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Practice 1. Parallel Matrix-Vector Multiplication 

Objectives 

The purpose of this practice is to demonstrate parallel algorithms of linear algebra as 

illustrated by the matrix-vector multiplication problem. 

Abstract 

This practice formulates the matrix-vector multiplication problem. It features a sequential 

algorithm implementation. The practice also reviews variations of parallel algorithm 

implementation and offers a parallel_for-based algorithm implementation. 

Guidelines 

Having an easy definition, the matrix-vector multiplication problem is a classical problem 

that helps mastering development, debugging and optimization skills related to sequential and 

parallel programming. Such a wide application range is explained, first of all, by vast 

possibilities to demonstrate standard approaches to computation process engineering and 

efficient implementation of these approaches by means of programming languages. This practice 

deals with one of the possible approaches of solving this problem, its C++ sequential 

implementation and the TBB-based parallelization principles as illustrated by this approach. This 

fill affect only those TBB functions that are related to loop parallelization. 

Multiplication of the matrix А sized m x n by the vector b consisting of n elements results in 

the vector c sized m with each i
th

 element resulting from scalar multiplication of the matrix A i
th

 

row (let us call this row ai) and the vector b. 
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Therefore, obtaining the resulting vector c involves repetition of m operations to multiply 

the matrix A rows by the vector b. Each such operation includes multiplying a matrix row by the 

vector b (n operations) followed by summing the resulting products (n-1 operations). The total 

number of scalar operations required is T1 = m·(2n – 1). 

A general scheme of the subproblem interaction during computations in case of striped data 

decomposition  is shown in Fig. 1. 
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Fig. 1 Computing by means of a parallel matrix-vector multiplication algorithmbased on 

rowwise matrix partitioning 

In the course of multiplication of a dense matrix partitioned into rows or columns by a 

vector, the number of computing operations to obtain the scalar product is the same for all basic 

subtasks. This enables basic subtask merger in a situation when the number of computing 

elements p is less than the number of basic subproblems m (p<m), so that each computing 

element solves several problems that correspond to a continuous sequence of matrix rows. 

Recommendations for Students 

Cormen, Leiserson, Rivest, Stein (2009) is a recommended introduction to algorithms. 

Quinn (2004) is also recommended as a description of typical problems of parallel 

programming. 

Practice 

1. Adapt the existing implementation to a non-square matrix. 

2. Develop a program for multiplication of square matrices. 

3. Develop a rectangular matrix multiplication program. 

 

Test questions 

1. What is the computational complexity of a matrix-vector multiplication algorithm (n is 

the matrix size)? 

a. O(n). 

b. (+) O(n2). 

c. O(n3). 

2. What are the main ways to allocate effort to threads? 

a. (+) Rowwise 

b. (+) Columnwise 

c. (+) Blockwise 

d. By matrix QR and LU-factorization base 

3. What is the total number of scalar operations of a matrix-vector multiplication algorithm 

(m is the number of matrix rows and n is the number of vector columns)? 

a. m•(n – 1). 

b. (+) m•(2n – 1). 



c. m2•n. 

d. m•n2. 

e. 2m•(2n – 1). 

4. What grainsize value is the most suitable for the matrix-vector multiplication problem for 

a 4-core computer (m is the number of matrix rows)? 

a. 4. 

b. (+) m/50. 

c. m/5000. 

5. What is the best for implementation of the matrix-vector multiplication algorithm? 

a. (+) parallel_for 

b. parallel_reduce 

c. task 

6. Pointers to the matrix and multiplied vector: 

a. Must be stored in functor fields 

b. (+) Must be stored in constant functor fields 

c. Must be stored in global variables. 

d. Must be passed to operator(). 

7. Pointer to the resulting vector: 

a. Must be stored in functor fields 

b. (+) Must be stored in constant functor fields 

c. Must be stored in global variables. 

d. Must be passed to operator(). 

8. In its fields, the functor must store: 

a. (+) Pointer to the resulting vector. 

b. (+) Pointers to the matrix and multiplied vector: 

c. Number of the currently processed element. 

d. Number of matrix rows 

e. (+) Number of matrix columns 
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