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1 Introduction 

This practice is aimed at studying convolutional neural networks and developing the simplest 

architectures of the specified models using Intel® neon™ Framework to solve a practical problem. The 

use of convolutional networks is demonstrated using the example of solving the problem of classifying a 

person’s sex by a photo. IMDB-WIKI [4] is used as the data set. This sequence of convolutional network 

development can be used to solve other classification problems if the functions for loading and reading 

data in the format required by the Intel® neon™ Framework are implemented. 

2 Guidelines 

2.1 Goals and tasks 

The goal of this practice is to study the general scheme for constructing convolutional neural networks 

and to develop some architectures of convolutional models using the Intel® neon™ Framework to solve 

the problem of classifying a person's sex by a photo. 

To achieve this goal, it is necessary to solve the following tasks: 

1. Study the general scheme of constructing convolutional neural networks. 

2. Study the tools of the Intel® neon™ Framework for working with convolutional networks. 

3. Develop a script for training and testing of deep models to solve the problem of classifying a person’s 

sex by the photo. 

4. Develop a model of a convolutional neural network and describe it using the Intel® neon™ 

Framework. 

5. Train the model and evaluate the quality of the classification. 

2.2 Practice structure 

This practice demonstrates the general scheme of the development and application of convolutional 

neural networks in the Intel® neon™ Framework. First, an example of the development of a 

convolutional network is given. First, the test and train data are loaded. Further, an example of a 

multilayered fully-connected network is represented. A script is developed that provides training and 

testing of the network, as well as saving the results of solving the problem. The work is carried out on the 

example of the problem of classifying a person's sex by the photo. IMDB-WIKI [4] is used as the dataset. 

2.3 Recommended study sequence 

The recommended study sequence is as follows: 

1. Study the tools of working with convolutional neural networks in the neon framework. You can use 

the lecture materials and documentation of the neon framework. 

2. Develop a model of a convolutional neural network. 

3. Load train and test data. 

4. Develop a script for training and testing the constructed model. 

5. Save the classification results. 

3 Manual 

3.1 Convolutional neural network 

The model construction includes a description of the neural network structure and the assignment of the 

cost function used during training. The network model allows to represent the sequence of transforms on 

the input data. The main component of the model is the layer. neon provides access to a variety of typical 

layers, a complete list of layers can be found in the documentation [5]. 

To solve the classification problem with two categories, we will create a description of a simple model 

containing one convolutional layer. Creation of a convolutional layer can be performed as follows: 

from neon.layers import Conv 

from neon.initializers import Gaussian, Constant 
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from neon.transforms import Rectlin 

 

layer = Conv(fshape=(3, 3, 32), padding=2, strides=3, dilation=4, 

    init=Gaussian(0.1),  

    bias=Constant(0),  

    activation=Rectlin()), 

) 

In this code, a convolution layer with 32 filters of size 3x3 is created. Additionally, a 2-pixel border 

(padding parameter) is added. The step between the application areas of the filter is 3 (stride 

parameter). Step between neighboring filter elements is 4 (dilation parameter). The size of the 

application area of the filter is calculated by the formula 1 +  (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1)  ∗  𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 and is 9x9 

pixels, the number of training parameters is 3*3 (fig. 1). 

           

           

           

           

           

           

           

           

           

           

           

Fig. 1. An example of using the 3x3 dilated convolution with the dilation parameter 4  

(a light fill corresponds to the field of application of the filter, a dark fill corresponds to the elements  

with which the convolution is calculated) 

To initialize the weights, a normal distribution with zero mean value and a standard deviation of 0.1 is 

used. Creating a convolutional layer using the Conv class, the bias parameter is available, indicating the 

need to add shifts. Their initialization is carried out by a constant value equal to zero. As an activation 

function, the rectified linear unit Rectlin is used. For complete information on the available parameters, 

see the documentation [6]. 

Further, you need to create a list of network layers and a model. 

from neon.models import Model 

 

layers = [ layer ] 

model = Model(layers) 

The obtained model consists of one convolutional layer and have 2 outputs. 

Let us consider an example of a more complicated model. 

layers = [ 

    DataTransform(transform=Normalizer(divisor=128.0)), 

 

    # resolution 1 

    Conv(fshape=(5, 5, 32), padding=2, strides=1, dilation=1,  

        init=Kaiming(), bias=Constant(0), activation=Rectlin()), 

    Pooling(fshape=(3, 3), padding=1, strides=2, op='max'), 

 

    # resolution 1/2 

    Conv(fshape=(3, 3, 64), padding=1, strides=1, dilation=1,  
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        init=Kaiming(), bias=Constant(0), activation=Rectlin()), 

    Pooling(fshape=(3, 3), padding=1, strides=2, op='max'), 

 

    # classifier 

    Affine(nout=class_count, init=Gaussian(scale=0.1), bias=Constant(0), 

        activation=Logistic(shortcut=True))] 

model = Model(layers) 

In this model, a layer of non-parametric input data conversion is specified – division by a constant of 128. 

