

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

INTRODUCTION TO PARALLEL PROGRAMMING

Lectures 13 and 14. Parallel Methods for Matrix Multiplication

for Systems with Distributed Memory

Nizhni Novgorod

2014

Lectures_13,14_. Parallel Methods for Matrix Multiplication

for Systems with Distributed Memory

Matrix multiplication is one of the essential problems in matrix calculations. This Lection

discusses several parallel algorithms for carrying out the operation. Two of them are based on

block-striped data decomposition scheme. The other two methods are based on checkerboard

block scheme decomposition. They are the well known the Fox algorithm and the Cannon meth-

od.

LECTURE 13

Multiplying an nm matrix A with m rows and n columns and an ln matrix B with n rows

and l columns produces an lm matrix C with m rows and l columns. Each element of the matrix

C is calculated according to the formula:

ljmibac

n

k

kjikij

0,0,

1

0

. (13.1)

As it can be seen in (13.1), each element of the matrix C is the result of the inner product of

the corresponding row of the matrix A and column of the matrix B:

 Tjnjj

T

jiniii

T

jiij bbbbaaaabac 11011,0 ,...,,,,...,,, . (13.2)

This algorithm executes m·n·l multiplications and the same number of additions of the initial

matrix elements. In case of square matrices, the size of which is nn , the number of the executed

operations is the order O(n
3
). There are also sequential matrix multiplication algorithms of

smaller computational complexity (for instance, the Strassen algorithm). But studying these algo-

rithms though requires certain efforts and for simplicity we will use the above described sequen-

tial algorithm as the basis for parallel method development in this section. We will also assume

further that all matrices are square and their sizes are nn .

The sequential matrix multiplication algorithm includes three nested loops:

// Algorithms 13.1

// Sequential matrix multiplication algorithm

double MatrixA[Size][Size];

double MatrixB[Size][Size];

double MatrixC[Size][Size];

int i,j,k;

...

for (i=0; i<Size; i++){

 for (j=0; j<Size; j++){

 MatrixC[i][j] = 0;

 for (k=0; k<Size; k++){

 MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j];

 }

 }

}

This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C.

In fact, a result matrix row is computed per outer loop (loop variable i) iteration (see Figure

13.1)

X =

A B C

Figure 13.1. During the first iteration of loop variable i the first matrix A

row and all the columns of matrix B are used to compute the elements of

the first result matrix C row

The lecture describes two parallel matrix multiplication algorithms where the matrixes A and

B are decomposed into continuous sequences of rows or columns (stripes).

1. The first algorithm. The algorithm is an iterative procedure, the number of iterations is

equal to the number of subtasks. Each subtask holds a row of the matrix A and a column of the

matrix B at each algorithm iteration. At each iteration the scalar products of rows and columns

containing in the subtasks are computed, and the corresponding elements of the result matrix C

are obtained. After completing of all iteration computations the columns of matrix B must be

transmitted so that subtasks should have new columns of the matrix B and new elements of the

matrix C could be calculated. This transmission of columns among the subtasks must be execut-

ed in such a way that all the columns of matrix B should have appeared in each subtask sequen-

tially.

A possible simple scheme to provide the required communications of the columns of matrix

B among the subtasks is to present the topology of the information dependencies of the subtasks

as a ring structure. In this case the subtask i , 0 i<n,will transmit its column of matrix B to the

subtask i+1 at each iteration (in accordance with the ring structure subtask n-1 transmits its data

to the subtask 0) – see Figure 13.2. After the algorithm termination the required condition will

be provided, i.e. all the columns of matrix B will appear sequentially in each subtask.

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

Figure 13.2. General scheme of data communications for the first paral-

lel algorithm of matrix multiplication in case of block-striped decomposi-

tion

Figure 13.2 presents the iterations of the matrix multiplication algorithm for the case when

matrices have four rows and four columns (n=4). At the beginning of the computations each sub-

task i, 0 i<n, holds i-th row of the matrix A and i-th column of the matrix B. As a result the sub-

task i can compute the element cii of the result matrix C. Further each subtask transmits its col-

umn of matrix B to the following subtask in accordance with the ring structure. These actions

should be repeated until all the iterations of the parallel algorithm are completed.

2. The second algorithm. The difference of the second algorithm from the first one is that

the subtasks contain not columns but rows of matrix B. As a result, data multiplication of each

subtask is the multiplication of the row elements of the matrix B by a corresponding row element

of the matrix A. Therefore, a row of partial results for matrix C is obtained in each subtask.

