
Nizhny Novgorod State University

Institute of Information Technologies, Mathematics and Mechanics

Department of Computer Software and Supercomputer Technologies

Educational course

«Modern methods and technologies

of deep learning in computer vision»

Practice №2

Object detection in images using deep neural networks

Supported by Intel

Vasiliev E.P.

Nizhny Novgorod

2020

2

Content

1 Introduction ... 3

2 Guidelines ... 3

2.1 Goals and tasks .. 3

2.2 Practice structure ... 3

2.3 Recommended study sequence .. 3

3 Object detection using the Intel Distribution of OpenVINO Toolkit .. 3

3.1 Deep models for object detection included in the Open Model Zoo repository 3

3.2 Extensions of layer implementations for deep models inference using Inference Engine 4

3.3 Executing the OpenVINO sample of object detection .. 5

4 Developing the object detection application using the OpenVINO Toolkit ... 6

4.1 File structure .. 6

4.2 Loading model .. 6

4.3 Loading and preprocessing image ... 7

4.4 Inferring model .. 7

4.5 Processing model output ... 7

4.6 Implementing sample .. 8

4.6.1 Parsing command line options .. 8

4.6.2 Implementing main function ... 9

5 Executing developed sample ... 9

6 Additional tasks ... 10

7 Literature ... 10

7.1 Books ... 10

7.2 Further reading .. 10

7.3 References ... 10

3

1 Introduction
In this practice, we solve the problem of object detection and propose its solution using the Intel

Distribution of OpenVINO Toolkit [7]. Pre-trained deep models for object detection included in the Open

Model Zoo repository are used [8].

2 Guidelines

2.1 Goals and tasks
The goal of this practice is to study deep models for solving the problem of object detection using the

Intel Distribution of OpenVINO Toolkit.

To achieve this goal, it is necessary to solve the following tasks:

 Study the lecture “Object detection in images using deep neural networks”.

 Study deep models for object detection included in the Open Model Zoo, and load a model for

further solving the task. This tutorial is based on the example of SSD300 [2].

 Develop an application based on the Inference Engine component for object detection using the

chosen model. The detection result should be displayed on the original image.

 Execute and verify the developed sample.

2.2 Practice structure
First, a brief description of deep models for object detection that are available in the Open Model Zoo is

provided. Further, the application for solving the problem of object detection is developed step-by-step.

2.3 Recommended study sequence
The recommended practice sequence is as follows:

 Study the lecture “Object detection in images using deep neural networks”.

 Setup software environment for the Intel Distribution of OpenVINO Toolkit.

 Study deep models for object detection included in the Open Model Zoo, and load a model for

further solving the task.

 Develop an application based on the Inference Engine component for object detection using the

chosen model. The detection result should be displayed on the original image.

Note that the environment setup is described in detail in the first practice; so this step is omitted in this

tutorial.

3 Object detection using the Intel Distribution of OpenVINO

Toolkit

3.1 Deep models for object detection included in the Open Model Zoo

repository
Currently, there are several architectures of deep models that are used to solve the problem of object

detection.

 Region-based Convolutional Networks (RCNN) [3].

 Region-Based Fully Convolutional Networks (RFCN) [4].

 Single Shot MultiBox Detector (SSD) [2].

 You Only Look Once (YOLO) [5].

More information can be found in the lecture “Object detection in images using deep neural networks”,

which is a part of this course. Here we will consider some models for object detection included in the

Open Model Zoo.

4

Open Model Zoo contains a set of models based on the Single Shot Detector (SSD): ssd300, ssd512,

mobilenet-ssd and others. These models have similar inputs and outputs. The input of the SSD-based

models which were trained using Caffe is a tensor of the size [𝐵 × 𝐶 × 𝐻 ×𝑊], where 𝐵 is the number of

processed images in a batch, 𝐶 is the number of image channels, 𝐻,𝑊 is the height and width of the input

images. The output of the SSD-based models is a tensor of the size [1 × 1 × 𝑁 × 7], in which each row

(the last dimension of the tensor) contains the following parameters: [image_number, classid, score, left,

bottom, right, top], where ‘image_number’ is an image number; ‘classid’ is a class identifier; ‘score’ is a

confidence of the object location in the selected area; ‘left, bottom, right, top’ are coordinates of the

bounding boxes in the range from 0 to 1.

