

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

Introduction to MPI

Lecture 11. Parallel Computation Modeling and Analysis

Nizhni Novgorod

2014

Lecture_11_. Parallel Computation Modeling and Analysis

The analysis of parallelism efficiency is a crucial point in the development of parallel algo-

rithms for solving complicated research and engineering problems. Parallelism efficiency analy-

sis is, as a rule, the evaluation of the computation process speedup (reducing the time needed for

solving a problem). Forming the speedup estimation may be carried out for selected computa-

tional algorithm (the efficiency estimation of parallelizing a specific algorithm). Another im-

portant approach may be the construction of the maximum possible speedup estimation for the

solution of a certain problem type (the efficiency estimation of the best parallel approach for

solving a problem).

In this lecture we will describe the computation model as an “operations-operands” graph,

which can be used for the description of the existing information dependencies in selected algo-

rithms of problem solving. We will also give the maximum possible parallelism efficiency esti-

mations, which may be obtained as a result of the analysis of the existing computation models.

The practical uses of the theory described here are given in the third part of the teaching materi-

als.

11.1. Computation Model as “Operations-Operands” Graph

The model “operations-operands” graph can be used for the description of the information

dependencies in selected algorithms of solving problems (see, for example, Bertsekas and Tsitsi-

klis (1989)). To simplify the problem we will assume that in constructing a model the periods of

execution of any computational operations will be the same and will be equal to 1 (in some units

of measurement). Besides we will assume that the data transmission among computing proces-

sors is carried out instantaneously without any time consumption (which may be quite true, for

instance, if there is a common shared memory in a parallel computing system). The analysis of

the parallel algorithm communication complexity is carried out in the next chapter.

Let us depict the set of the operations, carried out in the computational problem solution al-

gorithm to be studied, and the information dependencies, which exist among the operations as an

acyclic oriented graph

),(RVG  ,

 8

5

x y - x y - x y + x y
2 2 2 1 1 2 1 1

(,)x y
2 2

(x , y)
1 1

S = ((y) =

 = - - +

(x - x) - y

x y x y x y x y

2 1 2 1

2 2 2 1 1 2 1 1

x y
2 2

x y
2 1

x y
1 2

x y
1 1

x y - x y
2 2 2 1

x y - x y
1 2 1 1

x
2

y
2

x
1

y
1

* * * *

--

-

Figure 11.1. The Sample of computational model in the form of the “operations-

operands” graph

where },...,1{ VV  is the set of graph vertices, which represent the algorithm operations being

executed, and R is a set of graph arcs (in this case),(jir  belongs to the graph only if the oper-

ation j makes use of the result obtained by execution of operation i). To illustrate this Figure 11.1

shows the graph of the algorithm used to calculate the area of the rectangle specified by the co-

ordinates of its two opposite angles. As the given example shows, various computation schemes

may be used and various corresponding computational models can be constructed to carry out

the selected problem solution algorithm. As it will be shown later different computation schemes

possess different capabilities of parallelizing. Thus the task of selecting the most suitable for

parallel execution of a computational scheme algorithm can be set in constructing a computation

model.

In the computational model of the algorithm under consideration the vertices without the in-

coming arcs may be used to assign the input operations, and the vertex without outgoing arcs

may be used for output operations. Let us denote the set of graph vertices without input vertices

as V , and the diameter (length of maximum path) of the graph as)(Gd .

11.2. The Scheme of Parallel Algorithm Execution

The algorithm operations, which do not have paths among them within the selected compu-

tation scheme, may be executed in parallel (for the computation scheme shown in Figure 11.1,

for instance, first all the multiplication operations may be executed in parallel, and then the first

two subtraction operations may be realized in parallel). A possible way to describe the parallel

algorithm execution is given below (see, for instance, Bertsekas and Tsitsiklis (1989)).

Let p be the number of processors to execute an algorithm. Then to execute computations in

parallel it is necessary to specify the set (schedule)

}:),,{(VitPiH iip  ,

where for each operation Vi  the number of processor
iP used to execute the operation and the

operation start time
it are given. To make the schedule realizable it is necessary to meet the fol-

lowing requirements in specifying the set pH :

1) jiji PPttVji  :, , i.e. the same processor must not be assigned to different opera-

tions simultaneously,

2) 1),( ij ttRji , i.e. all the necessary data must have been calculated before opera-

tion execution starts.

11.3. Evaluation of Parallel Algorithm Execution Time

The computation scheme of the algorithm G in combination with the schedule pH may be

considered as the model of the parallel algorithm),(pp HGA , executed with the use of p proces-

sors. The time of parallel algorithm execution is determined by the maximum time value used in

the schedule

)1(max),(


i
Vi

pp tHGT .

For the selected computation scheme it is desirable to use the schedule which provides the

minimum algorithm execution time

),(min)(pp
H

p HGTGT
p

 .

