

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lecture 4. Principles of Parallel Method Development

Nizhni Novgorod

2014

Lecture _4_. Principles of Parallel Method Development

Development of parallel computation methods for solving time-consuming problems is al-

ways a serious work. To simplify the theme under consideration, we will leave aside the mathe-

matical aspect of development and the proof of algorithm convergence, as these issues are to this

or that extent considered in a number of “classical” courses of mathematics. Here we will as-

sume that the computation schemes for solving the problems discussed further are already

known.
)

 With regard to these assumptions, the course of actions to develop efficient parallel

computation methods may be as follows:

 To analyze the available computational schemes and subdivide them (decompose) in

parts (subtasks), which may be computed to substantial degree independently,

 To evolve the information interactions that should be carried out between subtasks in the

course of solving the originally formulated problem,

 To define the computer system, which is necessary (or available) for solving the problem,

and distribute the formulated set of subtasks among the system processors.

If we consider the problem in the most general way, it becomes evident that the amount of

computations for each processor being used should be approximately the same. It provides for

the uniform computational processor loading (load balancing). It is also evident that the distribu-

tion of subtasks among the processor should be carried out in such a way that the number of in-

formation links (communication interactions) among the subtasks should be minimal.

Problem Decomposition

into Subtasks

Analysis of Information

Dependencies

Scaling the Subtasks

Distributing the Subtasks

among Processors

Figure 4.1.Parallel algorithm development scheme

 In spite of the fact that for many scientific and technical problems not only sequential but also parallel solving methods are known, this

assumption is, of course, strong. Actually the algorithm development process for the newly emerging problems, which require time-consuming

computations, is a considerable part of all the work performed.

After carrying out all the design stages mentioned above, it is possible to evaluate the effi-

ciency of the developed parallel methods. For this purpose the quality characteristics for the gen-

erated parallel computations should be evaluated (speedup, efficiency, scalability). It may appear

to be necessary to repeat some (in the limiting case even all) design stages according to the re-

sults of the analysis. It should be mentioned that the return to the previous design stages may

happen at any stage of parallel computational scheme design.

In this respect the additional action, which is repeated frequently in the design scheme de-

scribed above, is the adjustment of the number of the formulated subtasks after the available

number of processors has been defined. The subtasks may be aggregated, if only a small number

of processors are available, or vice versa subdivided. In general these actions may be considered

as scaling the developed algorithm and may be added as a separate stage of parallel computation

design.

To apply the parallel method, which is eventually obtained, it is necessary to develop pro-

grams for solving the formulated set of subtasks and distribute these programs among the pro-

cessors in accordance with the selected distribution scheme. The developed program code must

ensure solution of the subtask set. To put this into practice, one will, for example, have to im-

plement solution for each subtask of a program, but more often one writes a program encorporat-

ing all steps required to solve all the subtasks. Such a program code (metaprogram) is developed

so that the program, depending on control parameters, is able to be set for solving the required

subtask (the computing element number can be used as the control parameter). For the purpose

of computing, this metaprogram can be copied for all computing elements – such approach is

used by MPI for distributed memory multiprocessor systems; programs executed for different

computing elements are usually called processes. Metaprograms can be used to generate sets of

separate command threads – this happens in case when OpenMP runs on shared memory systems.

The parallel program is run for the purpose of computation. For information exchange, the

parts of program (processes or threads) executed in parallel must have access to data transmis-

sion facilities (message channels in case of distributed memory systems or shared variables for

shared memory systems).

Each computing element (CPU or CPU core) of the system is usually dedicated to solve one

and only subtask; however, in case of numerous subtasks or restricted number of computing el-

ements this rule cannot be observed, which results in simultaneous execution of several parallel

program sections (processes or threads) by the computing elements. Specifically, for develop-

ment and initial check of a parallel program, one computing element can be used to execute all

its parallel parts (if placed within the same computing elements, the parallel program parts are

time-shared).

It should be noted that the developed design and implementation system for parallel compu-

tations was initially intended for distributed memory systems where communication is based on

messaging by processors via communication channels. However, this scheme may also be ap-

plied to shared memory systems without losing parallel computation efficiency: in this case,

mechanisms of passing messages are replaced by operations of accessing shared variables. To

make further educational materials less complex, the scheme of design and implementation of

parallel computations will be described as applicable to shared memory systems.

This Section has been written based essentially on the teaching materials given in Foster

(1995) and Quinn (2004).

This Section has been written based essentially on the teaching materials given in Kumar, et

al. (1994), Pfister (1995) and Quinn (2004).

The lecture is dedicated to the described method for parallel algorithm development.

Test questions

1. What are the basic stages of the methodology of parallel computation design and devel-

opment?

2. How is the “subtasks-messages” model defined?

3. How is the “processors-channels” model defined?

4. What basic requirements should be met in parallel algorithm development?

5. What are the basic operations at the stage of subtask selection?

6. What are the basic operations at the stage of analyzing information dependencies?

7. What are the main operations at the stage of scaling the available subtask set?

8. What are the main operations at the stage of distributing subtasks among the processors

of a computer system?

9. How does the “manager-worker” scheme provide dynamic management ofe computa-

tional load?

10. Which parallel computation method was developed for solving the gravitational

problem of N bodies?

Practice

1. Design a scheme of parallel computations using the methodology described in the lecture

for designing and developing parallel methods:

 For the problem of searching the maximum value among minimal elements of matrix

rows (such calculations occur in solving the problems of matrix games):

ij
NjNi

ay

11

minmax ,

(pay special attention to the situation when the number of processors exceeds the matrix order,

i.e. p>N),

 For the problem of computing a definite integral using the method of rectangles:

Nabhhixxfffhdxxfy iii

N

i

i

b

a

/)(,),(,)(

1

0

.

Reference

1. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Program-

ming.. – Reading, MA: Addison-Wesley

2. Bertsekas, D.P., Tsitsiklis, J.N. (1989) Parallel and distributed Computation. Numerical

Methods. - Prentice Hall, Englewood Cliffs, New Jersey.

3. Buyya, R. (Ed.) (1999). High Performance Cluster Computing. Volume1: Architectures and

Systems. Volume 2: Programming and Applications. - Prentice Hall PTR, Prentice-Hall Inc.

4. Kahaner, D., Moler, C., Nash, S. (1988). Numerical Methods and Software. – Prentice Hall

5. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY:

McGraw-Hill.

7. Wilkinson, B., Allen, M. (1999). Parallel programming. – Prenrice Hall.S

