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Lectures_8,9_. Parallel Matrix Multiplication Methods 

Matrix multiplication is one of the most important problems of matrix computations. Lec-

tures 8 and 9 review a number of parallel matrix multiplication algorithms. Two of them are 

based on block striped data decomposition (Lecture 8). The other method (Lecture 9) uses 

checkerboard data decomposition. 

Lecture  8  

8.1. Problem Statement 

Multiplying an nm   matrix A with m rows and n columns and an ln   matrix B with n rows 

and l columns produces an lm   matrix C with m rows and l columns. Each element of the matrix 

C is calculated according to the formula: 
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As it can be seen in (8.1), each element of the matrix C is the result of the inner product of 

the corresponding row of the matrix A and column of the matrix B: 
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This algorithm executes m·n·l multiplications and the same number of additions of the initial 

matrix elements. In case of square matrices, the size of which is nn  , the number of the executed 

operations is the order O(n
3
). There are also sequential matrix multiplication algorithms of 

smaller computational complexity (for instance, the Strassen algorithm). But studying these algo-

rithms though requires certain efforts and for simplicity we will use the above described sequen-

tial algorithm as the basis for parallel method development in this section. We will also assume 

further that all matrices are square and their sizes are nn  . 

8.2. Sequential Algorithm 

The sequential matrix multiplication algorithm includes three nested loops: 

// Sequential matrix multiplication algorithm 

double MatrixA[Size][Size];  

double MatrixB[Size][Size]; 

double MatrixC[Size][Size]; 

int i,j,k; 

... 

for (i=0; i<Size; i++){ 

  for (j=0; j<Size; j++){ 

    MatrixC[i][j] = 0;  

    for (k=0; k<Size; k++){ 

      MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j]; 

    } 

  } 

} 



 

This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C. 

In fact, a result matrix row is computed per outer loop (loop  variable i) iteration (see Figure 8.1) 

 

X = 

A B C 

 

Figure 8.1 During the first iteration of loop variable i the first matrix A 

row and all the columns of matrix B are used to compute the elements of 

the first result matrix C row   

As each result matrix element is a scalar product of the initial matrix A row and the initial 

matrix B column, it is necessary to carry out  12
2

nn  operations to compute all elements of the 

matrix C. As a result the time complexity of matrix multiplication is 
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where τ is the execution time for an elementary computational  operation such as multiplication 

or addition. 

8.3. Matrix Multiplication in Case of Block-Striped Data Decomposition 

Let us consider two parallel matrix multiplication algorithms. Matrices A and B are parti-

tioned into continuous sequences of rows or columns (stripes). 

8.3.1. Computation Decomposition 

As it is clear from the definition of matrix multiplication, all elements of the matrix C may 

be computed independently. As a result, a possible approach for parallelizing the matrix multi-

plication is to define the basic computational subtask as the problem of computing an element of 

the result matrix C. To carry out all the necessary computations each subtask must contain a row 

of the matrix A and a column of the matrix B. The total number of subtasks in case of this ap-

proach appears to be equal to n
2
 (according to the number of elements of the matrix C).  

One may note that the level of parallelism achieved in this approach is somewhat excessive. 

As a rule, in carrying out practical computations the number of the subtasks formed exceeds the 

number of the available processors. As a result, the aggregation stage of basic subtasks becomes 

inevitable. In this respect it is reasonable to aggregate the computations at the stage of selecting 

the basic subtasks. A possible solution is to combine all the computations related not with one, 

but with several elements of the result matrix C in a single subtask. For further discussion we 



 

will define the basic computational subtask as the problem of computing all row elements of the 

matrix C. This approach decreases the total number of subtasks up to value n.  

A row of the matrix A and all the columns of the matrix B must be available for carrying out 

all the necessary computations of the basic subtasks. The simple solution to the problem is dupli-

cating the matrix B in all the subtasks, but it is unacceptable because of sizeable memory ex-

penses needed for data storage. As a result, computations should be implemented so that sub-

tasks contain only a part of the data needed for the computations at any given moment. The ac-

cess to the other part of the data should be provided by means of data communications. Two pos-

sible ways to carry out parallel computations of this type are considered in this lecture.  

