
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Introduction to deep learning

using the Intel® neon™ Framework»

Practice №2

The development of convolutional neural networks

using the Intel® neon™ Framework

Supported by Intel

Zhiltsov Maxim, Kustikova Valentina

Nizhny Novgorod

2018

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

3 Manual ... 3

3.1 Convolutional neural network ... 3

3.2 Training and testing the network ... 5

3.2.1 Script structure .. 5

3.2.2 Initialization .. 6

3.2.3 Loading data .. 6

3.2.4 Creating model .. 6

3.2.5 Training model .. 6

3.2.6 Testing model .. 7

3.2.7 Saving classification results .. 7

3.3 Execution of training and testing model .. 7

3.3.1 Execution without specifying the parameters ... 7

3.3.2 Startup parameterization ... 8

3.3.3 Execution with input parameters ... 8

4 Literature ... 8

4.1 Books ... 8

4.2 References ... 8

3

1 Introduction

This practice is aimed at studying convolutional neural networks and developing the simplest

architectures of the specified models using Intel® neon™ Framework to solve a practical problem. The

use of convolutional networks is demonstrated using the example of solving the problem of classifying a

person’s sex by a photo. IMDB-WIKI [4] is used as the data set. This sequence of convolutional network

development can be used to solve other classification problems if the functions for loading and reading

data in the format required by the Intel® neon™ Framework are implemented.

2 Guidelines

2.1 Goals and tasks

The goal of this practice is to study the general scheme for constructing convolutional neural networks

and to develop some architectures of convolutional models using the Intel® neon™ Framework to solve

the problem of classifying a person's sex by a photo.

To achieve this goal, it is necessary to solve the following tasks:

1. Study the general scheme of constructing convolutional neural networks.

2. Study the tools of the Intel® neon™ Framework for working with convolutional networks.

3. Develop a script for training and testing of deep models to solve the problem of classifying a person’s

sex by the photo.

4. Develop a model of a convolutional neural network and describe it using the Intel® neon™

Framework.

5. Train the model and evaluate the quality of the classification.

2.2 Practice structure

This practice demonstrates the general scheme of the development and application of convolutional

neural networks in the Intel® neon™ Framework. First, an example of the development of a

convolutional network is given. First, the test and train data are loaded. Further, an example of a

multilayered fully-connected network is represented. A script is developed that provides training and

testing of the network, as well as saving the results of solving the problem. The work is carried out on the

example of the problem of classifying a person's sex by the photo. IMDB-WIKI [4] is used as the dataset.

2.3 Recommended study sequence

The recommended study sequence is as follows:

1. Study the tools of working with convolutional neural networks in the neon framework. You can use

the lecture materials and documentation of the neon framework.

2. Develop a model of a convolutional neural network.

3. Load train and test data.

4. Develop a script for training and testing the constructed model.

5. Save the classification results.

3 Manual

3.1 Convolutional neural network

The model construction includes a description of the neural network structure and the assignment of the

cost function used during training. The network model allows to represent the sequence of transforms on

the input data. The main component of the model is the layer. neon provides access to a variety of typical

layers, a complete list of layers can be found in the documentation [5].

To solve the classification problem with two categories, we will create a description of a simple model

containing one convolutional layer. Creation of a convolutional layer can be performed as follows:

from neon.layers import Conv

from neon.initializers import Gaussian, Constant

4

from neon.transforms import Rectlin

layer = Conv(fshape=(3, 3, 32), padding=2, strides=3, dilation=4,

 init=Gaussian(0.1),

 bias=Constant(0),

 activation=Rectlin()),

)

In this code, a convolution layer with 32 filters of size 3x3 is created. Additionally, a 2-pixel border

(padding parameter) is added. The step between the application areas of the filter is 3 (stride

parameter). Step between neighboring filter elements is 4 (dilation parameter). The size of the

application area of the filter is calculated by the formula 1 + (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1) ∗ 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 and is 9x9

pixels, the number of training parameters is 3*3 (fig. 1).