The decrease of execution time may be provided by fitting the best computation scheme

)(min GTT p
G

p  .

Estimates),(pp HGT ,)(GT p and pT may be used as the time criteria in parallel algorithm exe-

cution. Besides to analyze the maximum possible parallelism it is possible to specify the estimate

of the fastest algorithm execution

 8

9

p
p

TT
1

min


  .

Estimate
T may be considered as the minimum possible time of the parallel algorithm exe-

cution if an unlimited number of processors are used (the concept of the computer system with

the infinite number of processors usually called a paracomputer is widely used in the theoretical

analysis of parallel computations).

Estimate
1T defines the algorithm execution time if one processor is used and thus represents

the execution time of the sequential version of problem solution algorithm. Constructing such an

estimate is an important task in analyzing parallel algorithms, as it is necessary to evaluate the

effect of the parallelism use (of speedup while solving the problem). It is evident that

VGT )(
1

,

where V , as it has already been defined , is the number of vertices of the computational scheme

G without the input vertices. It is important to note that if in determining the estimate
1T we are

limited to the consideration of only one selected problem solution algorithm and use the value

)(min 11 GTT
G

 ,

then the speedup coefficients obtained in accordance with the given estimate will characterize

the efficiency of parallelizing the selected algorithm. To evaluate the efficiency of the parallel

solution of the computational problems under consideration the time of the sequential solution

must be evaluated with regard to various sequential algorithms, that is to use the value

1

*

1 min TT  ,

where the operation of minimum is taken over the set of all the possible sequential algorithms

for a given problem.

We will consider the theoretical statements, which characterizes the properties of parallel al-

gorithm execution time estimates (see Bertsekas and Tsitsiklis (1989)).

Theorem 1. The maximum path length of the algorithm computation scheme determines the

minimum possible time of parallel algorithm execution, i.e.

)()(GdGT 
.

Theorem 2. Let there be a path from each input vertex for a certain output vertex in the al-

gorithm computation scheme. Besides let the input power of the scheme vertices (the number of

incoming arcs) not exceed 2. Then the minimum possible time of parallel algorithm execution is

limited from below by the value.

nGT 2log)(
,

where n is the number of input verticesin the algorithm scheme.

Theorem 3. If the number of the used processors decreases, the algorithm execution time

increases in proportion to the decrease of the number of processors, i.e.

qp cTTccpq  10, .

Theorem 4. For any number of the processors used the following upper estimate for parallel

algorithm execution time is true:

pTTTp p /1  .

Theorem 5. The algorithm execution time comparable with the minimum possible time
T

can be achieved if the number of processors is in the order of
TTp /~ 1

, to be precise,

  TTTTp p 2/1 .

If there are fewer processors, the time of algorithm execution cannot exceed the best computa-

tion time with the given number of processors more than twice, i.e.

p

T
T

p

T
TTp p

11
1 2/   .

These theorems allow to form the basis for the following recommendations concerning the

rules of parallel algorithm creation:

1) The graph with the minimum possible diameter must be used while choosing the algo-

rithm computation scheme (see Theorem 1);

2) The efficient number of processors for parallel execution is determined by the val-

ue
TTp /~ 1

 (see Theorem 5);

3) The parallel algorithm execution time is limited from above by the values given in Theo-

rems 4 and 5.

In order to specify the recommendations on the creating the schedule of parallel algorithm exe-

cution we will consider the proof of theorem 4.

The proof of the theorem 4. Let
H be the schedule for achieving the minimum possible

execution time
T . For each iteration

 T 0, , of the
H schedule execution the number of

 9

3

operations carried out during the iteration will be written as
n . The schedule of the algorithm

execution with the use of p processors may be constructed in the following way. We will divide

the algorithm execution into
T steps; at each step  all n operations, which were carried out

during the iteration  of the
H schedule, must be carried out. The execution of these operations

must be accomplished not more than in  pn / iterations with the use of p processors. As a re-

sult, the time of algorithm pT execution may be evaluated the following way:




























 



T
p

T

p

n

p

n
T

TT

p
1

11

1







 .

The proof of the theorem offers a practical method of constructing the parallel algorithm

schedule. First the schedule with no regard for the limitations of the number of used processors

may be created (a paracomputer schedule). Then according to the scheme of the theorem deriva-

tion, the schedule for a finite number of processors can be constructed.

11.4. Parallel Algorithm Efficiency Characteristics

Speedup. This is a speedup obtained if a parallel algorithm is used for p processors in

comparison to the sequential computations. It is determined by the value

)(/)()(1 nTnTnS pp  ,

i.e. as the ratio of the problem solution time on a scalar computer to the time of parallel algo-

rithm execution (value n is used for parameterization of computation complexity of the problem

being solved and can be understood as, for instance, the amount of input problem data).

