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Lectures_11,12_. Parallel Methods for Matrix-Vector Multiplication for Systems with 

Distributed Memory 

This lecture discusses the parallel methods for matrix-vector multiplication. It deals with the 

issue of sharing the processed matrix by parallel processes. To distribute the load, a library im-

plementing the MPI standard is used. 

Let us assume that the matrices, we are considering, are dense, i.e. the number of zero ele-

ments in them is insignificant in comparison to the general number of matrix elements. 

The result of multiplying the matrix A of order nm   by vector b, which consists of n ele-

ments, is the vector c of size m, each i-th element of which is the result of inner multiplication of 

i-th matrix A row (let us denote this row by ai) by vector b: 

  10,,

1

0

 




mibabac

n

j

jjiii
.        (11.1) 

Thus, obtaining the result vector c can be provided by the set of the same operations of mul-

tiplying the rows of matrix A by the vector b. Each operation includes multiplying the matrix row 

elements by the elements of vector b (n operations) and the following summing the obtained 

products (n-l operations). The total number of necessary scalar operations is the value  
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The sequential algorithm of multiplying matrix by vector may be represented in the follow-

ing way: 

// Algorithm 11.1 

// Sequential algorithm of multiplying matrix by vector 

for (i = 0; i < m; i++){ 

  c[i] = 0; 

  for (j = 0; j < n; j++){ 

    c[i] += A[i][j]*b[j] 

  } 

} 

The first example of a parallel algorithm is the parallel matrix-vector multiplication one 

based on representation of a matrix as continuous sets of rows (horizontal bands). For such a way 

of data partitioning one can select the operation of scalar multiplication of one matrix row by a 

vector.  

The general scheme of subtask interaction in the course of computation in shown in Fig. 

11.1. The lecture reviews possibilities to implement a MPI-based parallel algorithm. 
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Fig.11.1 Computational scheme for the parallel algorithm of matrix-vector 
multiplication based on rowwise matrix decomposition 

Find below the results of experiments described in the lectures. 

See the experimental results in Table 11.1.The experiments were performed with the use of  

2, 4 and 8 processors. The algorithm runtime is in seconds. 

Table 11.1. Results of computational experiments for the parallel algorithm of matrix multi-

plication by a vector based on rowwise data decomposition 

Matrix 

size 

Sequential algo-

rithm 

Parallel algorithm 

2 processors 4 processors 8 processors 

Time Speedup Time Speedup Time Speedup 

1000 0,0041 0,0021 1,8798 0,0017 2,4089 0,0175 0,2333 

2000 0,016 0,0084 1,8843 0,0047 3,3388 0,0032 4,9443 

3000 0,031 0,0185 1,6700 0,0097 3,1778 0,0059 5,1952 

4000 0,062 0,0381 1,6263 0,0188 3,2838 0,0244 2,5329 

5000 0,11 0,0574 1,9156 0,0314 3,4993 0,0150 7,3216 

Test questions 

1. What are the main methods of distributing matrix elements among processors?  

2. What is the statement of the matrix-vector multiplication problem? 

3. What is the computational complexity of the sequential matrix-vector multiplication? 

4. Why is it admissible to duplicate the vector-operand to all the processors in developing a 

parallel algorithm of matrix-vector multiplication? 

5. What approaches of the development of parallel algorithms may be suggested? 

6. Describe the general schemes of the parallel algorithms discussed in the Section. 

7. Evaluate the efficiency characteristics for one of the algorithms discussed in the Section? 

8. Which of the algorithms has the best speedup and efficiency?  

9. Can the use of the cyclic data distribution scheme influence the execution time of each of the 

algorithms? 

10. What information communications are carried out for the algorithms in case of block-striped 

data distribution scheme?  What is the difference between the data communications in case 

of rowwise matrix distribution and those required in case of columnwise distribution? 



11. What information communications are performed for the checkerboard block matrix-vector 

multiplication algorithm? 

12. What kind of communication network topology is adequate for each algorithm discussed in 

the Section? 

13. What functions of the library MPI appeared to be necessary in the software implementation 

of the algorithms? 

 

Practice 

1. Develop the implementation of the parallel algorithm based on the column wise striped 

matrix decomposition. Estimate theoretically the algorithm execution time. Carry out the compu-

tational experiments.  

2. Develop the implementation of the parallel algorithm based on the checkerboard block 

decomposition. Estimate theoretically the algorithm execution time. Carry out the computational 

experiments.  
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LECTURE 12 

Lecture 12 is the follow-up of Lecture 11. It describes the second way of data partitioning 

based on the columnwise matrix decomposition. 

In case of columnwise matrix decomposition the operation of multiplying a column of matrix 

A by one of the vector b elements may be chosen as the basis computational subtask. As a result 

to perform computations each basic subtask i, 0 i< n, must contain the  i-th column of matrix A 

and the  i-th elements   bi  and  ci of vectors  b and  с.  

At the starting point of the parallel algorithm of matrix-vector multiplication each basic task i 

carries out the multiplication of its matrix A column by element bi. As a result, vector c'(i)  (the 

vector of intermediate results) is obtained in each subtask. The subtasks must further exchange 



their intermediate data in order to obtain the elements of the result vector c (element j, 0 j< n, 

of the partial result c'(i) of the subtask i, 0 i< n, must be sent to the subtask j). This all- to-a ll  

communica tion  or  to tal  exchange  is the most general communication procedure and may be ex-

ecuted with the help of the function MPI_Alltoall of MPI library. After the completion of data 

communications each basic  subtask i, 0 i< n, will contain n partial values  c'i(j), 0 j<n. Ele-

ment ci  of the result vector c is determined after the addition of the partial values (see Figure 

12.1). 

Figure 12.1 Computation scheme for parallel matrix-vector multiplication 

based on columnwise striped matrix decomposition 

The results of the computational experiments are given in Table 12.1.  

Table 12.1. The results of the computational experiments for parallel matrix-vector 

multiplication algorithm based on columnwise matrix decomposition 

Matrix 

Size 
Sequential Algorithm 

2 processors 4 processors 8 processors 

Time  Speed up Time  Speed up Time  Speed up 

1000 0,0041 0,0022 1,8352 0,0132 0,3100 0,0008 4,9409 

2000 0,016 0,0085 1,8799 0,0046 3,4246 0,0029 5,4682 

3000 0,031 0,019 1,6315 0,0095 3,2413 0,0055 5,5456 

4000 0,062 0,0331 1,8679 0,0168 3,6714 0,0090 6,8599 

5000 0,11 0,0518 2,1228 0,0265 4,1361 0,0136 8,0580 
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Figure 12.1. Speedup for parallel matrix-vector multiplication 

(columnwise block-striped matrix decomposition) 

 