Open Model Zoo also includes the RCNN-based models. There are models faster_rcnn_resnet50_coco,

faster_rcnn_inception_v2_coco, mask_rcnn_resnet50_atrous_coco, mask_rcnn_inception_v2_coco and

some others. The input of the RCNN-based models trained using the TensorFlow library is different from

the SSD-based models. These models converted into intermediate representation have two input tensors:

the first tensor of the size [𝐵 × 𝐶 × 𝐻 ×𝑊] corresponds to the batch of processed images, the second

tensor of the size [𝐵 × 𝐶], where 𝐶 is a vector consisting of three values in the format [𝐻,𝑊, 𝑆], where 𝐻

is an image height, 𝑊 is an image width, 𝑆 is an image scale factor (usually 1). The output of the RCNN-

based models, by analogy with the SSD-based models, is a tensor of the size [1 × 1 × 𝑁 × 7] or [𝑁 × 7],
in which each row (the last dimension of the tensor) contains the following parameters: [image_number,

classid, score, (x_min, y_min), (x_max, y_max)], where ‘image_number’ is an image number; ‘classid’ is

a class identifier; ‘score’ is a confidence of the object location in the selected area; ‘(x_min, y_min),

(x_max, y_max)’ are coordinates of the bounding boxes normalized to the image size in the range from 0

to 1.

In addition to the public models, the Open Model Zoo also contains deep models pre-trained by Intel.

These models solve the problems of detecting specific objects (vehicles, car plates, people, faces, text).

There are the following models: face-detection-retail, person-detection-retail, vehicle-detection-adas,

vehicle-license-plate-detection-barrier-0106 and others. These models have an input and output similar to

the SSD-based models. A full description of the detected classes, input and output for each model is

available in the OpenVINO documentation or directory listed below.

<openvino_dir>/deployment_tools/open_model_zoo/models/intel

3.2 Extensions of layer implementations for deep models inference using

Inference Engine
Deep models consist of a large number of different layers: convolutions, max pooling layers, etc. Usually,

the layer implementation is assigned to the developers of a particular framework. When executing deep

models on the CPU using the OpenVINO Toolkit, layer implementation from the Deep Neural Network

Library (DNNL, previous name MKL-DNN) is used [9]. Over time, new models and new layers are

developed. There is a possibility to extend a set of supported layers. The Inference Engine provides API

to link dynamic libraries with user layer implementation. Thus, the OpenVINO team supports the models,

for which the implementation of layers is not available in DNNL. An example of such layer is the Non-

Maximum Suppression Layer which is the last layer of models based on SSD [2]. A dynamic library with

special layers can be compiled using SSE or AVX instructions to speed up inference. The Intel

Distribution of OpenVINO Toolkit includes a dynamic library by default compiled using the AVX-2

instructions, and it is possible to compile layers using the AVX-512 instructions.

In samples and demos to link a dynamic library of the specific layer implementation, as a rule, it is

required to specify the -l argument and the path to this dynamic library.

python any_openvino_sample.py -l "C:\Program Files

(x86)\IntelSWTools\openvino\deployment_tools\inference_engine\bin\intel64\

Release\cpu_extension_avx2.dll" <other_arguments...>

5

Developing application using the Inference Engine component after creating an IECore environment

object, you should call the add_extension method, which takes two parameters: the path to the

dynamic library and the computational device type ('CPU').

ie = IECore()

ie.add_extension(cpu_extension_path, 'CPU')

3.3 Executing the OpenVINO sample of object detection
The OpenVINO Toolkit contains the detection_sample.py file, which allows you to detect objects

in images using deep neural networks. On the official web-site there is a full description of this example

and execution guide [10]. Here we give a brief information necessary for a quick start.