8.3.2. Analysis of Information Dependencies  

To compute a row of the matrix C each subtask must have a row of the matrix A and access 

to all columns of the matrix B. Possible ways to organize parallel computations are described be-

low.   

1. The first algorithm. The algorithm is an iterative procedure, the number of iterations is 

equal to the number of subtasks. Each subtask holds a row of the matrix A and a column of the 

matrix B at each algorithm iteration. At each iteration the scalar products of rows and columns 

containing in the subtasks are computed, and the corresponding elements of the result matrix C 

are obtained. After completing of all iteration computations the columns of matrix B must be 

transmitted so that subtasks should have new columns of the matrix B and new elements of the 

matrix C could be calculated. This transmission of columns among the subtasks must be execut-

ed in such a way that all the columns of matrix B should have appeared  in each subtask sequen-

tially. 

A possible simple scheme to provide the required communications of the columns of matrix 

B among the subtasks is to present the topology of the information dependencies of the subtasks 

as a ring structure. In this case the subtask  i ,  0  i<n,will transmit its column of matrix B to the 

subtask  i+1 at each iteration (in accordance with the ring structure subtask n-1  transmits its data 

to the subtask 0) –  see Figure 8.2. After the algorithm termination the required condition will be 

provided, i.e. all the columns of matrix B will appear sequentially in each subtask.  
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Figure 8.2 General scheme of data communications for the first parallel 

algorithm of matrix multiplication in case of block-striped decomposition 

Figure 8.2 presents the iterations of the matrix multiplication algorithm for the case when 

matrices have four rows and four columns (n=4). At the beginning of the computations each sub-

task i, 0 i<n, holds i-th row of the matrix A and i-th column of the matrix B. As a result the sub-

task i can compute the element cii of the result matrix C. Further each subtask transmits its col-

umn of matrix B to the following subtask in accordance with the ring structure. These actions 

should be repeated until all the iterations of the parallel algorithm are completed.  

Program realization. Let us consider software implementation of presented method: 

int BaseMatrixMultiplication( double* pAMatrix,  

                              double* pBMatrix, 

                              double* pCMatrix,  

                              const int Size ) 

{ 

 

  MPI_Datatype ColumnType, Rtp; 

  int ProcNum, ProcRank; 

  MPI_Status status; 

  int StripSize; 

  double* Result; 

  double* rbuf; 

  double* vertStrip; 

  int i, j, z, k; 

  MPI_Comm_size ( MPI_COMM_WORLD, &ProcNum); 

  MPI_Comm_rank ( MPI_COMM_WORLD, &ProcRank); 

  StripSize = Size / ProcNum; 

 

  if (StripSize == 0) 

  { 

    StripSize = 1; 

  } 

  Result = (double*) malloc (StripSize * StripSize * sizeof(double));  

 

  rbuf = (double*) malloc (Size * StripSize * sizeof(double)); 

  vertStrip =(double*) malloc (Size * sizeof(double)); 

  MPI_Type_vector ( Size, 1, Size, MPI_DOUBLE, &ColumnType ); 

  MPI_Type_commit ( &ColumnType ); 

  MPI_Type_vector ( StripSize, StripSize, Size, MPI_DOUBLE, &Rtp ); 

  MPI_Type_commit ( &Rtp ); 



 

 

  MPI_Scatter( pAMatrix, Size * StripSize, MPI_DOUBLE, rbuf,   

               Size * StripSize, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

  for (z = 0; z < ProcNum; z++) 

  { 

    if(ProcRank == 0) 

    { 

      for(i = 1; i < ProcNum; i++) 

      { 

        for (j = 0; j < StripSize; j++) 