Fig. 1. An example of using the 3x3 dilated convolution with the dilation parameter 4

(a light fill corresponds to the field of application of the filter, a dark fill corresponds to the elements

with which the convolution is calculated)

To initialize the weights, a normal distribution with zero mean value and a standard deviation of 0.1 is

used. Creating a convolutional layer using the Conv class, the bias parameter is available, indicating the

need to add shifts. Their initialization is carried out by a constant value equal to zero. As an activation

function, the rectified linear unit Rectlin is used. For complete information on the available parameters,

see the documentation [6].

Further, you need to create a list of network layers and a model.

from neon.models import Model

layers = [layer]

model = Model(layers)

The obtained model consists of one convolutional layer and have 2 outputs.

Let us consider an example of a more complicated model.

layers = [

 DataTransform(transform=Normalizer(divisor=128.0)),

 # resolution 1

 Conv(fshape=(5, 5, 32), padding=2, strides=1, dilation=1,

 init=Kaiming(), bias=Constant(0), activation=Rectlin()),

 Pooling(fshape=(3, 3), padding=1, strides=2, op='max'),

 # resolution 1/2

 Conv(fshape=(3, 3, 64), padding=1, strides=1, dilation=1,

5

 init=Kaiming(), bias=Constant(0), activation=Rectlin()),

 Pooling(fshape=(3, 3), padding=1, strides=2, op='max'),

 # classifier

 Affine(nout=class_count, init=Gaussian(scale=0.1), bias=Constant(0),

 activation=Logistic(shortcut=True))]

model = Model(layers)

In this model, a layer of non-parametric input data conversion is specified – division by a constant of 128.

Such transform allows simulating the division by the standard deviation in the case of a sufficiently large

and diverse set of images. Two convolutional layers with different parameters are created. After the

convolution layers follow max pooling layers – Pooling. These layers allow you to choose the

maximum value in each group size 3x3 input activation maps. The results are processed by a fully-

connected layer with two neurons. Then the logistic activation function is applied. Such network performs

the serial transforms specified by the layers in the network description. Convolution layers in this network

are used to extract features from the original image, while a fully-connected layer with the final activation

performs classification based on extracted features.

Specify the cost function, which is used during optimization of network parameters. In classification

problems, as a rule, the cost function is the cross-entropy. In this case, the binary cross-entropy function is

used.

from neon.transforms import CrossEntropyBinary

cost = GeneralizedCost(costfunc=CrossEntropyBinary())

For convenience, we will place the model construction code in a separate file cnn_models.py. For each

model, we create a separate function of the following form:

def generate_cnn_model():

 layers = [

 DataTransform(transform=Normalizer(divisor=128.0)),

 Conv(fshape=(3, 3, 32), padding=1, strides=1, dilation=1,

 init=Kaiming(), bias=Constant(0), activation=Rectlin()),

 Pooling(fshape=(3, 3), padding=1, strides=2, op='max'),

 Affine(nout=class_count, init=Gaussian(scale=0.1),

 bias=Constant(0), activation=Logistic(shortcut=True))

]

 model = Model(layers)

 cost = GeneralizedCost(costfunc=CrossEntropyBinary())

 return model, cost

The model can be constructed using the following code:

import cnn_models

model, cost = models.generate_cnn_model()

3.2 Training and testing the network

3.2.1 Script structure

The script for training and testing models consists of several logical parts:

1. Initialization. Provides, in particular, a specification of the device on which the model is trained and

tested.

2. Preparing and loading data. Assumes the call of functions developed in the preliminary practice.

3. Creating a model. Provides for the call of functions developed earlier in this practice.

4. Training the model. Assumes setting the optimization method and its parameters, and calling the

backpropagation method.

5. Testing the model. It implies the feed forward of the neural network for the test dataset and the

calculating the quality of the constructed model.

6. Saving the model output. Saves the network output values for the test dataset.

6

Let us consider in more detail the development of each logical part of the script.

