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Lectures 5, 6_.  Parallel Methods for Matrix-Vector Multiplication for Systems with 

Shared Memory  

Matrices and matrix operations are widely used in mathematical modeling of various pro-

cesses, phenomena and systems. Matrix calculations are the basis of many scientific and engi-

neering calculations. Computational mathematics, physics, economics are only some of the areas 

of their application.  

As the efficiency of carrying out matrix computations is highly important many standard 

software libraries contain procedures for various matrix operations. The amount of software for 

matrix processing is constantly increasing. New efficient storage structures for special type ma-

trix (triangle, banded, sparse etc.) are being created. Highly efficient machine-dependent algo-

rithm implementations are being developed. The theoretical research into searching faster matrix 

calculation method is being carried out.  

Being highly time consuming, matrix computations are the classical area of applying parallel 

computations. On the one hand, the use of highly efficient multiprocessor systems makes possi-

ble to substantially increase the complexity of the problem solved. On the other hand, matrix op-

erations, due to their rather simple formulation, give a nice opportunity to demonstrate various 

techniques and methods of parallel programming. 

Let us assume that the matrices, we are considering, are dense, i.e. the number of zero ele-

ments in them is insignificant in comparison to the general number of matrix elements. 

The repetition of the same computational operations for different matrix elements is typical 

of different matrix calculation methods. In this case we can say that there exist data parallelism. 

As a result, the problem to parallelize matrix operations can be reduced in most cases to matrix 

distributing among the processors of the computer system. The choice of matrix distribution 

method determines the use of the definite parallel computation method. The availability of vari-

ous data distribution schemes generates a range of parallel algorithms of matrix computations.  

The most general and the most widely used matrix distribution methods consist in partition-

ing data into stripes (vertically and horizontally) or rectangular fragments (blocks).  

1. Block-striped matrix partitioning. In case of block-striped partitioning each processor is 

assigned a certain subset of matrix rows (rowwise or horizontal partitioning) or matrix columns 

(columnwise or vertical partitioning) (Figure 5.1). Rows and columns are in most cases subdi-

vided into stripes on a continuous sequential basis. In case of such approach, in rowwise decom-

position (see Figure 5.1), for instance, matrix A is represented as follows: 
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where a i  = (a i 1 ,  a i 2 ,… a i n ) ,  0  i  <m,  is  i-th row of matrix A (it is assumed, that the number of 

rows m is divisible by the number of processors p without a remainder, i.e. m = k p). Data parti-

tioning on the continuous basis is used in all matrix and matrix-vector multiplication algorithms, 

which are considered in this and the following sections.   

Another possible approach to forming rows is the use of a certain row or column alternation 

(cyclic) scheme. As a rule, the number of processors p is used as an alternation parameter. In this 

case the horizontal partitioning of matrix A looks as follows: 
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2. Checkerboard Block Matrix Partitioning. In this case the matrix is subdivided into rec-

tangular sets of elements. As a rule, it is being done on a continuous basis. Let the number of 

processors be qsp  , the number of matrix rows is divisible by s, the number of columns is di-

visible by q, i.e. skm   and qln  . Then the matrix A may be represented as follows: 
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where Aij  - is a matrix block, which consists of the elements: 
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In case of this approach it is advisable that a computer system have a physical or at least a 

logical processor grid topology of s rows and q columns. Then, for data distribution on a contin-

uous basis the processors neighboring in grid structure will process adjoining matrix blocks. It 

should be noted however that cyclic alteration of rows and columns can be also used for the 

checkerboard block scheme.  

 

Figure 5.1 Most widely used matrix decomposition schemes 

 



In this chapter three parallel algorithms are considered for square matrix multiplication by a 

vector. Each approach is based on different types of given data (matrix elements and vector) dis-

tribution among the processors. The data distribution type changes the processor interaction 

scheme. Therefore, each method considered here differs from the others significantly.  

The lecture contains a detailed description of two possible matrix-vector multiplication algo-

rithms using the mentioned ways of matrix decomposition. The first algorithm is based on row-

wise matrix allocation to threads while the second one uses columwise matrix decomposition. 

Each algorithm is represented subject to the general scheme of parallel method development: 

first, basic subtasks are determined and then subtask information dependencies are identified fol-

lowed by discussion of subtask scalability and their distribution among computational elements. 

In the end, efficiency of parallel computations are analyzed and experimental results are listed 

for each algorithm. For all described parallel matrix-vector multiplication algorithms, possible 

software implementations are proposed. 

The resulting speedup and efficiency values show that all effective ways of data decomposi-

tion lead to uniform distribution of computational load while differences pertain only to com-

plexity of the thread communication activities. In this respect, it will be interesting to see how 

the way of data decomposition influences the character of parallel program sections, identify 

basic differences in the way the threads use shared resources and operations required for access 

synchronization.  

See the general diagram in Fig. 5.2  for speedup values obtained in the course of computa-

tional experiments for all the described algorithms. As one can see, the parallel matrix-vector 

multiplication algorithm in case of rowwise matrix decomposition has some advantage for 

speedup.  
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Fig. 5.2. Matrix multiplication speedup for the described parallel algorithms based on the results 
of computational experiments  



Test questions 

1. What are the main ways to distribute a matrix between threads? 

2. What is the statement of the matrix-vector multiplication problem? 

3. What is the computational complexity of a sequential matrix-vector multiplication 

algorithm? 

4. What approaches can be proposed for development of parallel matrix-vector multiplication 

algorithms? 

5. Give general schemes of the described matrix-vector multiplication. 

6. Analyze and obtain efficiency parameters for one of the described algorithms. 

7. Which of the described matrix-vector multiplication algorithms has the best speedup and ef-

ficiency?  

8. Can data decomposition cycling influence runtime of each of the described algorithms? 

9. What information communications are carried out for the algorithms in case of the block-

striped data decomposition?   In what way are the operations required for preparation of par-

allel program section and synchronization of access to common resources different for row-

wise and columnwise matrix decomposition? 

10. What information communications are carried out for the checkerboard matrix-vector multi-

plication algorithm? 

11. What OpenMP tools and functions of the corresponding library proved to be necessary for 

program implementation of the algorithms? 

Practice 

1. Implement the parallel algorithm based on vertical block-striped matrix decomposition. 

Make theoretical runtime estimates for this algorithm taking into account your computer sys-

tem parameters. Perform computational experiments. Compare actual experimental results 

with theoretical estimates.  

2. Implement the parallel algorithm based on checkerboard block matrix decomposition. Make 

theoretical runtime estimates for this algorithm taking into account your computer system pa-

rameters. Perform computational experiments. Compare actual experimental results with 

theoretical estimates.  
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