          MPI_Send(pBMatrix  + j + z * StripSize , 1, ColumnType,  

                   i , 0, MPI_COMM_WORLD);   

      } 

    } 

    else 

    { 

 

      double tmp; 

      for (k = 0; k < StripSize; k++) 

      { 

        MPI_Recv(vertStrip, Size , MPI_DOUBLE, 0, 0,  

                 MPI_COMM_WORLD, &status); 

 

        for(i = 0; i < StripSize; i++) 

        { 

          tmp = 0.0; 

          for(j = 0; j < Size; j++) 

          { 

            tmp += rbuf[i * Size + j] * vertStrip[j]  ; 

          } 

          Result [i * StripSize + k] = tmp; 

        } 

      } 

      MPI_Send( Result, StripSize * StripSize,  

                MPI_DOUBLE , 0, 0, MPI_COMM_WORLD); 

    } 

    if(ProcRank == 0) 

    { 

      double tmp; 

      for (i = 0; i < StripSize; i++) 

      { 

 

        for (j = 0; j < Size; j++) 

        { 

          tmp = 0.0; 

          for(k = 0; k < Size; k++) 

          { 

            tmp += pAMatrix[ j * Size + k ] *  

                   pBMatrix[ k * Size + i + z * StripSize ];  

          } 

          pCMatrix[ j * Size + i + z * StripSize ] = tmp; 

        } 

      } 

      for(i = 1; i < ProcNum; i++) 

      { 

        MPI_Recv(pCMatrix + i*Size*StripSize + z * StripSize, 1,  

                 Rtp, i, 0, MPI_COMM_WORLD, &status);      

      } 

    } 

  } 

  MPI_Type_free ( &ColumnType ); 

  MPI_Type_free ( &Rtp ); 



 

  free ( Result ); 

  free ( rbuf ); 

  free ( vertStrip ); 

 

  return 0; 

} 

2. The second algorithm.  The difference of the second algorithm from the first one is that 

the subtasks contain not columns but rows of matrix B. As a result, data multiplication of each 

subtask is the multiplication of the row elements of the matrix B by a corresponding row element 

of the matrix A. Therefore, a row of partial results for matrix C is obtained in each subtask.  

In case of this scheme of data decomposition for matrix multiplication, it is necessary to 

provide sequential obtaining all rows of the matrix B by all in the subtasks, the multiplication of 

the row elements of the matrix B by a corresponding row element of the matrix A and summation 

of the new values and the previously computed ones. The ring structure of information depend-

encies may be also used to provide the necessary sequence of communications of the rows of the 

matrix B among the subtasks (see Figure 8.3). 
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Figure 8.3 General scheme of data communications for the second paral-

lel algorithm of matrix multiplication in case of  block-striped decompo-

sition 

Figure 8.3 presents the iterations of the matrix multiplication algorithm in the case when ma-

trices have 4 rows and 4 columns (n=4). At the beginning of the computations each subtask i, 0 

i<n, holds i-th rows of the matrix A and the matrix B. As a result of multiplication the subtask 

defines i-th row of the partial results for the matrix C. Then each subtask transmits its row of the 

matrix B to the following subtask according to the ring structure of information dependencies. 

The described actions are repeated until all the iterations of the parallel algorithm are completed.  

Program realization. Let us consider software implementation of presented method: 

void MatrixMultiplication(double *pAMatrix, double *pBMatrix,  



 

                          double *pCMatrix, const int Size) 

{ 

   

  MPI_Status Status; 

  int iter; 

  int NextProc; 

  int PrevProc; 

  int shift; 

  int k, i, j; 

  int ProcNum; 

  int ProcRank; 

  int RowSize; 

  double *AMatrixRow; 

  double *BMatrixRow; 

  double *ProcSum; 

  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 

  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 

  RowSize = Size / ProcNum; 

  if(RowSize == 0) 

  { 

    RowSize = 1; 

  } 

 

  assert(RowSize * ProcNum == Size); 

 