Efficiency. The efficiency of the processor utilization by the parallel algorithm in solving a

problem is determined by the formula

pnSnpTnTnE ppp /)())(/()()(1 

(the efficiency value determines the mean fraction of algorithm execution time, during which the

processors are actually used for solving the problem).

Selecting the necessary parallel method of problem solving, it is very useful to estimate the

computation cost, which is defined as the product of the parallel problem execution time and the

number of the processor being used.

pp pTC  .

In this connection it is possible to define the concept of the cost-optimal parallel algorithm,

which is defined as the method, the cost of which is proportional to the time of the best sequen-

tial algorithm execution.

To illustrate the introduced concepts in the next chapter we will consider a case of solving

the problem of calculation of the partial sum for sequence of numerical values. Besides, in part 3

of the teaching materials these characteristics are used to estimate the efficiency of the consid-

ered parallel algorithm for solving the typical problems of computational mathematics.

11.5. Estimation of Maximum Attainable Parallelism

1. Amdahl’s law. Maximum speedup obtainment may be hindered by the presence of se-

quential calculations in the computations being carried out, as the former cannot be parallelized.

Let f be the part of the sequential calculations in the applied data processing algorithm, then, in

accordance with Amdahl’s law, the computation process speedup, if p processors are used, is

limited by the value

f
S

pff
S p

1

/)1(

1 *



 .

Thus, for instance, if there are only 10% sequential instructions in the executed computations,

the impact of parallelism use cannot exceed the tenfold data processing speedup. For the problem

under consideration the computation of the sum of values for the cascade scheme the part of the

sequential computations is nnf /log 2 . As a result, the value of the possible speedup is limited

by the estimate nnS 2

*
log/ .

Amdahl’s law characterizes one of the most serious problems in the area of parallel pro-

gramming (there are practically no algorithms without a certain part of sequential instructions).

However, the part of sequential actions characterizes very often the sequential feature of the ap-

plied algorithms and does not characterize the possibility of parallel problem solution. As a re-

sult, the part of sequential computations may be decreased considerably if we choose methods

that more appropriate for parallelizing.

It should be also mentioned that Amdahl’s law is considered under the assumption that the

part of sequential computation f i s a constant value and does not depend on the parameter n ,

which defines the computational problem complexity. However, for a great number of problems

the part f=f (n) is a descending function of n. In this case the speedup for a fixed number of pro-

cessors may be increased at the expense of increasing the computational complexity of the prob-

lem to be solved. This remark may be formulated as the statement that the speedup S p= S p (n) is

 9

7

the ascending function of the parameter n (this statement is often referred to as the Amdahl’s ef-

fect). Thus, for example, for a problem under consideration – the computation of the sum of val-

ues – when a fixed number of processors p are used, the summarized data set may be subdivided

into blocks of n/p size. Partial sums may be computed in parallel for the blocks first. Then these

sums may be summarized with the help of the cascade scheme. The duration of the sequential

part of the executed operations (minimum possible parallel execution time) is in this case

ppnT p 2log)/( ,

that leads to the estimation of the sequential computation part as the value

nppf /log)/1(2 .

This expression shows that the sequential computation fraction f decreases with the increase of

n. And in the limiting case we will obtain the ideal estimate of the maximum possible speedup

S*=p .

11.6. Analysis of Parallel Computation Scalability

The aim of parallel computation application is in many cases not only to decrease the com-

putation execution time, but also to provide the possibility of solving more complicated variants

of problem (such statements of the problem which cannot be solved if only uniprocessor compu-

ting systems are used). The parallel algorithm capability to efficiently use processors when the

computation complexity increases is an important characteristic of the executed calculations. In

this connection, the parallel algorithm is referred to as a scalable algorithm if with the increase of

the number of processors it provides the speedup increase maintaining constant level of efficien-

cy in processor use . A possible method to characterize the scalability properties is described

below.

Let us assess the total overhead expenses, which take place in parallel algorithm execution

10 TpTT p  .

The total overhead expenses arise, as it is necessary to organize the interaction of processors. It

is also necessary to fulfill some additional actions, synchronization of parallel computation and

etc.

Making use of the previously introduced notation we can get new expressions for the time of

solving the parallel problem solution and the speedup corresponding to it:

p

TT
T p

01 
 ,

01

11

TT

pT

T

T
S

p

p


 .

With the use of the obtained relation the efficiency of the processor use may be expressed as

1001

1

/1

1

TTTT

T

p

S
E

p

p





 .

The latter expression shows that if the problem complexity is fixed (T1=const), then the efficien-

cy will decrease if the number of processors increases at the expense of the total overhead costs

T0 . If the number of processors is fixed, the efficiency of processor used may be improved by the

increase of the complexity T 1 of the problem being solved (it is assumed that with the increase of

the complexity parameter n the total overhead expenses T 0 increase more slowly than the amount

of computations T1). As a result, if the number of processors increases, the necessary level of ef-

ficiency may be provided in the majority of cases by means of the corresponding problem com-

plexity increase. In this connection the proportion of the necessary rates of calculation complexi-

ty increase and the number of processors being used becomes an important feature of parallel

computations.

