm, iperm, options);

 return error;

}

// running MORSy with modified time-priority parameters

// perm permutation isn't necessary

int MatrixReordering TimePriorityOptions(int n, int* columns, int* rows,

 double* values, int* iperm)

{

 int options[MORSY_NUM_OPTIONS];

 int error; // error code

 MORSY_SetTimePriorityOptions(options); // set time-priority options

 options[MORSY_IS_CONNECTED] = 1; // graph of matrix is connected

 options[MORSY_DISBALANCE_COEFF] = 30; // set disbalance coefficient to 0.3

 // for refinement stage

 error = MORSY_NestedDissection(n, rows, columns, NULL, iperm, options);

 return error;

}

5. License and contact information

The MORSy library may be used under the terms of the GNU Lesser General Public License

version 2.1 as published by the Free Software Foundation. Please review the following

information to ensure the GNU Lesser General Public License version 2.1 requirements will be

met: http://www.gnu.org/licenses/old- licenses/lgpl-2.1.html.

This software is provided as is, with absolutely no warranty expressed or implied. Any use is

at your own risk.

If you have any problems, send email to pirova@vmk.unn.ru with the brief description of the

problem.

6. References

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
mailto:pirova@vmk.unn.ru

[1] MORSy - Sparse Matrix Ordering Software for minimizing fill- in: http://hpc-
education.unn.ru/research/overview/sparse-algebra/morsy

[2] Bastrakov S. , Meyerov I. , Gergel V. et al. High Performance Computing in Biomedical

Applications. Procedia Computer Science, 18, 10–19, 2013.

[3] Pirova A., Meyerov I. MORSy – a new tool for sparse matrix reordering // An

International Conference on Engineering and Applied Sciences Optimization (Kos Island,
Greece, 4-6 June 2014). (accepted).

[4] Karipis G. METIS. A Software Package for Partitioning Unstructured Graphs, Partitioning

Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Version 5.0.
Technical report, University of Minnesota, Department of Computer Science and

Engineering, 2011. URL: [http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf].

[5] The University of Florida Sparse Matrix Collection:
http://cise.ufl.edu/research/sparse/matrices/.

http://hpc-education.unn.ru/research/overview/sparse-algebra/morsy
http://hpc-education.unn.ru/research/overview/sparse-algebra/morsy
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://www.cise.ufl.edu/research/sparse/matrices/

