
  

The Ministry of Education and Science of the Russian Federation 

Lobachevsky State University of Nizhni Novgorod 

Computing Mathematics and Cybernetics faculty 

The competitiveness enhancement program  

of the Lobachevsky State University of Nizhni Novgorod  

among the world's research and education centers 

Strategic initiative 

“Achieving leading positions in the field of supercomputer technology  

and high-performance computing” 

 

 

 

 

TBB-Based Parallel Programming  

Lecture 4. Task-Based Programming 

 

 

 

 

 

 

 

Nizhni Novgorod 

2014



 

Lecture 4. Task-Based Programming 

Objectives 

The purpose of this lecture is to study the task-based mechanisms that form the basis of all 

TBB-implemented algorithms. Moreover, tasks enable efficient parallelization of recursive 

algorithms. 

Abstract 

The lecture describes the task mechanism which is the most flexible one for parallel 

programming purposes. It reviews the methods for scheduling and synchronization of task 

execution. The queens problem illustrates a parallel implementation of recursive algorithms 

based on tasks. 

Guidelines 

Tasks are represented in TBB as the tbb::task class. This is a basic class for task 

implementation, i. e. it must be inherited by all user-defined tasks. 

tbb::task contains the virtual method task::execute where computations are performed. This 

method is used to perform the required computations and return the pointer to the next task to be 

executed. If NULL is retuned, a new task is selected from the pool of tasks ready to be executed. 

Each task has a number of related attributes: 

• owner - a thread where the task belongs. 

• parent - an attribute equal either to NULL or to the pointer to another task whose refсount 

field will be reduced by 1 upon completion of the current task. The value of this attribute is 

computed using the parent method. 

• depth is the task depth in the task tree. The value of this attribute can be computed using 

the depth method and set using the set_depth method. 

• refcount is the number of tasks with the current task in the parent field. The refcount 

value can be computed using the refcount method and set using the se_ref_count method. 

Tasks must be created only using the new operator overloaded in the TBB library. Tasks are 

destroyed automatically by means of a virtual destructor. They can also be destroyed manually 

using the task::destroy method. In this case, the refcount field of the destroyed task must be 

equal to 0. 

The task can be in one of five states at any specific time. The task state is changed when 

library methods are called or when specific actions take place (i. e. task::execute completion). 

The TBB library features task::state, the method which returns the current state of the task for 

which it was called. 



For convenience in handling groups of tasks, the library provide the tbb::task_list class. This 

class is actually a task container. 

The basic methods to manage task scheduling and synchronization are as follows: 

• void task::set_ref_count(int count) – sets refcount equal to count. 

• void task::wait_for_all() – waits for all child tasks to be completed. Refcount must be 

equal to the number of child tasks + 1. 

• void task::spawn(task& child) – enqueues the task ready to be executed and returns 

control to the software code that called this method. Current and child tasks must belong to the 

thread that calls the spawn method. child.refcount value must be greater than zero. Before calling 

spawn, use task::set_ref_count to set the number of slave tasks for the parent task. 

The library offers a set of methods enabling reuse of tasks for optimization purpose thus 

supporting reusability of the allocated resources and reduction of contingencies. 

Among the advantages of tasks is that they help implement parallel versions of recursive 

computations with reasonable ease. This is illustrated by the queens problem. 

Recommendations for Students 

The information is mainly sourced from the official TBB web page 

https://www.threadingbuildingblocks.org/. The site features numerous documents and examples. 

A free library version for non-commercial use is also downloadable. 

Andrews (2000) is a recommended introduction into parallel programming. 

Quinn (2004) is also recommended as a description of typical problems of parallel 

programming. 

Practice 

1. Implement a parallel algorithm of Fibonacci sequence computation using logical tasks, 

based on a recursive algorithm. 

2. Implement a function for the problem of vector addition, that has the same functionality 

as parallel_for. 

3. Implement a parallel quicksort version based on tasks. 

4. Rewrite the queens problem solution using recycle_to_reexecute. 

 

Test questions 

1. After calling wait_for_all(), the following takes place: 

a. Refcount value must be set as equal to the number of child tasks plus 1. 

b. (+) Waiting for all child tasks to complete. 

c. Waiting for all tasks to complete. 

2. What structure will you use to parallelize the recursive function? 

a. parallel_for 



b. parallel_reduce 

c. parallel_scan 

d. parallel_ pipeline 

e. (+) task 

3. The software code below: 

MyTask &t = *new (allocate_child()) MyTask(); 

a. Enables correct memory allocation to a task from any function/method. 

b. (+) Enables correct memory allocation to a task only from execute(). 

c. Enables correct memory allocation to a task from main(). 

4. The execute() method of the task class: 

a. (+) Is virtual 

b. Is private. 

c. Returns void. 

d. (+) Returns task*. 

5. The execute() method of an “empty” task: 

a. Must not be implemented. 

b. (+) Must return NULL. 

c. Must return this. 

6. The new(task::allocate_root()) operator: 

a. Creates a child task for the current one. Has to be called from the execute() 

method. 

b. (+) Creates a root task. 

7. The new(this.allocate_child()) operator: 

a. (+) Creates a child task for the current one. Has to be called from the execute() 

method. 

b. Creates a root task. 

8. Memory must be allocated to tasks: 

a. Statically. 

b. Dynamically, using malloc. 

c. (+) Dynamically, using the intentionally overloaded new operator. 

9. tbb::task_list: 

a. (+) Is a container for tasks. 

b. Is intended to store arbitrary objects in the form of a singly-linked list. 

c. Is intended to store arbitrary objects in the form of a doubly-linked list. 

10. The task::recycle_as_continuation() method: 

a. (+) Must be called within the execute method body. 

b. (+) Enables task re-execution upon its completion. 

c. Proceeds to the beginning of the execute function. 



 

References 

1. Intel® Threading Building Blocks Home Page: https://www.threadingbuildingblocks.org/  

2. Intel® Threading Building Blocks Reference Manual: https://software.intel.com/en-

us/node/506130 

3. Intel® Threading Building Blocks User Guide: https://software.intel.com/en-

us/node/506045  

4. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Program-

ming. – Reading, MA: Addison-Wesley. 

5. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, 

NY: McGraw-Hill. 

 

 