  AMatrixRow = ( double* ) malloc ( Size * RowSize * sizeof(double) ); 

  BMatrixRow = ( double* ) malloc ( Size * RowSize * sizeof(double) ); 

  ProcSum = ( double* ) calloc ( Size * RowSize , sizeof(double) ); 

  MPI_Scatter(pAMatrix, Size * RowSize, MPI_DOUBLE,  

              AMatrixRow, Size * RowSize, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

  MPI_Scatter(pBMatrix, Size * RowSize, MPI_DOUBLE,  

              BMatrixRow, Size * RowSize, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

  

 

  for(iter = 0; iter < Size / RowSize; iter++) 

  {     

    shift = ( ProcRank * RowSize + iter * RowSize ) % ( Size ); 

 

    for(k = 0; k < RowSize; k++)  

    { 

      for (i = 0; i < RowSize; i++) 

      { 

        for(j = 0; j < Size; j++) 

        { 

          ProcSum[k * Size + j] += (AMatrixRow + shift) [ k * Size + i ] 

          * BMatrixRow[ i * Size + j];           

        }  

      } 

    } 

 

    NextProc = ProcRank - 1; 

     

    if(NextProc < 0) 

    { 

      NextProc = ProcNum - 1; 

    } 

 

 

    PrevProc = (ProcRank + 1)%ProcNum; 

    MPI_Sendrecv_replace(BMatrixRow, Size * RowSize, MPI_DOUBLE,  

                         NextProc, 0, PrevProc, 0, MPI_COMM_WORLD, &Status); 

  } 



 

 

  MPI_Gather(ProcSum, RowSize * Size, MPI_DOUBLE, pCMatrix,  

             RowSize * Size, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

 

  free ( ProcSum ); 

  free ( AMatrixRow ); 

  free ( BMatrixRow ); 

 

} 

8.3.3. Computational Experiment Results 

The experiments were carried out on the computational cluster on the basis of processors In-

tel XEON 4 EM64T, 3000 Mhz and Gigabit Ethernet under OS Microsoft Windows Server 2003 

Standard x64 Edition. 

The results of the computational experiments are shown in Table 8.1. The experiments were 

performed with the use of 2, 4 and 8 processors.  

Table 8.1. The results of the computational experiments for the first parallel algorithm of 

matrix multiplication based on the block-striped data decomposition 

Matrix 

Size 

Serial Al-

gorithm 

2 processors 4 processors 8 processors 

Time Speed Up Time Speed Up Time Speed Up 

500 0,8752 0,3758 2,3287 0,1535 5,6982 0,0968 9,0371 

1000 12,8787 5,4427 2,3662 2,2628 5,6912 0,6998 18,4014 

1500 43,4731 20,9503 2,0750 11,0804 3,9234 5,1766 8,3978 

2000 103,0561 45,7436 2,2529 21,6001 4,7710 9,4127 10,9485 

2500 201,2915 99,5097 2,0228 56,9203 3,5363 18,3303 10,9813 

3000 347,8434 171,9232 2,0232 111,9642 3,1067 45,5482 7,6368 
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Figure 8.4 Speedup for the first parallel algorithm of matrix multiplica-

tion (block-striped matrix decomposition) 

8.4. References 

The problem of matrix multiplication is broadly discussed in science. As additional training 

materials we may recommend the works by Kumar, et al. (1994) and Quinn (2004). The prob-

lems of parallel execution of matrix multiplication are also discussed in Dongarra, et al. (1999). 

Blackford, et al. (1997) may be useful for considering some aspects of parallel software de-

velopment. This book describes the software library of numerical methods ScaLAPACK, which 

is well-known and widely used. 

Lecture  9 

9.1. Fox Algorithm of Matrix Multiplication in Case of Checker-
board Data Decomposition 

In designing the parallel methods of matrix multiplication the checkerboard block matrix 

decomposition is widely used just as the block-striped matrix partitioning. Let us analyze this 

method of computations in detail.  