To detect objects using the corresponding OpenVINO sample, please, download and convert the SSD300

model from the Open Model Zoo repository, and execute the sample. The sequence of commands is given

below, you need to replace the paths in angle brackets with the real paths of your computer.

python "C:\Program Files

(x86)\IntelSWTools\openvino\deployment_tools\tools\model_downloader\downlo

ader.py" --name ssd300 --output_dir <destination_folder>

python "C:\Program Files

(x86)\IntelSWTools\openvino\deployment_tools\tools\model_downloader\conver

ter.py" --name ssd300 --download_dir <destination_folder>

python " C:\Program Files

(x86)\IntelSWTools\openvino\inference_engine\samples\python_samples\

object_detection_sample_ssd\object_detection_sample_ssd.py" -i

<path_to_image> -m <path_to_model>\ssd300.xml -l "C:\Program Files

(x86)\IntelSWTools\openvino\deployment_tools\inference_engine\bin\intel64\

Release\cpu_extension_avx2.dll"

After starting the sample, the output of the sample should be written in the console, and the out.bmp

image with bounding boxes around detections will appear in the current directory (if the directory is open

for writing).

[INFO] Loading network files:

 ssd300.xml

 ssd300.bin

[INFO] Loading Inference Engine

[INFO] Device info:

 CPU

 MKLDNNPlugin version 2.1

 Build 32974

[INFO] CPU extension loaded: C:\Program Files

(x86)\IntelSWTools\openvino\inference_engine\bin\intel64\Release\cpu_exten

sion_avx2.dll

[INFO] File was added:

[INFO] dog.jpg

[WARNING] Image dog.jpg is resized from (300, 300) to (300, 300)

[INFO] Preparing input blobs

[INFO] Batch size is 1

[INFO] Preparing output blobs

[INFO] Loading model to the device

[INFO] Creating infer request and starting inference

[INFO] Processing output blobs

[0,3] element, prob = 0.00579197 (149,576)-(179,600) batch id : 0

[1,3] element, prob = 0.00516128 (860,406)-(912,453) batch id : 0

[2,3] element, prob = 0.00462477 (617,493)-(653,537) batch id : 0

6

...

[195,17] element, prob = 0.0043105 (593,122)-(629,136) batch id : 0

[196,17] element, prob = 0.00430544 (617,498)-(657,520) batch id : 0

[197,17] element, prob = 0.00429488 (0,442)-(29,462) batch id : 0

[198,17] element, prob = 0.0042881 (638,136)-(682,155) batch id : 0

[199,17] element, prob = 0.00425323 (92,437)-(137,458) batch id : 0

[INFO] Image out.bmp created!

[INFO] Execution successful

[INFO] This sample is an API example, for any performance measurements

please use the dedicated benchmark_app tool

The source code of this sample and other demos can be used to study the OpenVINO interface. The next

section provides the step-by-step tutorial for developing your own application for object detection.

4 Developing the object detection application using

the OpenVINO Toolkit

4.1 File structure
For this practice, please, create two files: ie_detector.py is a file containing the

InferenceEngineDetector class, and detection_sample.py is a file containing the testing

code for the InferenceEngineDetector class.

Methods of the InferenceEngineDetector class:

 init is a constructor, it initializes the Inference Engine and loads the model from file.

 _prepare_image is a method to convert the image into the deep model input array.

 detect is a method to detect objects in images using the deep model.

 draw_detection is a method to draw detected objects on the image.

class InferenceEngineDetector:

 def __init__(self, configPath = None, weightsPath = None,

 extension=None, classesPath = None):

 pass

 def _prepare_image(self, image, h, w):

 pass

 def detect(self, image):

 pass

 def draw_detection(self, detections, image, confidence=0.5,

 draw_text=True):

 pass

In the next subsections, we implement the above methods.

4.2 Loading model
In order to load the model, we need to implement the constructor of the InferenceEngineDetector

class placed in the ie_detector.py file. The constructor receives the following required and optional

parameters:

 configPath is a path to the .xml file of the model description.

 weightsPath is a path to the .bin file of the model weights.

 classesPath is a path to the file containing class names for the given detection model.

