
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Introduction to deep learning

using the Intel® neon™ Framework»

Practice №3

Application of transfer learning to solve a given problem using

the Intel® neon™ Framework

Supported by Intel

Zhiltsov Maxim, Kustikova Valentina

Nizhny Novgorod

2018

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

3 Manual ... 4

3.1 Convolutional neural network ... 4

3.2 Training and testing the network ... 6

3.2.1 Script structure .. 6

3.2.2 Initialization .. 6

3.2.3 Loading data .. 6

3.2.4 Creating model .. 7

3.2.5 Transferring target model .. 7

3.2.6 Training model .. 8

3.2.7 Testing model .. 8

3.2.8 Saving classification results .. 9

3.3 Execution of training and testing model .. 9

3.3.1 Execution without specifying the parameters ... 9

3.3.2 Startup parameterization ... 9

3.3.3 Execution with input parameters ... 10

3.3.4 Carrying out different types of transfer learning experiments .. 10

4 Literature ... 11

4.1 Books ... 11

4.2 References ... 11

3

1 Introduction

This practice is aimed at studying the technique of the transfer learning of neural networks using the

Intel® neon™ Framework [4]. The application of the transfer learning is demonstrated using the example

of solving the problem of classifying a person's sex by a photo. The original task is the image

classification with a large number of categories (1000 categories), the target one is the classification of

the person’s sex by a photo (2 categories). The original deep model that is applied to the target task, is the

convolutional neural network VGG-16 [5], trained on the ImageNet dataset [6]. IMDB-WIKI [7] is used

as the dataset for solving the target task. The manual for transfer learning can be used to solve other

classification problems if the functions for loading and reading data in the format required by the Intel®

neon™ Framework are implemented.

2 Guidelines

2.1 Goals and tasks

The goal of this practice is to study the general scheme of the transfer learning and apply this approach

to solve the problem of classifying a person's sex by a photo using the Intel® neon™ Framework.

To achieve this goal, it is necessary to solve the following tasks:

1. Study the general scheme of transfer learning.

2. Study the tools of the Intel® neon™ Framework to implement the transfer learning.

3. Develop a script for training and testing of deep models to solve the problem of classifying a person’s

sex by the photo based on transfer learning approach.

4. Develop a model of the convolutional neural network VGG-16 and describe it using the Intel®

neon™ Framework.

5. Carry out three types of experiments on transfer learning:

− using the structure of a deep model constructed to solve the original task, with the aim of training

a similar model for solving the target task;

− using a model constructed to solve the original task as a method of feature extraction in

constructing a model that solves the target task;

− fine-tuning the parameters of the model constructed to solve the original task, with the aim of

solving the target task.

6. Train the models and evaluate the quality of the classification.

2.2 Practice structure

The practice demonstrates the general scheme of implementing the transfer learning in the Intel® neon™

Framework. First, the structure of a convolutional network based on VGG-16 is being developed. Then

the train and test data are loaded. A script is developed that provides training and testing of the network in

accordance with the possible types of experiments on the transfer learning, and the results of solving the

problem are also saved. The work is carried out on the example of the problem of classifying a person's

sex by a photo. IMDB-WIKI is used as the dataset [4].

2.3 Recommended study sequence

The recommended study sequence is as follows:

1. Study the tools of working with convolutional neural networks in the neon framework. You can use

the lecture materials and documentation of the neon framework.

2. Study the technique of transfer learning. Theoretical bases are represented in the lecture material, as

well as in the literature suggested in the lecture.

3. Develop a model of a convolutional neural network based on the VGG-16.

4. Load train and test data.

5. Develop a script for training and testing the constructed model based on transfer learning approach.

6. Carry out the experiments on the transfer learning.

4

3 Manual

3.1 Convolutional neural network

The model construction includes a description of the neural network structure and the assignment of the

cost function used during training. The transfer learning implies the presence of a pre-trained model, from

which it is necessary to transfer model structure or some of the trained layers to a new model. As a

consequence, the new model is similar in structure to the original one. The transfer is meaningful only for

parametric layers of the network. To perform the layer transfer from one model to another, the necessary

condition is the coincidence of the parameter number in the source layer and in the target layer. As a rule,

the correspondence between layers is established by layer identifiers (or names).

