

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lectures 5,6. Parallel Methods for Matrix-Vector Multiplication for Systems

with Shared Memory

Nizhni Novgorod

2014

Lectures 5, 6_. Parallel Methods for Matrix-Vector Multiplication for Systems with

Shared Memory

Matrices and matrix operations are widely used in mathematical modeling of various pro-

cesses, phenomena and systems. Matrix calculations are the basis of many scientific and engi-

neering calculations. Computational mathematics, physics, economics are only some of the areas

of their application.

As the efficiency of carrying out matrix computations is highly important many standard

software libraries contain procedures for various matrix operations. The amount of software for

matrix processing is constantly increasing. New efficient storage structures for special type ma-

trix (triangle, banded, sparse etc.) are being created. Highly efficient machine-dependent algo-

rithm implementations are being developed. The theoretical research into searching faster matrix

calculation method is being carried out.

Being highly time consuming, matrix computations are the classical area of applying parallel

computations. On the one hand, the use of highly efficient multiprocessor systems makes possi-

ble to substantially increase the complexity of the problem solved. On the other hand, matrix op-

erations, due to their rather simple formulation, give a nice opportunity to demonstrate various

techniques and methods of parallel programming.

Let us assume that the matrices, we are considering, are dense, i.e. the number of zero ele-

ments in them is insignificant in comparison to the general number of matrix elements.

The repetition of the same computational operations for different matrix elements is typical

of different matrix calculation methods. In this case we can say that there exist data parallelism.

As a result, the problem to parallelize matrix operations can be reduced in most cases to matrix

distributing among the processors of the computer system. The choice of matrix distribution

method determines the use of the definite parallel computation method. The availability of vari-

ous data distribution schemes generates a range of parallel algorithms of matrix computations.

The most general and the most widely used matrix distribution methods consist in partition-

ing data into stripes (vertically and horizontally) or rectangular fragments (blocks).

1. Block-striped matrix partitioning. In case of block-striped partitioning each processor is

assigned a certain subset of matrix rows (rowwise or horizontal partitioning) or matrix columns

(columnwise or vertical partitioning) (Figure 5.1). Rows and columns are in most cases subdi-

vided into stripes on a continuous sequential basis. In case of such approach, in rowwise decom-

position (see Figure 5.1), for instance, matrix A is represented as follows:

 pmkkjjikiaaaAAAAA jiiii

T

p k
/,0,),,...,,(,),...,,(

110110 
 ,

where a i = (a i 1 , a i 2 ,… a i n) , 0 i <m, is i-th row of matrix A (it is assumed, that the number of

rows m is divisible by the number of processors p without a remainder, i.e. m = k p). Data parti-

tioning on the continuous basis is used in all matrix and matrix-vector multiplication algorithms,

which are considered in this and the following sections.

Another possible approach to forming rows is the use of a certain row or column alternation

(cyclic) scheme. As a rule, the number of processors p is used as an alternation parameter. In this

case the horizontal partitioning of matrix A looks as follows:

pmkkjjpiiaaaAAAAA
jiiii

T

p k

/,0,),,...,,(,),...,,(
110110




.

2. Checkerboard Block Matrix Partitioning. In this case the matrix is subdivided into rec-

tangular sets of elements. As a rule, it is being done on a continuous basis. Let the number of

processors be qsp  , the number of matrix rows is divisible by s, the number of columns is di-

visible by q, i.e. skm  and qln  . Then the matrix A may be represented as follows:



























111211

100200

...

...

...

qsss

q

AAA

AAA

A ,

where Aij - is a matrix block, which consists of the elements:



























111101

101000

...

...

lkkk

l

jijiji

jijiji

ij

aaa

aaa

A , smkkvvikiv /,0,  , qnlluujlju /,0,  .

In case of this approach it is advisable that a computer system have a physical or at least a

logical processor grid topology of s rows and q columns. Then, for data distribution on a contin-

uous basis the processors neighboring in grid structure will process adjoining matrix blocks. It

should be noted however that cyclic alteration of rows and columns can be also used for the

checkerboard block scheme.

Figure 5.1 Most widely used matrix decomposition schemes

In this chapter three parallel algorithms are considered for square matrix multiplication by a

vector. Each approach is based on different types of given data (matrix elements and vector) dis-

tribution among the processors. The data distribution type changes the processor interaction

scheme. Therefore, each method considered here differs from the others significantly.

The lecture contains a detailed description of two possible matrix-vector multiplication algo-

rithms using the mentioned ways of matrix decomposition. The first algorithm is based on row-

wise matrix allocation to threads while the second one uses columwise matrix decomposition.

Each algorithm is represented subject to the general scheme of parallel method development:

first, basic subtasks are determined and then subtask information dependencies are identified fol-

lowed by discussion of subtask scalability and their distribution among computational elements.

In the end, efficiency of parallel computations are analyzed and experimental results are listed

for each algorithm. For all described parallel matrix-vector multiplication algorithms, possible

software implementations are proposed.

The resulting speedup and efficiency values show that all effective ways of data decomposi-

tion lead to uniform distribution of computational load while differences pertain only to com-

plexity of the thread communication activities. In this respect, it will be interesting to see how

the way of data decomposition influences the character of parallel program sections, identify

basic differences in the way the threads use shared resources and operations required for access

synchronization.

See the general diagram in Fig. 5.2 for speedup values obtained in the course of computa-

tional experiments for all the described algorithms. As one can see, the parallel matrix-vector

multiplication algorithm in case of rowwise matrix decomposition has some advantage for

speedup.

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

3,5000

4,0000

у
с
к
о

р
е
н

и
е

размер матрицы

разбиение по
строкам 2 потока

разбиение по
строкам 4 потока

Fig. 5.2. Matrix multiplication speedup for the described parallel algorithms based on the results
of computational experiments

Test questions

1. What are the main ways to distribute a matrix between threads?

2. What is the statement of the matrix-vector multiplication problem?

3. What is the computational complexity of a sequential matrix-vector multiplication

algorithm?

4. What approaches can be proposed for development of parallel matrix-vector multiplication

algorithms?

5. Give general schemes of the described matrix-vector multiplication.

6. Analyze and obtain efficiency parameters for one of the described algorithms.

7. Which of the described matrix-vector multiplication algorithms has the best speedup and ef-

ficiency?

8. Can data decomposition cycling influence runtime of each of the described algorithms?

9. What information communications are carried out for the algorithms in case of the block-

striped data decomposition? In what way are the operations required for preparation of par-

allel program section and synchronization of access to common resources different for row-

wise and columnwise matrix decomposition?

10. What information communications are carried out for the checkerboard matrix-vector multi-

plication algorithm?

11. What OpenMP tools and functions of the corresponding library proved to be necessary for

program implementation of the algorithms?

Practice

1. Implement the parallel algorithm based on vertical block-striped matrix decomposition.

Make theoretical runtime estimates for this algorithm taking into account your computer sys-

tem parameters. Perform computational experiments. Compare actual experimental results

with theoretical estimates.

2. Implement the parallel algorithm based on checkerboard block matrix decomposition. Make

theoretical runtime estimates for this algorithm taking into account your computer system pa-

rameters. Perform computational experiments. Compare actual experimental results with

theoretical estimates.

Referenсe

1. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical Linear Alge-

bra for High Performance Computers (Software, Environments, Tools). Soc for Industrial &

Applied Math/

2. Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.

J., Hammarling, S., Henry, G., Petitet, A., Stanley, D. Walker, R.C. Whaley, K. (1997). Sca-

lapack Users' Guide (Software, Environments, Tools). Soc for Industrial & Applied Math.

3. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