7

 extension is a path to the file of the specific layer implementation.

The constructor performs the following actions:

 Creating an object of the IECore class.

 Creating an object of the IENetwork class with parameters corresponding to the model paths.

 Loading the created object of the IENetwork class into the IECore object, this means loading

the model into the plugin.

 Loading the class names from the file located at the classesPath path.

Objects of the IECore, IENetwork, ExecutableNetwork classes, should be stored as the

InferenceEngineDetector class fields.

4.3 Loading and preprocessing image
The next step is to implement the _prepare_image method. Deep models require images in a per-

channel format, and not pixel-by-pixel format, input images have to be converted from the format

RGBRGBRG... to the format RRRGGGBBB... The transpose function can be used for such

conversion.

image = image.transpose((2, 0, 1))

It is also required to resize the image to the size of the network input.

image = cv2.resize(image, (w, h))

In common, a 4-dimensional tensor should be set to the model input, for example, tensor [1,3,300,300],

where the first coordinate is the number of images in a batch; 3 is a number of color channels of the

image; 300, 300 are width and height of the image. However, if a 3-dimensional tensor [3,300,300] is set

as the network input, then the OpenVINO Toolkit will automatically add the fourth dimension.

4.4 Inferring model
The following step is to implement the detect method, which launches the inference of a deep model on

the device specified in the constructor. The sequence of operations for the detect method is as follows:

1. Get information about model input and output.

input_blob = next(iter(self.net.inputs))

out_blob = next(iter(self.net.outputs))

2. From the model input, obtain the input dimension required by the model for the image.

n, c, h, w = self.net.inputs[input_blob].shape

3. Preprocess image using the _prepare_image method.

4. Infer the model in synchronous mode.

output = self.exec_net.infer(inputs = {input_blob: blob})

5. Extract the tensor with the detection result from the model output.

output = output[out_blob]

4.5 Processing model output
The output of the most SSD-based models is a tensor of the size [1,1,N,7], in which each row (the last

dimension of the tensor) contains the following parameters: [image_number, classid, score, left, bottom,

right, top], where ‘image_number’ is a number of images; ‘classid’ is a class identifier; ‘score’ is a

confidence of the object location in the selected area; ‘left, bottom, right, top’ are coordinates of the

bounding boxes in the range from 0 to 1.

8

To process the output, you should implement the draw_detection method, which draws the

constructed bounding boxes in the image. The sequence of the actions is as follows. In a loop through the

output rows:

1. Extract the current row of the matrix.

2. Extract the confidence of the detected object (third parameter in the row).

3. If the confidence is greater than a threshold value (0.5 is recommended), then get the class

identifier and the coordinates of the bounding box. The class identifier can be used to get the

class name. To obtain the coordinates of the bounding boxes in the coordinate system associated

with the image, it is necessary to multiply the normalized values obtained from the output tensor

by the height and width of the input image.

4. Draw a rectangle on the image using OpenCV. To draw rectangle, use the cv2.rectangle

function. The parameters description and example of using this function are given below.

cv2.rectangle(img, point1, point2, color, line_width)

 img is an image to draw detections.

 point1 = (x,y) is a tuple of two integers corresponding to the coordinates of the top left

corner of the bounding box.

 point2 = (x,y) is a tuple of two integers corresponding to the coordinates of the bottom

right corner of the bounding box.

 color = (B,G,R) is a tuple of three integers from 0 to 255, which determines the color of the

line.

 line_width = 1 is a floating-point number that determines the thickness of the line.

To display an object class name on the image, use the cv2.puttext function. The parameters

description and example of using the function are given below.

 img is an image to draw detections.

 text is a text for label.

 point are coordinates of the start text position.

 color is a tuple of three integers from 0 to 255, which determines the color of the text.

 text_size = 0.45 is a floating-point number that determines the size of the text.

4.6 Implementing sample

4.6.1 Parsing command line options

In this practice, the following command line arguments will be required:

 Path to the input image (required).

 Path to the model weights file (required).

 Path to the model configuration file (required).