In case of this scheme of data decomposition for matrix multiplication, it is necessary to

provide sequential obtaining all rows of the matrix B by all in the subtasks, the multiplication of

the row elements of the matrix B by a corresponding row element of the matrix A and summation

of the new values and the previously computed ones. The ring structure of information depend-

encies may be also used to provide the necessary sequence of communications of the rows of the

matrix B among the subtasks (see Figure 13.3).

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

Figure 13.3. General scheme of data communications for the second par-

allel algorithm of matrix multiplication in case of block-striped decom-

position

Figure 13.3 presents the iterations of the matrix multiplication algorithm in the case when

matrices have 4 rows and 4 columns (n=4). At the beginning of the computations each subtask i,

0 i<n, holds i-th rows of the matrix A and the matrix B. As a result of multiplication the subtask

defines i-th row of the partial results for the matrix C. Then each subtask transmits its row of the

matrix B to the following subtask according to the ring structure of information dependencies.

The described actions are repeated until all the iterations of the parallel algorithm are completed.

The lecture gives a detailed review of the MPI-based implementation of the methods above.

The results of the computational experiments for first algorithm are shown in Table 13.1. The

experiments were performed with the use of 2, 4 and 8 processors.

Table 13.1. The results of the computational experiments for the first parallel algorithm of

matrix multiplication based on the block-striped data decomposition

Matrix

Size

Serial Al-

gorithm

2 processors 4 processors 8 processors

Time Speed Up Time Speed Up Time Speed Up

500 0,8752 0,3758 2,3287 0,1535 5,6982 0,0968 9,0371

1000 12,8787 5,4427 2,3662 2,2628 5,6912 0,6998 18,4014

1500 43,4731 20,9503 2,0750 11,0804 3,9234 5,1766 8,3978

2000 103,0561 45,7436 2,2529 21,6001 4,7710 9,4127 10,9485

2500 201,2915 99,5097 2,0228 56,9203 3,5363 18,3303 10,9813

3000 347,8434 171,9232 2,0232 111,9642 3,1067 45,5482 7,6368

0

2

4

6

8

10

12

14

16

18

20

2 4 8

Number of Processors

S
p

e
e

d
 U

p

500

1000

1500

2000

2500

3000

Figure 13.4. Speedup for the first parallel algorithm of matrix multipli-

cation (block-striped matrix decomposition)

Test questions

1. What is the statement of the matrix multiplication problem?

2. Give the examples of the problems, which make use of the matrix multiplication opera-

tions.

3. Give the examples of various sequential algorithms of matrix multiplication operations.

Is the complexity various in case of different algorithms?

4. What methods of data distribution are used in developing parallel algorithms of matrix

multiplication?

5. Describe the general schemes of the parallel algorithms considered in the Section.

6. Analyze and compute the efficiency of the block-striped algorithm for horizontal parti-

tioning of the multiplied matrices.

7. What information communications are carried out for the algorithms in case of the

block-striped data decomposition?

8. What information interactions are carried out in case of the checkerboard block matrix

multiplication algorithms?

9. What functions of the library MPI appear to be necessary in the software implementation

of the algorithms?

Practice

1. Implement two block striped matrix multiplication algorithms. Compare their runtime.

2. Implement the Fox algorithm. Perform computational experiments. Compare experi-

mental results to those of earlier implementations.

References

1. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical Linear Alge-

bra for High Performance Computers (Software, Environments, Tools). Soc for Industrial &

Applied Math/

2. Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.

J., Hammarling, S., Henry, G., Petitet, A., Stanley, D. Walker, R.C. Whaley, K. (1997). Sca-

lapack Users' Guide (Software, Environments, Tools). Soc for Industrial & Applied Math.

3. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

4. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Program-

ming.. – Reading, MA: Addison-Wesley (русский перевод Эндрюс Г.Р. Основы многопо-

точного, параллельного и распределенного программирования. – М.: Издательский

дом "Вильямс", 2003)

5. Kahaner, D., Moler, C., Nash, S. (1988). Numerical Methods and Software. – Prentice Hall

(русский перевод Каханер Д., Моулер Л., Нэш С. Численные методы и программное

обеспечение. М.: Мир, 2001)

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY:

McGraw-Hill.