To solve the problem of classifying a person's sex by a photo, we use the well-known VGG-16 model [5],

designed to classify 224x224 images into 1000 object categories. The structure of the model and the

trained model parameters are available in the neon repository [8]. To download the model (~500 MB) you

can use the command below.

wget https://s3-us-west-1.amazonaws.com/nervana-modelzoo/VGG/VGG_D.p

After executing the command, the file VGG_D.p containing the trained model appears in the current

directory.

To solve the classification problem with two categories, we will create a description of a new model

based on VGG-16. This requires a description of the original model [9]. The model presented in the

repository is stored in the obsolete neon format. The model description, prepared for the transfer learning

and adapted for the version of neon 2.6.0, is presented below. Highlighted code fragments correspond to

the changes made in VGG-16 to implement the transfer learning. Essentially, the layers corresponding to

the classifier have been replaced.

init1 = Xavier(local=True)

initfc = GlorotUniform()

relu = Rectlin()

conv_params = {'init': init1, 'strides': 1, 'padding': 1}

layers = []

for i, nofm in enumerate([64, 128, 256, 512, 512]):

 i = i + 1

 layers.append(Conv((3, 3, nofm), **conv_params, name='conv%d_1' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_1_bias' % i))

 layers.append(Activation(Rectlin()))

 layers.append(Conv((3, 3, nofm), **conv_params, name='conv%d_2' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_2_bias' % i))

 layers.append(Activation(Rectlin()))

 if (nofm > 128):

 layers.append(Conv((3, 3, nofm), **conv_params, name='conv%d_3' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_3_bias' % i))

 layers.append(Activation(Rectlin()))

 layers.append(Pooling(2, strides=2))

layers.append(Affine(nout=4096, init=initfc,

 bias=Constant(0), activation=Rectlin(),

 name='fc6_new'))

layers.append(Dropout(keep=0.5))

layers.append(Affine(nout=4096, init=initfc,

 bias=Constant(0), activation=Rectlin(),

 name='fc7_new'))

layers.append(Dropout(keep=0.5))

layers.append(Affine(nout=2, init=initfc,

 bias=Constant(0), activation=Softmax(),

 name='cls_imdb_wiki_face'))

5

The original VGG-16 network has 1000 outputs, so the last layer of the network is changed so that the

number of outputs becomes two. Let’s pay attention to the layer parameter name. This parameter allows

you to set the layer identifier. You can see that the value of this parameter is specified for all layers in the

network description. When using the transfer learning, the layer identifier is a convenient and flexible

way of identifying layers that need to be transferred from the original model to the new one. In the

process of copying weights, only layers with the same identifiers are considered. If the layer is not

supposed to be copied, you must define a unique identifier for it. The original network is trained for

images, the size of which does not exceed 224х224 pixels. Suppose that the input images of the dataset

have a different size, for example 256x256. The original network contains parametric layers of two types:

convolutional and fully-connected layers. One of the useful properties of convolutional layers is the

invariance of the parameter number relative to the size of the input image, so convolutional layers can be

copied unchanged. In the case of fully-connected layers, the number of synaptic connections coincides

with the size of the input image or the output of the previous layer. When you change the size of the

input, the number of parameters also changes. Thus, fully-connected layers cannot be copied. To avoid

copying the parameters of fully-connected layers, we define new identifiers for them.

Further, we need to create a list of network layers and a model.

from neon.models import Model

layers = []

the list of layers of the network presented above

...

model = Model(layers)

As a result, a new model is being constructed that allows solving the classification problem with two

categories. The developed model can be trained using weights from the original model.