 Path to the dynamic library with custom layers (it is required to infer the SSD-based models on

CPU) (optional).

 Path to the file containing class names (optional).

The implementation of the command line parser using the argparse package is represented below.

def build_argparser():

 parser = argparse.ArgumentParser()

 parser.add_argument('-m', '--model', help = 'Path to an .xml \

 file with a trained model.', required = True, type = str)

 parser.add_argument('-w', '--weights', help = 'Path to an .bin file \

 with a trained weights.', required = True, type = str)

 parser.add_argument('-i', '--input', help = 'Path to \

9

 image file', required = True, type = str)

 parser.add_argument('-l', '--cpu_extension', help='MKLDNN \

 (CPU)-targeted custom layers. Absolute path to a shared library \

 with the kernels implementation', type=str, default=None)

 parser.add_argument('-c', '--classes', help = 'File containing \

 classnames', type = str, default = None)

 return parser

4.6.2 Implementing main function

In the file detection_sample.py create a function main that implements the following steps:

 Parsing command line arguments.

 Creating an object of the InferenceEngineDetector class with the necessary parameters.

 Reading the image.

 Detecting objects in the image.

 Drawing detected bounding boxes in the image.

 Displaying the detection results on the screen.

def main():

 args = build_argparser().parse_args()

 ie_detector = InferenceEngineDetector(configPath=args.model,

 weightsPath=args.weights, device=args.device,

 extension=args.cpu_extension, classesPath=args.classes)

 img = cv2.imread(args.input)

 detections = ie_detector.detect(img)

 image_detected = ie_detector.draw_detection(detections, img)

 cv2.imshow('Image with detections', image_detected)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

 return

5 Executing developed sample
The easiest way to execute your sample is the command line represented below.

python ie_detection_sample.py -i image.jpg -m ssd300.xml -w ssd300.bin \

 -c voc_labels.txt \

 -l "C:\Program Files

(x86)\IntelSWTools\openvino\deployment_tools\inference_engine\bin\intel64\

Release\cpu_extension_avx2.dll"

The -i argument specifies the path to the image, the -m argument specifies the model configuration path,

the -w argument specifies the model weight path, the -c argument specifies the path to the file containing

object class names, the -l argument specifies the path to the dynamic library with custom layers.

The result of the application execution is as follows. A message about the start of the application is

displayed, then a window is opened in which the image with the detected bounding boxes are drawn

(Fig. 1).

[INFO] Start IE detection sample

10

Fig. 1. Example of detected objects

6 Additional tasks
The developed detection sample contains the minimum required functionality. As additional tasks, it is

proposed to provide support for the following features:

1. Loading a video and detecting objects in each frame, drawing detected bounding boxes on each

frame.

2. Supporting other deep models for object detection included in the Open Model Zoo [8].

3. Measuring the time required image processing.

It is proposed to solve these tasks independently using the documentation and examples included in the

OpenVINO Toolkit.

7 Literature

7.1 Books
1. Chollet F. Deep Learning with Python. – Manning Publications Co, NY, USA, – 2017.

2. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.Y., Berg A.C. SSD: Single Shot

MultiBox Detector. – 2016.

3. Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection

and semantic segmentation. – 2014.

4. Dai J., Li Y., He K., Sun J. R-FCN: Object detection via region-based fully convolutional networks. –

2016.

5. Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object

detection. – 2015.

7.2 Further reading
6. Ramalho L. Fluent Python: Clear, Concise, and Effective Programming. – O’Reilly Media, Inc., CA,

USA, 2015.

7.3 References
7. OpenVINO detection sample

[https://docs.openvinotoolkit.org/2019_R3.1/_inference_engine_ie_bridges_python_sample_object_d

etection_sample_ssd_README.html].

8. Open Model Zoo repository of deep models [https://github.com/opencv/open_model_zoo].

11

9. Deep Neural Network Library repository [https://github.com/intel/mkl-dnn].

10. OpenVINO detection sample

[https://docs.openvinotoolkit.org/2019_R3.1/_inference_engine_ie_bridges_python_sample_object_d

etection_sample_ssd_README.html].