7. Wilkinson, B., Allen, M. (1999). Parallel programming. – Prenrice Hall.

LECTURE 14

Together with representation of matrices as sets of rows and columns, checkerboard matrix

representation is also widely used. Lecture 14 is a follow-up of Lecture 13. This lecture describes

parallel algorithms based on checkerboard block data decomposition. This is illustrated by the

Fox algorithm – a parallel matrix multiplication algorithm.

To develop a parallel matrix multiplication method based on the checkerboard decomposi-

tion scheme it should be reminded that in this case the basic subtasks are responsible for compu-

ting the separate blocks of the matrix C. It is also required that each subtask should hold only one

block of the multiplying matrices at each iteration.

To enumerate the subtasks the indices of the blocks Cij contained in the subtasks can be used

for enumeration. Thus, the subtask (i,j) computes the block Cij. So the set of subtasks forms a

square grid, which corresponds to the structure of the checkerboard block decomposition of the

matrix C.

The Fox algorithm can be used to perform matrix multiplication computations under these

conditions.

In accordance with the Fox algorithm each basic subtasks (i,j) holds four matrix blocks:

 Block Cij of matrix C, computed by the subtask;

 Block Aij of matrix A, placed in the subtask before the beginning of computations;

 Blocks A'ij , B'ij of matrices A and B, obtained by the subtask in the course of computa-

tions.

Parallel algorithm execution includes:

 The initialization stage. Each subtask (i,j) obtains blocks Aij, Bij. All elements of blocks

Cij in all subtasks are set to zero;

 The computation stage. At this stage the following operations are carried out at each it-

eration l, 0 l<q,:

 For each row i, 0 i<q, the block Aij of subtask (i,j) is transmitted to all the subtasks of

the same processor grid row; index j, which defines the position of the subtask in the

row, is computed according to the following expression:

j = (i+l) mod q,

 where mod is operation of obtaining the remainder in integer division;:

 Blocks A'ij, B'ij obtained as a result of subtask communications are multiplied and added

to block Cij:

ijijijij
BACC ;

 Blocks B'ij of each subtask (i,j) are transmitted to the subtasks, which are upper neigh-

bors in the processor grid columns (the first row blocks are transmitted to the last row

of the grid).

To illustrate these rules we show the state of blocks in each subtask in the course of execut-

ing iterations of the computation stage (for the grid of 2×2). See Figure 14.1.

A 0 ,0

C0 ,0 =0

A 0 ,0

B0 ,0

A 0 ,1

C0 ,1 =0

A 0 ,1

B0 ,1

A 1 ,0

C1 ,0 =0

A 1 ,0

B1 ,0

A 1 ,1

C1 ,1 =0

A 1 ,1

B1 ,1

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

A 0 ,0

B0 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

A 0 ,0

B0 ,1

A 1 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

A 1 ,1

B1 ,0

A 1 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

A 1 ,1

B1 ,1

Ite ration 1

Ite ration 2

A 1 ,1

A 1 ,0

B0 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

+ A 1 ,0 ·B0 ,1

A 1 ,0

A 1 ,0

B0 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

+ A 1 ,0 ·B0 ,0

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

A 0 ,0

B1 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

A 0 ,1

B1 ,1

A 1 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

A 1 ,0

B0 ,0

A 1 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

A 1 ,1

B0 ,1

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

+ A 0 ,1 ·B1 ,0

A 0 ,1

B1 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

+ A 0 ,1 ·B1 ,1

A 0 ,1

B1 ,1

Figure 14.1. Block distribution among subtasks on iterations of the Fox

algorithm

The results of the experiments with the use of 4 and 9 processors are given in Table 14.1.

Table 14.1 The Results of the computational experiments for estimating the Fox parallel al-

gorithm efficiency

Matrix

Size
Serial Algorithm

Parallel Algorithm

4 processors 9 processors

Time Speed Up Time Speed Up

500 0,8527 0,2190 3,8925 0,1468 5,8079

1000 12,8787 3,0910 4,1664 2,1565 5,9719

1500 43,4731 10,8678 4,0001 7,2502 5,9960

2000 103,0561 24,1421 4,2687 21,4157 4,8121

2500 201,2915 51,4735 3,9105 41,2159 4,8838

3000 347,8434 87,0538 3,9957 58,2022 5,9764

0

1

2

3

4

5

6

7

4 9

Number of Processors

S
p

e
e
d

 U
p

500

1000

1500

2000

2500

3000

Figure 14.2. Speedup of the Fox Parallel Algorithm with Respect to

Number of Processors