Define the cost function to optimize the network parameters. In this case, the binary cross-entropy

function is used.

from neon.transforms import CrossEntropyBinary

cost = GeneralizedCost(costfunc=CrossEntropyBinary())

For convenience, we will place the model construction code in a separate file tl_models.py. For the

model, we create a separate function of the following form:

def generate_vgg_16_transfer_model():

 init1 = Xavier(local=True)

 initfc = GlorotUniform()

 relu = Rectlin()

 conv_params = {'init': init1, 'strides': 1, 'padding': 1}

 layers = []

 for i, nofm in enumerate([64, 128, 256, 512, 512]):

 i = i + 1

 layers.append(Conv((3, 3, nofm), **conv_params, name='conv%d_1' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_1_bias' % i))

 layers.append(Activation(Rectlin()))

 layers.append(Conv((3, 3, nofm), **conv_params, name='conv%d_2' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_2_bias' % i))

 layers.append(Activation(Rectlin()))

 if nofm > 128:

 layers.append(Conv((3, 3, nofm), **conv_params,

 name='conv%d_3' % i))

 layers.append(Bias(init=Constant(0), name='conv%d_3_bias' % i))

 layers.append(Activation(Rectlin()))

 layers.append(Pooling(2, strides=2))

 layers.append(Affine(nout=4096, init=initfc,

6

 bias=Constant(0), activation=Rectlin(), name='fc6_new'))

 layers.append(Dropout(keep=0.5))

 layers.append(Affine(nout=4096, init=initfc,

 bias=Constant(0), activation=Rectlin(), name='fc7_new'))

 layers.append(Dropout(keep=0.5))

 layers.append(Affine(nout=2, init=initfc,

 bias=Constant(0), activation=Softmax(), name='cls_imdb_wiki_face'))

]

 model = Model(layers)

 cost = GeneralizedCost(costfunc=CrossEntropyBinary())

 return model, cost

The model can be created using the following code:

import tl_models

model, cost = models. generate_vgg_16_transfer_model()

3.2 Training and testing the network

3.2.1 Script structure

The script for training and testing models consists of several logical parts:

1. Initialization. Provides, in particular, a specification of the device on which the model is trained and

tested.

2. Preparing and loading data. Assumes the call of functions developed in the preliminary practice.

3. Creating the target model. Provides for the call of functions developed earlier in this practice.

4. Loading the original model and transferring weights to the target model.

5. Training the target model. Assumes selection of the optimization method, setting its parameters and

calling the backpropagation method.

6. Testing the target model. It implies the feed forward of the neural network for the samples of the test

dataset and calculating the quality of the constructed model.

7. Save the output of the target model. Saves the network output values for the test dataset.

Let us consider in more detail the development of each logical part of the script.

3.2.2 Initialization

Before using neon, you must initialize the framework. You should set the device on which the

calculations will be performed, the batch size of training samples, the element data type, and other

parameters. Initialization is performed by the function gen_backend [10]:

from neon.backends import gen_backend

be = gen_backend(‘gpu’, batch_size=10)

3.2.3 Loading data

The steps for preparing the data are described in detail in the preliminary practice. After these steps are

completed, the data files for the train and test subsets of the IMDB-WIKI dataset must be generated. We

assume that the files are located in the data_wiki directory and are called train.h5 and test.h5. To

load data in HDF5 format, the type HDF5Iterator [11] is used. It allows you to load batches from

external memory, the batch size is specified when initializing neon. To load the data, you need to create

two objects:

from neon.data import HDF5Iterator

train_set = HDF5Iterator(‘data_wiki/train.h5’)

test_set = HDF5Iterator(‘data_wiki/test.h5’)

These objects provide access to the elements of the dataset.

HDF5Iterator provides the data in the saved format. In the dataset, class labels are stored in a

numerical form. In the case of the classification problem, neon requires class labels in one-hot

7

representation, in which the target object category is described not by a number, but by a vector of length

equal to the number of categories. The specified vector contains zeros in all elements except one that

matches the index of the target class. To automatically convert data from an index representation to one-

hot, the type HDF5IteratorOneHot is used.

from neon.data import HDF5IteratorOneHot

train_set = HDF5IteratorOneHot(‘data_wiki/train.h5’)

test_set = HDF5IteratorOneHot(‘data_wiki/test.h5’)

3.2.4 Creating model

Using the previously created script with model description, construct the model by calling the

corresponding function.

import models

model, cost = models.generate_vgg_16_transfer_model()

3.2.5 Transferring target model

neon provides tools for saving and loading models. To load the trained model VGG-16 from a file, use

the load_obj function [12].

from neon.util.persist import load_obj

pretrained_model_filepath = ‘VGG_D.p’

pretrained_model = load_obj(pretrained_model_filepath)

Further, we need to copy layers from the trained model to the target one. First, we need to get a set of

layers from the target model. This can be done by calling the get_description [13] method for the

model object or by directly accessing the layers field.

pdesc = model.get_description(get_weights=True)

pdesc['model']['config']['layers'] is a dictionary with descriptions

of layers and weights

layers = model.layers.layers

layers is a dictionary with descriptions of layers and weights

Let us implement a function for copying weights from one model to another. The function performs the

following steps:

 Creates associative arrays of layers of the original model and the target one. The key is the layer

name.