Let E=const be the desirable efficiency level of the executed computations. Using the equa-

tion for the efficiency we may obtain

E

E

T

T 


1

1

0 or)1/(,01 EEKKTT  .

The dependency n=F(p) between the problem complexity and the number of processors generat-

ed by the latter relation is referred to as isoefficiency function (see Kumar et al. (1994)).

To illustrate this we will show the derivation of the isoefficiency function for the problem of

summarizing numeric values. In this case

ppnppnpTpTT p 2210 log)log)/((

and the isoefficiency function looks as

pKpn 2log .

As a result, for instance, to provide the efficiency level E=0.5 (i.e. K=1) when the number of

processors is p=16 , the number of summarized values must not be smaller than n=64 . If the

number of processors is increased from p to q (q>p) it is necessary to increase the number n of

 1

01

the summarized values (qlog 2q)/(plog 2p) times to provide the proportional speedup increase

(S q/S p)=(q/p) .

11.7. References

Additional information on parallel computation modeling and analysis may be found in, for

instance, Bertsekas and Tsitsiklis (1989). Useful information is also contained in Kumar et al.

(1994), Quinn (2004).

The consideration of the academic problem of the numeric value sequence summation was

carried out in Bertsekas and Tsitsiklis (1989).

For the first time Amdahl’s law was stated in Amdahl (1967). Gustafson-Barsis's law was

published in Gustavson (1988). The concept of isoefficiency was proposed in Grama et al.

(1993).

A systematic discussion (for the time when the book was published) of the parallel computa-

tion modeling and analysis issues is given in Zomaya (1996).

11.8. Discussions

1. How is the “operations-operands” model defined?

2. How is the schedule for the distribution of computations among processors defined?

3. How is the time of parallel algorithm execution defined?

4. What schedule is optimal?

5. How can the minimum possible time of problem solving be defined?

6. What is a paracomputer? What can this concept be useful for?

7. What estimates should be used as the characteristics of the sequential problem solving

time?

8. How to define the minimum possible time of parallel problem solving according to “op-

erands-operations” graph?

9. What dependences may be obtained for parallel problem solving time if the number of

processor being used is increased or decreased?

10. What number of processors corresponds to the parallel algorithm execution time

(periods) comparable in the order with the estimates of minimum possible time of problem solv-

ing?

11. How are the concepts “speedup” and “efficiency” defined?

12. Is it possible to attain superlinear speedup?

13. What is the contradictoriness of the speedup and efficiency characteristics?

14. How is the concept of computation cost defined?

15. What is the concept of the cost-optimal algorithm ?

16. What does the problem of parallelizing a sequential algorithm of the numeric val-

ues summation lie in?

17. What is the essence of the summation cascade scheme? What is the aim of con-

sidering the modified version of the scheme?

18. What is the difference between the speedup and efficiency characteristics for the

discussed versions of the summation cascade scheme?

19. What is the parallel algorithm of all the partial sums computation of a numeric

value sequence?

20. How is Amdahl’s law formulated? Which aspect of parallel computation does it

allow to take into account?

21. Which algorithm is scalable? Give examples of methods with different level of

scalability.

11.9. Exercises

1. Develop a model and evaluate speedup and efficiency of the parallel computations:

 For the problem of the scalar product of two vectors






N

i

ii bay

1

,

 For the problem of choosing the maximum and minimum values for the given set of nu-

meric values

i
Nii

i
Nii

ayay


 max,min maxmin ,

 For the problem of finding the mean value for the given set of numeric values






N

i

ia
N

y

1

1
.

2. Evaluate according the Amdahl's law the maximum attainable speedup for the problems

given in 11.1

References

Amdahl, G. (1967). Validity of the single processor approach to achieving large scale com-

puting capabilities. In AFIPS Conference Proceedings, Vol. 30, pp. 483-485, Washington, D.C.:

Thompson Books.

Bertsekas, D.P., Tsitsiklis, J.N. (1989). Parallel and distributed Computation. Numerical

Methods. - Prentice Hall, Englewood Cliffs, New Jersey.

Grama, A.Y., Gupta, A. and Kumar, V. (1993). Isoefficiency: Measuring the scalability

of parallel algorithms and architectures. IEEE Parallel and Distributed technology. 1 (3). pp. 12-

21.

Gustavson, J.L. (1988) Reevaluating Amdahl's law. Communications of the ACM. 31 (5).

pp.532-533.

 1

05

Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel Compu-

ting. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn., 2003)

Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY:

McGraw-Hill.

