

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lecture 2. Basic Notions and Definitions

Nizhni Novgorod

2014

Lecture_2_. Basic Notions and Definitions

The key matter of development of parallel algorithms for solving complex sci-tech problems

is the parallelism efficiency analysis usually consisting in estimation of computation speedup

(solution time reduction). Such speedup estimate may be applicable to the selected computation

algorithm (estimation of parallelization efficiency for a specific algorithm).

2.1. Parallel Algorithm Efficiency Characteristics

Speedup. This is a speedup obtained if a parallel algorithm is used for p processors in

comparison to the sequential computations. It is determined by the value

)(/)()(1 nTnTnS pp  ,

i.e. as the ratio of the problem solution time on a scalar computer to the time of parallel algo-

rithm execution (value n is used for parameterization of computation complexity of the problem

being solved and can be understood as, for instance, the amount of input problem data).

Efficiency. The efficiency of the processor utilization by the parallel algorithm in solving a

problem is determined by the formula

pnSnpTnTnE ppp /)())(/()()(1 

(the efficiency value determines the mean fraction of algorithm execution time, during which the

processors are actually used for solving the problem).

The expressions given above demonstrate that at best pnS p )(and 1)(nE p . The following

two issues should be taken into account in practical application of these criteria for parallel com-

putation efficiency estimation.

 Under certain circumstances the speedup may appear to be greater than the number of the

processors being used, i.e. pnS p )(. In this case the speedup is considered to be superlinear. De-

spite the fact that these situations are paradoxical (the speedup is greater than the number of pro-

cessors), in practice superlinear speedup takes place. One of the reasons of this phenomenon may

be the disparity of sequential and parallel programs execution. For instance, when a problem is

solved on one processor RAM appears to be insufficient for storing of all the data being pro-

cessed, and as a result, it is necessary to use a slower external memory (if several processor are

used, RAM may be sufficient because the data are being shared among processors). One more

reason for superlinear speedup may be the non-linear character of the dependency of the problem

solution complexity with respect to the amount of the data being processed. Thus, for instance,

the well-known bubble sorting algorithm is characterized by as square dependency of the neces-

sary operation amount with respect to the number of data being ordered. As a result, as the data

file is being distributed among the processors, the speedup, which is greater than the number of

 8

5

processors, may be obtained (this case is considered in more detail in chapter 10). The source of

superlinear speedup may be also the difference of parallel and sequential method computational

schemes;

 Studying the case more carefully, one may pay attention to the fact that the attempts to

improve the parallel computation quality with respect to one of the characteristics (speedup or

efficiency) may lead to the worsening of the situation for the other criterion , as the characteris-

tics of parallel computation quality are conflicting. Thus, for instance, speedup increase may be

provided by the larger number of processors, which leads, as a rule, to an efficiency drop. And

vice versa, efficiency increase is in many cases achieved if the number of processors is decreased

(in the limiting case the ideal efficiency 1)(nE p is easily provided if only one processor is

used). As a result, the development of parallel computation method often involves selection of

some compromise variant with respect to the desirable efficiency and speedup criteria.

2.2. Partial Sums Computations

To demonstrate the problems, which may arise when parallel computation methods are de-

veloped, we will consider a rather simple problem of finding partial sums of numerical value se-

quence:






n

i

i
xS

1

.

2.2.1. Sequential Summation Algorithm

The traditional algorithm for solving the problem is sequential summation of the elements of

a series of numbers

,...

,0

1
xSS

S





Computational scheme of the algorithm may be presented the following way (see Figure

2.1):

x1

+

+

+

+

x2 x3 x4

n

Figure 2.1. The sequential computing scheme of the summation algorithm

As it may be noted, this “standard” summation algorithm allows only strictly sequential exe-

cution and cannot be parallelized.

2.2.2. Cascade Summation Scheme

Summation algorithm parallelism becomes possible only if we apply another method of

computation process construction, based on the use of the associative property of summation.

The new summation variant obtained as result (which is known as a cascade scheme) consists of

the following (see Figure 2.2):

- At the first operation of the cascade scheme all the input data is partitioned to pairs, and

for each pair the sum of their values is computed,

- Later all the sums are also partitioned to pairs, and again the summation of the pair val-

ues is executed and etc.

x
1 x

3 x
4 x

2

+ +

+

n

Figure 2.2. Cascade scheme of the summation algorithm

It is easily estimated that the number of the cascade scheme operations appears to be equal

to the value

nk
2

log ,

and the total number of summation operations

11...4/2/K  nnn
sequ

coincides with the number of operations in sequential variant of the summation algorithm. In

parallel execution of the cascade scheme the total number of parallel summation operations is

equal to

n
par 2

logK  .