 Constructs an array of layers for which the weights are copied.

 For each layer of the target model, checks for a layer in the source model and, if found, copies the

weights. To copy weights, we use the method load_weights [14] for the layer object.

 Returns an array of layers for which weights are copied.

def import_matching_layers(source_model, target_model):

 source_model_layers = {l['config']['name']: l \

 for l in source_model['model']['config']['layers']}

 print("Source model has layers:", source_model_layers.keys())

 imported_layers = []

 target_model_layers = target_model.layers.layers

 for i, target_layer in enumerate(target_model_layers):

 target_layer_desc = target_layer.get_description()

 source_layer = \

 source_model_layers.get(target_layer_desc['config']['name'])

 if (source_layer is not None):

 target_layer.load_weights(source_layer)

 imported_layers.append(target_layer.name)

 print("Successfully copied layer #%d '%s'" \

8

 % (i, target_layer.name))

 else:

 print("Unable to copy layer #%d '%s'" \

 % (i, target_layer.name))

 return imported_layers

The function is called as follows:

imported_layers = import_matching_layers(pretrained_model, model)

3.2.6 Training model

To train the model, we need to set an optimization algorithm and its parameters. neon provides several

optimization algorithms [15]. In deep learning, stochastic gradient descent (SGD) [16] is widely used. We

use it to optimize the model parameters. As a rule, for copied layers the smaller values of the learning rate

are used during transfer learning. neon allows you to specify different optimization algorithms and

parameters for each network layer. We will adjust the optimization algorithm so that small values of the

learning rate are used for the transferred layers. We use an object of the type MultiOptimizer [17],

which allows to use different parameters of the optimization algorithm. The constructor of

MultiOptimizer takes a parameter that defines optimization algorithms for network layers. The

parameter is an associative array with the key of the layer identifier and the value of the optimization

algorithm for the layer. If there is no entry for the layer in the array, then the element is used by default

key. Let’s designate the optimization algorithm, used by default, as GradientDescentMomentum. For

the copied layers of the network, we will create similar optimizers with the changed learning rate

parameter. The list of copied layers was obtained earlier and is stored in the variable imported_layers.

from neon.optimizers import GradientDescentMomentum, MultiOptimizer

base_lr = 0.001

default_optimizer = GradientDescentMomentum(

 base_lr, momentum_coef=0.9, wdecay=0.0005)

optimizers_mapping = {'default': default_optimizer}

imported_layers_optimizer_params = \

 default_optimizer.get_description().copy()['config']

imported_layers_optimizer_params['learning_rate'] = base_lr * 0.001

imported_layers_optimizer = \

 GradientDescentMomentum(**imported_layers_optimizer_params)

optimizers_mapping.update(

 {l: imported_layers_optimizer for l in imported_layers})

optimizer = MultiOptimizer(optimizers_mapping)

To train the network, you must perform the following actions:

from neon.callbacks.callbacks import Callbacks

callbacks = Callbacks(model)

model.fit(train_set, optimizer=optimizer,

 num_epochs=10, cost=cost, callbacks=callbacks)

Here, training is conducted on the training dataset. Duration of training is equal to 10 epochs. The epoch

is equivalent to one complete traversal of the training dataset. To preserve the properties of the stochastic

gradient descent algorithm, it is required to ensure random selection of data samples from the set. It was

done at the step of mixing the dataset during preprocessing. The callbacks parameter allows you to

specify the functions that will be called during the training. For example, you can organize testing the

model at the end of the epoch.