9.2 Computation Decomposition 

In case of this method of data decomposition the initial matrices A and B and the result ma-

trix C are subdivided into sets of blocks. For simplicity the further explanations we will assume 

all the matrices are square of n×n size, the number of vertical blocks and the number of horizon-

tal blocks are the same and are equal to q (i.e. the size of all block is equal to k×k, k=n/q). In 



 

case of this data decomposition method the multiplying matrices A and B as blocks may be rep-

resented as follows:  
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where each block Cij of matrix C is computed in accordance with the expression:  
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In case of the checkerboard block data decomposition it is reasonable to define the basic 

computational subtasks on the basis of the computations performed over the matrix blocks. As a 

result the basic subtask can be defined as the problem of computing of a block of the matrix C.  

To perform all the necessary computations the basic subtasks should have the corresponding 

sets of the matrix A rows and the matrix B columns. The placement all the necessary data in each 

subtask will inevitably lead to duplicating and to a considerable increase of the size of memory 

used. As a result, the computations must be executed in such a way that the subtasks should con-

tain only a part of the data necessary for computations at any given moment, and the access to 

the rest of the data should be provided by means of data communications. One of the possible 

approaches (the Fox algorithm) will be discussed further in this Lecture.  

9.3 Analysis of Information Dependencies 

To develop a parallel matrix multiplication method based on the checkerboard decomposi-

tion scheme it should be reminded that in this case the basic subtasks are responsible for compu-

ting the separate blocks of the matrix C. It is also required that each subtask should hold only one 

block of the multiplying matrices at each iteration.  

To enumerate the subtasks the indices of the blocks Cij contained in the subtasks can be used 

for enumeration. Thus, the subtask (i,j) computes the block Cij. So the set of subtasks forms a 

square grid, which corresponds to the structure of the checkerboard block decomposition of the 

matrix C.  

The Fox algorithm can be used to perform matrix multiplication computations under these 

conditions (see for instance, Fox et al. (1987), Kumar et al. (1994)). 

In accordance with the Fox algorithm each basic subtasks (i,j) holds four matrix blocks: 

 Block Cij of matrix C, computed by the subtask; 

 Block Aij of matrix A, placed in the subtask before the beginning of computations; 



 

 Blocks A'ij , B'ij  of matrices A and B, obtained by the subtask in the course of  computa-

tions. 

Parallel algorithm execution includes: 

 The initialization stage. Each subtask (i,j) obtains blocks Aij, Bij. All elements of blocks 

Cij in all subtasks are set to zero; 

 The computation stage. At this stage the following operations are carried out at each it-

eration  l, 0 l<q,:  

 For each row i, 0 i<q,  the block Aij of subtask (i,j) is transmitted to all the subtasks of  

the same processor grid row; index j, which  defines the position of the subtask in the 

row, is computed according to the following expression:  

j = ( i+l ) mod q, 

    where mod  is operation of obtaining the remainder in integer division;: 

 Blocks A'ij, B'ij obtained as a result of subtask communications are multiplied and added 

to block Cij: 

ijijijij
BACC  ; 

 Blocks B'ij of each subtask (i,j) are transmitted to the subtasks, which are upper neigh-

bors in the processor grid columns (the first row blocks are transmitted to the last row 

of the grid). 

To illustrate these rules we show the state of blocks in each subtask in the course of execut-

ing iterations of the computation stage (for the grid of  2×2). See Figure 9.1. 
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Figure 9.1 Block distribution among subtasks on iterations of the Fox algorithm  

9.4 Scaling and Distributing Subtasks among Processors 

The number of blocks at the checkerboard decomposition scheme cam be regulated by varia-

tion of matrix block sizes. These sizes may be chosen so that the total number of the basic sub-

tasks coincides with the number of processors p. Thus, for instance, in the simplest case when 

the number of processors is equal to p=2
, the size of the block grid may be chosen equal to  

(i.e. q=). This way to define the number of blocks makes the amount of computations in each 

subtask the same and, thus, uniform balancing of the computational load is achieved. In a more 

general case, when the number of processors and the sizes of matrices are arbitrary, computa-

tional load may not be distributed among processors equally but proper setting the sizes of the 

matrix blocks can provide uniform load balancing with adequate accuracy.  