 8

9

As the execution time for any computational operation is considered to be identical and

equal to 1 so
seq

T K
1
 ,

рarp
T K , thus the speedup and efficiency characteristics of the summa-

tion algorithm cascade scheme may be estimated as

,log/)1(/
21
nnTTS

PP


),log)2//(()1()log/()1(/ 221 nnnnpnpTTE pp 

where 2/np  is the number of processors necessary for the cascade scheme execution.

The analysis of the obtained characteristics shows that the time of parallel cascade scheme

execution coincides with the paracomputer estimate in theorem 2. However, in this case the effi-

ciency of processors decreases when the number of summable values increases:

 nifE p 0lim

2.2.3. Modified Cascade Scheme

Asymptomatic nonzero efficiency may be provided if, for instance, a modified cascade

scheme is used (see Bertsekas and Tsitsiklis (1989)). To simplify the estimate creation it is pos-

sible to assume that sk
kn 2,2  . In this case all the calculation in the new variant of the cascade

scheme are subdivided into two sequentially executed summation phases (see figure. 2.3):

 During the first phase of computations all the summarized values are subdivided into

)log/(
2
nn groups. There are n

2
log elements in each group. Then the sum of the values is cal-

culated for each group by the sequential summation algorithm. The calculations in each group

may be carried out independently (that is in parallel that requires not fewer that)log/(
2
nn pro-

cessors);

 During the second phase a conventional cascade scheme is used for the obtained

)log/(
2
nn sums of separate groups.

X
2 X

1 0 X
1 X

9 X
3 X

1 1 X
4 X

1 2 X
5 X

1 3 X
6 X

1 4 X
7 X

1 5 X
8 X

1 6

1

2

Figure 2.3. Modified cascade summation scheme

Thus the execution of the first phase requires n
2

log parallel operations if)log/(
21
nnp 

processors are used. The execution of the second phase requires

nnn
222

log)log/(log 

parallel operations for 2/)log/(
22
nnp  processors. As a result, this summation method is

characterized by the following values:

nT
P 2

log2 ,)log/(
2
nnp  .

With respect to the estimates obtained the speedup and efficiency of the modified cascade

scheme are defined by the relations:

,log2/)1(/
21
nnTTS

PP


.2/)1()log)log/(2/()1(/
221

nnnnnnpTTE
pp



The comparison of the given estimates to the conventional cascade scheme characteristics shows

that the speedup for the suggested parallel algorithm has decreased twice. However, for the effi-

ciency of the new summation method it is possible to obtain asymptotic nonzero estimate from

below

,25.02/)1( nnE
P

  nwhereE
p

5.0lim .

Test questions

1. How do you define speedup and efficiency?

2. Is it possible to ensure superlinear speedup?

3. Why are speedup values contradictory to those of efficiency?

 9

3

4. What problem is related to parallelization of a sequential algorithm for integer summation?

5. What is the essence of the cascade summation scheme? Why is its modified version de-

scribed here?

6. What is the difference between the speedup and efficiency values of the described cascade

summation schemes?

Practice

Develop a model; estimate the parallel computation speedup and efficiency values

 For finding the scalar product of two vectors

1

N

i i

i

y a b


 ,

 For finding the maximum and minimum values for a given numerical data set

min maxmin , maxi i
i i N i i N

y a y a
   

  ,

 For finding the average value for a given numerical data set

1

1
N

i

i

y a
N 

  .

References

1. Amdahl, G. (1967). Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings, Vol. 30, pp. 483-485, Wash-

ington, D.C.: Thompson Books.

2. Bertsekas, D.P., Tsitsiklis, J.N. (1989). Parallel and distributed Computation. Numerical

Methods. - Prentice Hall, Englewood Cliffs, New Jersey.

3. Grama, A.Y., Gupta, A. and Kumar, V. (1993). Isoefficiency: Measuring the scalabil-

ity of parallel algorithms and architectures. IEEE Parallel and Distributed technology. 1

(3). pp. 12-21.

4. Gustavson, J.L. (1988) Reevaluating Amdahl's law. Communications of the ACM. 31

(5). pp.532-533.

5. Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel Com-

puting. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn., 2003)

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York,

NY: McGraw-Hill.