3.2.2 Initialization

Before using neon, you must initialize the framework. You should set the device on which the

calculations will be performed, the batch size of training samples, the element data type, and other

parameters. Initialization is performed by the function gen_backend [7]:

from neon.backends import gen_backend

be = gen_backend(‘gpu’, batch_size=10)

3.2.3 Loading data

The steps for preparing the data are described in detail in the preliminary practice. After these steps are

completed, the data files for the train and test subsets of the IMDB-WIKI dataset must be generated. We

assume that the files are located in the data_wiki directory and are called train.h5 and test.h5. To

load data in HDF5 format, the type HDF5Iterator [8] is used. It allows you to load batches from

external memory, the batch size is specified when initializing neon. To load the data, you need to create

two objects:

from neon.data import HDF5Iterator

train_set = HDF5Iterator(‘data_wiki/train.h5’)

test_set = HDF5Iterator(‘data_wiki/test.h5’)

These objects provide access to the elements of the dataset.

HDF5Iterator provides the data in the saved format. In the dataset, class labels are stored in a

numerical form. In the case of the classification problem, neon requires class labels in one-hot

representation, in which the target object category is described not by a number, but by a vector of length

equal to the number of categories. The specified vector contains zeros in all elements except one that

matches the index of the target class. To automatically convert data from an index representation to one-

hot, the type HDF5IteratorOneHot is used.

from neon.data import HDF5IteratorOneHot

train_set = HDF5IteratorOneHot(‘data_wiki/train.h5’)

test_set = HDF5IteratorOneHot(‘data_wiki/test.h5’)

3.2.4 Creating model

Using the previously created script with model descriptions, construct the model by calling the

corresponding function.

import cnn_models

model, cost = models.generate_cnn_model()

3.2.5 Training model

To train the model, you need to set an optimization algorithm and its parameters. In deep learning,

stochastic gradient descent (SGD) is widely used. The following code allows to define optimizer object

that implements a Nesterov's Accelerated Gradient (NAG) algorithm.

from neon.optimizers import GradientDescentMomentum

optimizer = GradientDescentMomentum(0.01, momentum_coef=0.9, wdecay=0.0005)

The learning rate parameter is set to 0.01. In addition, L2-regularization of the model parameters (weight

decay) with coefficient 0.0005 is used. A complete list of algorithm parameters is given in the

documentation [10].

To train the network, you need to perform the following calls:

from neon.callbacks.callbacks import Callbacks

7

callbacks = Callbacks(model)

model.fit(train_set, optimizer=optimizer,

 num_epochs=10, cost=cost, callbacks=callbacks)

Here, training is conducted on the training dataset. Duration of training is equal to 10 epochs. The epoch

is equivalent to one complete traversal of the training dataset. To preserve the properties of the stochastic

gradient descent algorithm, it is required to ensure random selection of data samples from the set. It was

done at the step of mixing the dataset during preprocessing. The callbacks parameter allows you to

specify the functions that will be called during the training. For example, you can organize testing the

model at the end of the epoch.

3.2.6 Testing model

To assess the classification quality, use the following code:

from neon.transforms import Accuracy

accuracy = model.eval(test_set, metric=Accuracy())

print('Accuracy = %.1f%%' % (accuracy * 100))

Here the quality metric is specified. For the classification problem, the Accuracy is used, this metric

reflects the number of correctly classified samples. The specified metric is calculated for the test dataset.

3.2.7 Saving classification results

The ultimate goal of training network is to get the network output on some data set. You can use the

following code:

outputs = model.get_outputs(test_set)

Saving output to a file can be implemented as follows:

import numpy as np

def save_inference(output_file_name, outputs, subset):

 with open(output_file_name, 'w') as output_file:

 output_file.write('inference, target\n')

 outputs_iter = iter(outputs)

 try:

 for dataset_batch in subset:

 targets = np.transpose(dataset_batch[1].get())

 for target in targets:

 output = next(outputs_iter)

 target_class = np.argmax(target, axis=0)

 output_file.write('%s, %s\n' % (output, target_class))

 except StopIteration as e: # the last batch might be incomplete

 pass

 output_file.close()

save_inference('inference.txt', outputs, test_set)