Such transform allows simulating the division by the standard deviation in the case of a sufficiently large 

and diverse set of images. Two convolutional layers with different parameters are created. After the 

convolution layers follow max pooling layers – Pooling. These layers allow you to choose the 

maximum value in each group size 3x3 input activation maps. The results are processed by a fully-

connected layer with two neurons. Then the logistic activation function is applied. Such network performs 

the serial transforms specified by the layers in the network description. Convolution layers in this network 

are used to extract features from the original image, while a fully-connected layer with the final activation 

performs classification based on extracted features. 

Specify the cost function, which is used during optimization of network parameters. In classification 

problems, as a rule, the cost function is the cross-entropy. In this case, the binary cross-entropy function is 

used. 

from neon.transforms import CrossEntropyBinary 

 

cost = GeneralizedCost(costfunc=CrossEntropyBinary()) 

For convenience, we will place the model construction code in a separate file cnn_models.py. For each 

model, we create a separate function of the following form: 

def generate_cnn_model(): 

    layers = [ 

        DataTransform(transform=Normalizer(divisor=128.0)), 

        Conv(fshape=(3, 3, 32), padding=1, strides=1, dilation=1,  

            init=Kaiming(), bias=Constant(0), activation=Rectlin()), 

        Pooling(fshape=(3, 3), padding=1, strides=2, op='max'), 

        Affine(nout=class_count, init=Gaussian(scale=0.1),  

            bias=Constant(0), activation=Logistic(shortcut=True)) 

    ] 

    model = Model(layers) 

    cost = GeneralizedCost(costfunc=CrossEntropyBinary()) 

    return model, cost 

The model can be constructed using the following code: 

import cnn_models 

 

model, cost = models.generate_cnn_model() 

3.2 Training and testing the network 

3.2.1 Script structure 

The script for training and testing models consists of several logical parts: 

1. Initialization. Provides, in particular, a specification of the device on which the model is trained and 

tested. 

2. Preparing and loading data. Assumes the call of functions developed in the preliminary practice. 

3. Creating a model. Provides for the call of functions developed earlier in this practice. 

4. Training the model. Assumes setting the optimization method and its parameters, and calling the 

backpropagation method. 

5. Testing the model. It implies the feed forward of the neural network for the test dataset and the 

calculating the quality of the constructed model. 

6. Saving the model output. Saves the network output values for the test dataset. 
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Let us consider in more detail the development of each logical part of the script. 

3.2.2 Initialization 

Before using neon, you must initialize the framework. You should set the device on which the 

calculations will be performed, the batch size of training samples, the element data type, and other 

parameters. Initialization is performed by the function gen_backend [7]: 

from neon.backends import gen_backend 

 

be = gen_backend(‘gpu’, batch_size=10) 

3.2.3 Loading data 

The steps for preparing the data are described in detail in the preliminary practice. After these steps are 

completed, the data files for the train and test subsets of the IMDB-WIKI dataset must be generated. We 

assume that the files are located in the data_wiki directory and are called train.h5 and test.h5. To 

load data in HDF5 format, the type HDF5Iterator [8] is used. It allows you to load batches from 

external memory, the batch size is specified when initializing neon. To load the data, you need to create 

two objects: 

from neon.data import HDF5Iterator 

 

train_set = HDF5Iterator(‘data_wiki/train.h5’) 

test_set = HDF5Iterator(‘data_wiki/test.h5’) 

These objects provide access to the elements of the dataset. 

HDF5Iterator provides the data in the saved format. In the dataset, class labels are stored in a 

numerical form. In the case of the classification problem, neon requires class labels in one-hot 

representation, in which the target object category is described not by a number, but by a vector of length 

equal to the number of categories. The specified vector contains zeros in all elements except one that 

matches the index of the target class. To automatically convert data from an index representation to one-

hot, the type HDF5IteratorOneHot is used. 

from neon.data import HDF5IteratorOneHot 

 

train_set = HDF5IteratorOneHot(‘data_wiki/train.h5’) 

test_set = HDF5IteratorOneHot(‘data_wiki/test.h5’) 

3.2.4 Creating model 

Using the previously created script with model descriptions, construct the model by calling the 

corresponding function. 

import cnn_models 

 

model, cost = models.generate_cnn_model() 

3.2.5 Training model 

To train the model, you need to set an optimization algorithm and its parameters. In deep learning, 

stochastic gradient descent (SGD) is widely used. The following code allows to define optimizer object 

that implements a Nesterov's Accelerated Gradient (NAG) algorithm. 

from neon.optimizers import GradientDescentMomentum 

 

optimizer = GradientDescentMomentum(0.01, momentum_coef=0.9, wdecay=0.0005) 

The learning rate parameter is set to 0.01. In addition, L2-regularization of the model parameters (weight 

decay) with coefficient 0.0005 is used. A complete list of algorithm parameters is given in the 

documentation [10]. 