To execute the Fox algorithm efficiently, when the basic subtasks form a square grid and da-

ta communications consist in block transmission along rows and columns of the subtask grid, the 

network topology should be also a square grid. In this case it is possible to map easily the set of 



 

subtasks onto the set of processors by placing the basic subtasks (i,j) on processors Pi,j. The re-

quired structure of the data communication network may be provided at the physical level, if the 

network topology is a grid or a complete graph.  

9.5 Software Implementation 

Here we discuss possible software implementation of the Fox algorithm for matrix multipli-

cation in case of the checkerboard block data decomposition. The given program code contains 

the basic modules of the parallel program. The absence of some auxiliary functions will not hin-

der the process of understanding of this parallel computation scheme. 

1. The main function. The main function implements the computational method scheme by 

sequential calling out the necessary subprograms. 

// The Fox algorithm of matrix multiplication – checkerboard decomposition 

// Program execution conditions:  

//   all matrices and their blocks are square,  

//   matrix blocks and processors form square grids of the same size 

 

int ProcNum = 0;      // Number of available processes  

int ProcRank = 0;     // Rank of current process 

int GridSize;         // Size of virtual processor grid 

int GridCoords[2];    // Coordinates of current processor in grid 

MPI_Comm GridComm;    // Grid communicator 

MPI_Comm ColComm;     // Column communicator 

MPI_Comm RowComm;     // Row communicator 

 

void main ( int argc, char * argv[] ) { 

  double* pAMatrix;  // The first argument of matrix multiplication 

  double* pBMatrix;  // The second argument of matrix multiplication 

  double* pCMatrix;  // The result matrix 

  int Size;          // Size of matricies 

  int BlockSize;     // Sizes of matrix blocks on current process 

  double *pAblock;   // Initial block of matrix A on current process 

  double *pBblock;   // Initial block of matrix B on current process 

  double *pCblock;   // Block of result matrix C on current process 

  double *pMatrixAblock; 

  double Start, Finish, Duration; 

 

  setvbuf(stdout, 0, _IONBF, 0); 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 

  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 

 

  GridSize = sqrt((double)ProcNum); 

  if (ProcNum != GridSize*GridSize) { 

    if (ProcRank == 0) { 

      printf ("Number of processes must be a perfect square \n"); 

    } 

  } 

  else { 

    if (ProcRank == 0) 

      printf("Parallel matrix multiplication program\n"); 

 



 

    // Creating the cartesian grid, row and column communcators  

    CreateGridCommunicators(); 

   

    // Memory allocation and initialization of matrix elements 

    ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  

      pCblock, pMatrixAblock, Size, BlockSize ); 

 

    DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock, Size,  

      BlockSize); 

 

    // Execution of Fox method 

    ParallelResultCalculation(pAblock, pMatrixAblock, pBblock,  

      pCblock, BlockSize); 

 

    ResultCollection(pCMatrix, pCblock, Size, BlockSize); 

    TestResult(pAMatrix, pBMatrix, pCMatrix, Size);  

 

    // Process Termination 

    ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  

      pCblock, pMatrixAblock); 

  } 

 

  MPI_Finalize(); 

} 

2. The function CreateGridCommunicators. This function creates a communicator as a 

two-dimensional square grid, determines the coordinates of each process in the grid and creates 

communicators for each row and each column separately. 

The grid is created by the function MPI_Cart_create (the vector Periodic defines the per-

missibility of data communications among the bordering processes of the grid columns and 

rows). After the grid has been created, each parallel program process will have its coordinates in 

the grid. The coordinates may be obtained by means of the function MPI_Cart_coords. 