This code traverses the dataset and network outputs. The results are saved to a file in the format:

[confidence of the 1st class, confidence of the 2d class], correct class

3.3 Execution of training and testing model

3.3.1 Execution without specifying the parameters

It is assumed that a script for training and testing a deep model has been developed. For definiteness, we

assume that it is stored in a file called main_classify.py. The script is launched from the command

line:

. .venv/bin/activate

python main_classify.py

8

3.3.2 Startup parameterization

The startup process has many parameters related to working with neon, a data source, a neural network,

training and testing parameters. All these parameters can be fixed in the script, changing them as

necessary. Another way is to add command line arguments.

neon provides class for processing and using command line arguments. The type NeonArgparser [11] is

used for processing command line arguments. The following code demonstrates how to create the object

and parse arguments.

from neon.util.argparser import NeonArgparser

parser = NeonArgparser()

args = parser.parse_args()

After executing this code, the args variable will contain a set of command line parameters. neon

initialization will be performed automatically taking into account the input parameters. You can perform

custom settings as follows:

parser.add_argument('--data_root', default='./data_wiki')

After parsing the parameters, the value of the new parameter is extracted as follows:

data_root = args.data_root

train_set = HDF5IteratorOneHot(data_root + ‘/train.h5’)

test_set = HDF5IteratorOneHot(data_root + ‘/test.h5’)

3.3.3 Execution with input parameters

To run the script, you need to set some input parameters. You can run it using the following command:

python main_classify.py –b gpu –e 10 –z 32 -–data_root data_wiki \

 -–serizalize 5 -–save_path model.prm

Let us consider in details the list of parameters.

 b <cpu, mkl, gpu> provides a backend initialization.

 e <number> sets the number of epochs.

 z <number> sets the batch size.

 data_root <dir> specifies the directory containing input data.

 serialize <number>, save_path <name.prm> ensures that the model is saved during training

after <number> epochs in a file <name.prm>.

A full list of available parameters can be obtained by passing the –-help option.

To improve the usability, it is recommended to create a shell-script containing the required command line.

In such script, you can additionally perform initialization of environment variables and activation of the

virtual environment.

Full sources of the example can be found in the materials of this course:

Practice2_cnn/main_classify.py and models/cnn_models.py.

4 Literature

4.1 Books

1. Haykin S. Neural Networks: A Comprehensive Foundation. – Prentice Hall PTR Upper Saddle River,

NJ, USA. – 1998.

2. Osovsky S. Neural networks for information processing. – 2002.

3. Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press. – 2016. –

[http://www.deeplearningbook.org].

4.2 References

4. IMDB-WIKI dataset [https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki].

9

5. Intel® neon™ Framework: layers [http://neon.nervanasys.com/docs/latest/layers.html].

6. Intel® neon™ Framework: Conv layer

[http://neon.nervanasys.com/docs/latest/generated/neon.layers.layer.Conv.html#neon.layers.layer.Con

v].

7. Intel® neon™ Framework: backend initialization

[http://neon.nervanasys.com/docs/latest/generated/neon.backends.gen_backend.html#neon.backends.

gen_backend].

8. Intel® neon™ Framework: HDF5Iterator

[http://neon.nervanasys.com/docs/latest/generated/neon.data.hdf5iterator.HDF5Iterator.html#neon.dat

a.hdf5iterator.HDF5Iterator].

9. Intel® neon™ Framework: optimizers [http://neon.nervanasys.com/docs/latest/optimizers.html].

10. Intel® neon™ Framework: GradientDescentMomentum

[http://neon.nervanasys.com/docs/latest/generated/neon.optimizers.optimizer.GradientDescentMomen

tum.html#neon.optimizers.optimizer.GradientDescentMomentum].

11. Intel® neon™ Framework: NeonArgparser

[http://neon.nervanasys.com/docs/latest/generated/neon.util.argparser.NeonArgparser.html#neon.util.

argparser.NeonArgparser].

