

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lecture 1. Introduction

Nizhni Novgorod

2014

Lecture 1_ Introduction

Among numerous laws that govern the computer world there is one that is truly fundamental: this

is continuous hardware performance improvement. The importance of hardware performance growth is

to a large extent due to industry demands as better performing computers facilitate solution of computa-

tionally intensive sci-tech problems. Furhermore, performance improvement makes it possible to solve

more complex problems and extend the research frontiers on an ongoing basis. The complexity of prob-

lems to be solved by computers is now immense, being many times higher that we could imagine five

or ten years ago.

Computer performance growth is also encouraged by continuous improvement in the field of

hardware engineering. Hardware manufacturers have to comply with Moore’s law which states that

the system performance must double each 18 months. Until quite recently, computer performance

was to a large extent ensured by increasing CPU frequency. However, the possibilities offered by this

approach are limited: at a certain point, further CPU frequency improvement will require considera-

ble engineering effort thus entailing increased energy use and unsurmountable problems of heat co n-

trol.

In this context, fundamental changes in the hardware engineering were inevitable, so a new gen-

eral line was adopted thus making complex “solid” CPUs give place to “compound” CPUs consisting

of relatively simple multiple peer cores. The maximum CPU performance is in this case equal to the

total performance of its cores. Thus, packing CPUs with more and more cores, one can ensure perfor-

mance growth without troublesome frequency growth.

This is the way the multicore era has put an end to the frequency race. Quad-core and octo-core

processors have now become common, while hardware manufacturers claim that 12 to 16-core proces-

sors are on their way. Processors with hundreds and thousand cores are just around the corner.

However, one must understand that the adoption of multicore processors means transition to paral-

lel computing. Indeed, to benefit from the advantages of multicore processors, one has to identify data-

independent parts of computation processes and make each of them run on different cores. Such an ap-

proach helps reduce time expenditures while attainable speedup is limited only by the number of CPU

cores and independent parts of the computation processes. Parallel computations become inevitable and

omnipresent.

However, parallelism makes the efficient use of multicore systems more complicated. Parallel

computing requires parallel generalization of the traditional sequential pattern of problem solving.

Thus, for multicore systems, numerical methods should be developed as systems of parallel interacting

processes allowing for running on independent cores. The applicable algorithmic languages and sys-

temware must enable development of parallel programs and ensure synchronization and mutual exclu-

sion of asynchronous processes etc.

All those parallelism-related problems aggravate the gap between computing potential of the con-

temporary systems and the existing algorithms and software to solve complex problems. Therefore,

bridging this gap is one of today’s top priority sci-tech challenges.

The course includes 20 lectures:

Lecture 1. Introduction The lecture emphasizes the importance of parallel computations and de-

scribes the general course structure.

Lecture 2. Basic Notions and Definitions The lecture introduces the notion of parallel computa-

tions. It describes basic efficiency parameters and demonstrates applicability of such parameters by the

example of the number sequence summation problem.

Lecture 3. OpenMP-Based Parallel Programming. The lecture gives a review of the OpenMP tech-

nology. It describes OpenMP directives and their main parameters.

Lecture 4. Principles of Parallel Method Development. The lecture describes parallel method de-

velopment stages and gives development examples.

Lecture 5-6. OpenMP-Based Parallel Methods for Matrix-Vector Multiplication The lecture is ded-

icated to the basic parallel methods for matrix-vector multiplication for systems with shared memory.

Lectures 7-8. OpenMP-Based Parallel Methods for Matrix Multiplication. The lecture is dedicated

to the basic parallel methods for matrix multiplication for systems with shared memory.

Lecture 9. MPI-Based Parallel Programming. Basic operations. The lecture gives basic no-

tions and definitions related to MPI. It also lists the minimum set of functions required for paral-

lel program development.

Lecture 10. MPI-Based Parallel Programming. Collective operations. The lecture describes

an extended set of operations ensuring more efficient data exchange between computation pro-

cesses. It also gives an application example for collective operations.

Lectures 11-12. MPI-Based Parallel Methods for Matrix-Vector Multiplication The lecture

is dedicated to the basic parallel methods for matrix-vector multiplication for systems with dis-

tributed memory.

Lectures 13-14. MPI-Based Parallel Methods for Matrix Multiplication The lecture is dedi-

cated to the basic parallel methods for matrix multiplication for systems with distributed

memory.

Lecture 15. OpenMP-Based Parallel Programming (continued). The lecture describes the OpenMP

library and the environment variables that can be used for OpenMP runtime environment setup.

Lecture 16. Parallel Methods for Solving Systems of Partial Differential Equations

Lecture 17-18. Parallel Methods for Solving Systems of Partial Differential Equations. This lecture

describes a classification of computer systems and introduces the notion of multithread and multicore-

based parallelism and the notion of clusters. It discusses the definition and types of computer system

topologies.

Lecture 19. Parallel Computation Modeling and Analysis. The lecture is dedicated to the basic

theory of parallel computation modeling and analysis. It introduces the notion of “operations-operands”

graph and describes a number ways to estimate parallel method efficiency. Parallel computation model-

ing and analysis is illustrated by π computation and the finite difference method.

Lecture 20. Estimation of Communication Complexity for Parallel Algorithms. The lecture

is dedicated to the issues of interprocessor communication time estimation. It compares the

runtimes for models and experiments.