Then in addition to the grid topology a set of communicators for each grid column and row 

separately is created by the function MPI_Cart_sub. 

void CreateGridCommunicators() { 

  int DimSize[2];  // Number of processes in each dimension of the grid 

  int Periodic[2]; // =1, if the grid dimension should be periodic 

  int Subdims[2];  // =1, if the grid dimension should be fixed 

   

  DimSize[0] = GridSize;  

  DimSize[1] = GridSize; 

  Periodic[0] = 0; 

  Periodic[1] = 0; 

 

  // Creation of the Cartesian communicator  

  MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm); 

 

  // Determination of the cartesian coordinates for every process  

  MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords); 

   

  // Creating communicators for rows 

  Subdims[0] = 0;  // Dimensionality fixing 

  Subdims[1] = 1;  // The presence of the given dimension in the subgrid 

  MPI_Cart_sub(GridComm, Subdims, &RowComm); 



 

   

  // Creating communicators for columns 

  Subdims[0] = 1; 

  Subdims[1] = 0; 

  MPI_Cart_sub(GridComm, Subdims, &ColComm); 

} 

3. The function ProcessInitialization. This function sets the matrix sizes and allocates 

memory for storing the initial matrices and their blocks, initializes all the original problem data. 

In order to determine the elements of the initial matrices we will use the functions  DummyDa-

taInitialization and RandomDataInitialization.  

// Function for memory allocation and data initialization 

void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  

  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock,  

  double* &pTemporaryAblock, int &Size, int &BlockSize ) { 

  if (ProcRank == 0) { 

    do { 

      printf("\nEnter size of the initial objects: "); 

      scanf("%d", &Size); 

   

      if (Size%GridSize != 0) { 

        printf ("Size of matricies must be divisible by the grid size! \n"); 

      } 

    } 

    while (Size%GridSize != 0); 

  } 

  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 

 

  BlockSize = Size/GridSize; 

 

  pAblock = new double [BlockSize*BlockSize]; 

  pBblock = new double [BlockSize*BlockSize]; 

  pCblock = new double [BlockSize*BlockSize]; 

  pTemporaryAblock = new double [BlockSize*BlockSize]; 

 

  for (int i=0; i<BlockSize*BlockSize; i++) { 

    pCblock[i] = 0; 

  } 

  if (ProcRank == 0) { 

    pAMatrix = new double [Size*Size]; 

    pBMatrix = new double [Size*Size]; 

    pCMatrix = new double [Size*Size]; 

    //DummyDataInitialization(pAMatrix, pBMatrix, Size); 

    RandomDataInitialization(pAMatrix, pBMatrix, Size); 

  }  

} 

4. The function ParallelResultCalculation. The function ParallelResultCalculation exe-

cutes the parallel Fox algorithm of matrix multiplication. The matrix blocks and their sizes must 

be given to the function as its arguments. 

According to the scheme of parallel computations described in Exercise 3, it is necessary to 

carry out GridSize iterations in order to execute matrix multiplication with the use of Fox algo-

rithm. Each of the iterations consists of the execution of the following operations:  



 

 The broadcast of the matrix A block along the processor grid row (to execute the step we 

should develop the function ABlockCommunication),  

 The multiplication of matrix blocks (to carry out the multiplication of matrix blocks we 

may use the function SerialResultCalculation, which was implemented in the course of the de-

velopment of the serial matrix multiplication program), 

The cyclic shift of the matrix B blocks along the column of the processor grid (the function 

ВBlockCommunication).  

void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  

  double* pBblock, double* pCblock, int BlockSize) { 

  for (int iter = 0; iter < GridSize; iter ++) { 

    // Sending blocks of matrix A to the process grid rows  

    ABlockCommunication (iter, pAblock, pMatrixAblock, BlockSize); 

    // Block multiplication 

    BlockMultiplication(pAblock, pBblock, pCblock, BlockSize); 