3.2.7 Testing model

To assess the classification quality, use the following code:

9

from neon.transforms import Accuracy

accuracy = model.eval(test_set, metric=Accuracy())

print('Accuracy = %.1f%%' % (accuracy * 100))

Here the quality metric is specified. For the classification problem, the Accuracy is used, this metric

reflects the number of correctly classified samples. The specified metric is calculated for the test dataset.

3.2.8 Saving classification results

The ultimate goal of training network is to get the network output on some data set. You can use the

following code:

outputs = model.get_outputs(test_set)

Saving output to a file can be implemented as follows:

import numpy as np

def save_inference(output_file_name, outputs, subset):

 with open(output_file_name, 'w') as output_file:

 output_file.write('inference, target\n')

 outputs_iter = iter(outputs)

 try:

 for dataset_batch in subset:

 targets = np.transpose(dataset_batch[1].get())

 for target in targets:

 output = next(outputs_iter)

 target_class = np.argmax(target, axis=0)

 output_file.write('%s, %s\n' % (output, target_class))

 except StopIteration as e: # the last batch might be incomplete

 pass

 output_file.close()

save_inference('inference.txt', outputs, test_set)

This code traverses the dataset and network outputs. The results are saved to a file in the format:

[confidence of the 1st class, confidence of the 2d class], correct class

3.3 Execution of training and testing model

3.3.1 Execution without specifying the parameters

It is assumed that a script for training and testing a deep model has been developed. For definiteness, we

assume that it is stored in a file called main_transfer.py. The script is launched from the command

line:

. .venv/bin/activate

python main_transfer.py

3.3.2 Startup parameterization

The startup process has many parameters related to working with neon, a data source, a neural network,

training and testing parameters. All these parameters can be fixed in the script, changing them as

necessary. Another way is to add command line arguments.

neon provides class for processing and using command line arguments. The type NeonArgparser [18] is

used for processing command line arguments. The following code demonstrates how to create the object

and parse arguments.

from neon.util.argparser import NeonArgparser

parser = NeonArgparser()

args = parser.parse_args()

10

After executing this code, the args variable will contain a set of command line parameters. neon

initialization will be performed automatically taking into account the input parameters. You can perform

custom settings as follows:

parser.add_argument('--data_root', default='./data_wiki')

After parsing the parameters, the value of the new parameter is extracted as follows:

data_root = args.data_root

train_set = HDF5IteratorOneHot(data_root + ‘/train.h5’)

test_set = HDF5IteratorOneHot(data_root + ‘/test.h5’)

Let us specify the parameter of the transferred model:

parser.add_argument('--source_model', default=None)

We use a new parameter for loading weights on demand:

Imported_layers = []

if (args.source_model is not None):

 pretrained_model = load_obj(args.source_model)

 imported_layers = import_matching_layers(pretrained_model, model)

3.3.3 Execution with input parameters

To run the script, you need to set some input parameters. You can run it using the following command:

python main_transfer.py –b gpu –e 10 –z 32 -–data_root data_wiki \

 -–serizalize 5 -–save_path model.prm --source_model VGG_D.p

Let us consider in details the list of parameters.

 b <cpu, mkl, gpu> provides a backend initialization.

 e <number> sets the number of epochs.

 z <number> sets the batch size.

 data_root <dir> specifies the directory containing input data.

 serialize <number>, save_path <name.prm> ensures that the model is saved during training

after <number> epochs in a file <name.prm>.

 source_model <path.prm> provides a file with trained parameters of the original model.

A full list of available parameters can be obtained by passing the –-help option.

To improve the usability, it is recommended to create a shell-script containing the required command line.

In such script, you can additionally perform initialization of environment variables and activation of the

virtual environment.

3.3.4 Carrying out different types of transfer learning experiments

Using the structure of a deep model constructed to solve the original task, with the aim of training a

similar model for solving the target task. To implement this transfer experiment, it is sufficient to train

the developed model with randomly initialized weights. Thus it is necessary to establish uniform value of

the learning rate.

imported_layers_optimizer_params['learning_rate'] = base_lr

The weights of the trained model VGG-16 is not imported. It is sufficient not to set the trained model as

an input parameter to the script. Below is the command line for running the script for this experiment.

