

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lecture 15. OpenMP-Based Parallel Programming (Сontinued)

Nizhni Novgorod

2014

Lecture_15_. OpenMP-Based Parallel Programming (Сontinued).

This lecture is a follow-up of lecture 3 which studies basic OpenMP directives. The purpose of this

lecture is to review basic ways to ensure thread communication in parallel programs developed using

OpenMP and to study OpenMP functions and environment variables enabling setup of OpenMp-based

program runtime environment.

As it was mentioned earlier, threads are execute within the common address space of a parallel pro-

gram. As a result, parallel thread communication can be ensured by means of shared data accessible by all

threads. The simplest situation is when the shared data are read-only. When the shared data can be modi-

fied by numerous threads, some effort is required to guarantee proper communication. Indeed, let two

threads execute the same program code

n=n+1;

for the shared variable n. Then, depending on execution conditions this operation may be executed se-

quentially (thus yielding a correct result); alternatively, both threads may simultaneously read the n value,

increase it and write a new value in it (thus obtaining a wrong result). Such conditions when the result of

computations depends on the thread execution rate are called race conditions. To avoid race conditions,

one has to make sure that shared variables are modified by only one thread at a time, or, in other words,

that in case of processing shared data threads are subject to mutual exclusion. In OpenMP, mutual exclu-

sion can be ensured by atomic operations, critical sections or special semaphores (locks).

It should be noted that mutual exclusion cuts down the possibility of parallel thread execution: in

case of simultaneous access to shared variables only one thread will be able to continue operation while

the others will be locked and wait for the shared data to be released. One can say that implementation of

thread communication requires the skills of programming on shared memory systems: mutual exclusion is

mandatory for operating shared data, but the resulting thread delays (locks) must be minimized.

Besides mutual exclusion, parallel program execution requires a cetrain degree of synchronization of

computations executed by different threads: for example, data processing in one thread can start only after

such data has been formed in another thread (this is the classical producer–consumer problem). In

OpenMP, synchronization may be ensured by locks or the barrier directive.

This lecture is dedicated to methods for synchronizing access to shared data on shared

memory systems based on OpenMP. It describes a number of new directives (master, single,

barrier, flush, threadprivate, copyin).

See [13] for the most complete information on OpenMP parallel programming on shared

memory systems. A concise description of OpenMP can be found in [2, 14]; [1, 7, 8] also con-

tain some useful information.

There is yet more to read on OpenMP in the Internet. We would advise to visit

www.parallel.ru and www.openmp.org.

http://www.parallel.ru/

For more information on multithread programming see 11] (for ОС Windows) and [12] (for

POSIX Threads).

To study general issues of parallel programming on shared memory systems, one can refer

to [10].

Test questions

1. What are the rules of computation synchronization for parallelized loops in OpenMP?

2. What ways to ensure mutual exclusions can be used in OpenMP?

3. What is meant by an atomic operation?

4. How are critical sections determined?

5. What operations are offered by OpenMP for semaphore variables (locks)?

6. In what cases should we apply barrier synchronization?

7. How is task parallelism ensured in OpenMP (sections directive)?

8. How are single-thread parts of parallel fragments identified (single and master direc-

tives)?

9. How is memory state synchronized (using flush directive)?

10. How are persistent local variables of threads used (threadprivate and copyin direc-

tives)?

Practice

1. Develop a program to solve the problem of finding the maximum value among the matrix

row minimum elements (this problem is part of matrix games)

11
max min ij

j Ni N
y a

  
 .

2. Develop a program for the same problem based on the use of special type matrices (band,

triangular etc). Determine runtime and evaluate the speedup. Perform computational experiments

for various rules of iteration allocation to threads and compare efficiency of parallel computa-

tions (such experiments are appropriate for the problems where loop iteration complexity may

vary).

References

1. Amdahl, G. (1967). Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings, Vol. 30, pp. 483-485, Wash-

ington, D.C.: Thompson Books.

2. Bertsekas, D.P., Tsitsiklis, J.N. (1989). Parallel and distributed Computation. Numerical

Methods. - Prentice Hall, Englewood Cliffs, New Jersey.

3. Grama, A.Y., Gupta, A. and Kumar, V. (1993). Isoefficiency: Measuring the scalabil-

ity of parallel algorithms and architectures. IEEE Parallel and Distributed technology. 1

(3). pp. 12-21.

4. Gustavson, J.L. (1988) Reevaluating Amdahl's law. Communications of the ACM. 31

(5). pp.532-533.

5. Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel Com-

puting. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn., 2003)

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York,

NY: McGraw-Hill.

7. Butenhof D.R. (1007) Programming with POSIX Threads. Boston, MA: Addison-

Wesley Professional., 1997.

8. Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Melon R. Parallel Pro-

gramming in OpenMP. San-Francisco, CA: Morgan Kaufmann Publishers., 2000.

9. Addison-Wesley Microsoft Technology Series Addison-Wesley Professional; 4 edition

(February 26, 2010)