To train the network, you need to perform the following calls: 

from neon.callbacks.callbacks import Callbacks 
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callbacks = Callbacks(model) 

model.fit(train_set, optimizer=optimizer, 

    num_epochs=10, cost=cost, callbacks=callbacks) 

Here, training is conducted on the training dataset. Duration of training is equal to 10 epochs. The epoch 

is equivalent to one complete traversal of the training dataset. To preserve the properties of the stochastic 

gradient descent algorithm, it is required to ensure random selection of data samples from the set. It was 

done at the step of mixing the dataset during preprocessing. The callbacks parameter allows you to 

specify the functions that will be called during the training. For example, you can organize testing the 

model at the end of the epoch. 

3.2.6 Testing model 

To assess the classification quality, use the following code: 

from neon.transforms import Accuracy 

 

accuracy = model.eval(test_set, metric=Accuracy()) 

print('Accuracy = %.1f%%' % (accuracy * 100)) 

Here the quality metric is specified. For the classification problem, the Accuracy is used, this metric 

reflects the number of correctly classified samples. The specified metric is calculated for the test dataset. 

3.2.7 Saving classification results 

The ultimate goal of training network is to get the network output on some data set. You can use the 

following code: 

outputs = model.get_outputs(test_set) 

Saving output to a file can be implemented as follows: 

import numpy as np 

 

def save_inference(output_file_name, outputs, subset): 

    with open(output_file_name, 'w') as output_file: 

        output_file.write('inference, target\n') 

        outputs_iter = iter(outputs) 

        try: 

            for dataset_batch in subset: 

                targets = np.transpose(dataset_batch[1].get()) 

                for target in targets: 

                    output = next(outputs_iter) 

                    target_class = np.argmax(target, axis=0) 

                    output_file.write('%s, %s\n' % (output, target_class)) 

        except StopIteration as e: # the last batch might be incomplete 

            pass 

        output_file.close() 

 

save_inference('inference.txt', outputs, test_set) 

This code traverses the dataset and network outputs. The results are saved to a file in the format: 

[confidence of the 1st class, confidence of the 2d class], correct class 

3.3 Execution of training and testing model 

3.3.1 Execution without specifying the parameters 

It is assumed that a script for training and testing a deep model has been developed. For definiteness, we 

assume that it is stored in a file called main_classify.py. The script is launched from the command 

line: 

. .venv/bin/activate 

python main_classify.py 
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3.3.2 Startup parameterization 

The startup process has many parameters related to working with neon, a data source, a neural network, 

training and testing parameters. All these parameters can be fixed in the script, changing them as 

necessary. Another way is to add command line arguments. 

neon provides class for processing and using command line arguments. The type NeonArgparser [11] is 

used for processing command line arguments. The following code demonstrates how to create the object 

and parse arguments. 

from neon.util.argparser import NeonArgparser 

 

parser = NeonArgparser() 

args = parser.parse_args() 

After executing this code, the args variable will contain a set of command line parameters. neon 

initialization will be performed automatically taking into account the input parameters. You can perform 

custom settings as follows: 

parser.add_argument('--data_root', default='./data_wiki') 

After parsing the parameters, the value of the new parameter is extracted as follows: 

data_root = args.data_root 

train_set = HDF5IteratorOneHot(data_root + ‘/train.h5’) 

test_set = HDF5IteratorOneHot(data_root + ‘/test.h5’) 

3.3.3 Execution with input parameters 

To run the script, you need to set some input parameters. You can run it using the following command: 

python main_classify.py –b gpu –e 10 –z 32 -–data_root data_wiki \ 

    -–serizalize 5 -–save_path model.prm 

Let us consider in details the list of parameters. 

 b <cpu, mkl, gpu> provides a backend initialization. 

 e <number> sets the number of epochs. 

 z <number> sets the batch size. 

 data_root <dir> specifies the directory containing input data. 

 serialize <number>, save_path <name.prm> ensures that the model is saved during training 

after <number> epochs in a file <name.prm>. 

A full list of available parameters can be obtained by passing the –-help option. 

To improve the usability, it is recommended to create a shell-script containing the required command line. 

In such script, you can additionally perform initialization of environment variables and activation of the 

virtual environment. 

 

Full sources of the example can be found in the materials of this course: 

Practice2_cnn/main_classify.py and models/cnn_models.py. 
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