python main_transfer.py –b gpu –e 10 –z 32 -–data_root data_wiki \

 -–serizalize 5 -–save_path model.prm

Fine-tuning the parameters of the model constructed to solve the original task, with the aim of

solving the target task. For this experiment, you need to import the weights of the trained model VGG-

16 into the target model and train the parameters of all layers. At the same time for imported layers it

makes sense to set small values of the learning rate.

imported_layers_optimizer_params['learning_rate'] = base_lr * 0.001

In this case, the launch of the script must be performed using the following command:

11

python main_transfer.py –b gpu –e 10 –z 32 -–data_root data_wiki \

 -–serizalize 5 -–save_path model.prm --source_model VGG_D.p

Using a model constructed to solve the original task as a method of feature extraction in

constructing a model that solves the target task. It is required to carry out the transfer learning and to

establish for the transferred layers the reduced learning rate. When implementing this experiment, it is

necessary to import the weights of the trained model VGG-16 into the target model, fix their values and

train the parameters of the fully-connected layers. The learning rate for the transferred layers should be

set to zero.

imported_layers_optimizer_params['learning_rate'] = 0

The script is launched by the command shown below.

python main_transfer.py –b gpu –e 10 –z 32 -–data_root data_wiki \

 -–serizalize 5 -–save_path model.prm --source_model VGG_D.p

Full sources of the example can be found in the materials of this course:

Practice3_tl/main_transfer.py и models/tl_models.py.

4 Literature

4.1 Books

1. Haykin S. Neural Networks: A Comprehensive Foundation. – Prentice Hall PTR Upper Saddle River,

NJ, USA. – 1998.

2. Osovsky S. Neural networks for information processing. – 2002.

3. Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. – 2016. –

[http://www.deeplearningbook.org].

4.2 References

4. Intel® neon™ Framework: [https://github.com/nervanasystems/neon]

5. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition //

arXiv preprint arXiv:1409.1556. – 2014. [https://arxiv.org/pdf/1409.1556].

6. ImageNet Large Scale Image Recognition Challenge [http://www.image-net.org/challenges/LSVRC].

7. IMDB-WIKI dataset [https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki].

8. Intel® neon™ Framework: VGG-16

[https://github.com/NervanaSystems/ModelZoo/tree/master/ImageClassification/ILSVRC2012/VGG]

9. Intel® neon™ Framework: VGG-16, model description

[https://github.com/NervanaSystems/ModelZoo/blob/master/ImageClassification/ILSVRC2012/VGG

/vgg_neon.py].

10. Intel® neon™ Framework: backend initialization

[http://neon.nervanasys.com/docs/latest/generated/neon.backends.gen_backend.html#neon.backends.

gen_backend].

11. Intel® neon™ Framework: HDF5Iterator

[http://neon.nervanasys.com/docs/latest/generated/neon.data.hdf5iterator.HDF5Iterator.html#neon.dat

a.hdf5iterator.HDF5Iterator].

12. Intel® neon™ Framework: load_obj

[http://neon.nervanasys.com/docs/latest/generated/neon.util.persist.load_obj.html#neon.util.persist.loa

d_obj].

13. Intel® neon™ Framework: get_decription

[http://neon.nervanasys.com/docs/latest/generated/neon.models.model.Model.html#neon.models.mod

el.Model.get_description].

14. Intel® neon™ Framework: load_weights

[http://neon.nervanasys.com/docs/latest/generated/neon.layers.layer.Layer.html#neon.layers.layer.La

yer.load_weights].

12

15. Intel® neon™ Framework: optimization methods

[http://neon.nervanasys.com/docs/latest/optimizers.html].

16. Intel® neon™ Framework: GradientDescentMomentum

[http://neon.nervanasys.com/docs/latest/generated/neon.optimizers.optimizer.GradientDescentMomen

tum.html#neon.optimizers.optimizer.GradientDescentMomentum].

17. Intel® neon™ Framework: MultiOptimizer

[http://neon.nervanasys.com/docs/latest/generated/neon.optimizers.optimizer.MultiOptimizer.html#ne

on.optimizers.optimizer.MultiOptimizer].

18. Intel® neon™ Framework: NeonArgparser

[http://neon.nervanasys.com/docs/latest/generated/neon.util.argparser.NeonArgparser.html#neon.util.

argparser.NeonArgparser].