    // Cyclic shift of blocks of matrix B in process grid columns  

    BblockCommunication(pBblock, BlockSize); 

  } 

} 

5. The function AblockCommunication. The function broadcasts matrix A blocks to the 

process grid rows. The leading process Pivot that responsible for sending is chosen in each row 

of the grid. For broadcasting the pivot processes are used their blocks pMatrixAblock (let us to 

remind that these blocks transmitted to the processes at the moment of the initial data distribu-

tion). The required communications are executed by means of the function MPI_Bcast. It should 

be noted that the operation is collective, and its localization in separate process grid rows is pro-

vided by the communicators RowComm, which are created for the set of processes of each row 

separately.  

// Broadcasting matrix A blocks to process grid rows  

void ABlockCommunication (int iter, double *pAblock, double* pMatrixAblock,  

  int BlockSize) { 

 

  // Defining the leading process of the process grid row  

  int Pivot = (GridCoords[0] + iter) % GridSize; 

   

  // Copying the transmitted block in a separate memory buffer 

  if (GridCoords[1] == Pivot) { 

    for (int i=0; i<BlockSize*BlockSize; i++) 

      pAblock[i] = pMatrixAblock[i]; 

  } 

   

  // Block broadcasting 

  MPI_Bcast(pAblock, BlockSize*BlockSize, MPI_DOUBLE, Pivot, RowComm); 

} 

6. The function BlockMultiplication. The function executes block multiplication of the ma-

trices A and B. The easiest way to perform this multiplication is to use the serial matrix multipli-

cation algorithm. It should be noted that we provide the simplest variant of the function imple-

mentation for better understanding of the program. These calculations may be optimized to de-



 

crease the computation time. This optimization may be aimed, for instance, at increasing the ef-

ficiency of the processor cache, vectorizing the executed operations etc.  

7. The function BblockCommunication. The function performs the cyclic shift of blocks of 

the matrix B in the process grid columns. Each process transmits its block to the upper neighbor-

ing process NextProc in the process column and receives the block transmitted from the process 

PrevProc , which stands below it in the grid column. Data transmission is executed by means of 

the function MPI_SendRecv_replace, which provides all the necessary block transmissions using 

the same memory buffer pBblock. Besides, this function prevents possible deadlocks, which 

happen when data transmission begins to be performed simultaneously by several processes in 

the ring network topology.  

// Cyclic shift of matrix B blocks in the process grid columns  

void BblockCommunication (double *pBblock, int BlockSize) { 

  MPI_Status Status; 

  int NextProc = GridCoords[0] + 1; 

  if ( GridCoords[0] == GridSize-1 ) NextProc = 0; 

  int PrevProc = GridCoords[0] - 1; 

  if ( GridCoords[0] == 0 ) PrevProc = GridSize-1; 

 

  MPI_Sendrecv_replace( pBblock, BlockSize*BlockSize, MPI_DOUBLE, 

    NextProc, 0, PrevProc, 0, ColComm, &Status); 

} 

9.6 Computational Experiment Results 

The results of the experiments with the use of 4 and 9 processors are given in Table 9.1.  

Table 9.1 The Results of the computational experiments for estimating the Fox parallel al-

gorithm efficiency  

Matrix 

Size 
Serial Algorithm 

Parallel Algorithm 

4 processors 9 processors 

Time Speed Up Time Speed Up 

500 0,8527 0,2190 3,8925 0,1468 5,8079 

1000 12,8787 3,0910 4,1664 2,1565 5,9719 

1500 43,4731 10,8678 4,0001 7,2502 5,9960 

2000 103,0561 24,1421 4,2687 21,4157 4,8121 

2500 201,2915 51,4735 3,9105 41,2159 4,8838 

3000 347,8434 87,0538 3,9957 58,2022 5,9764 
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Figure 9.1 Speedup of the Fox Parallel Algorithm with Respect to Num-

ber of Processors 

Test questions 

1. What is the statement of the matrix multiplication problem?  

2. Give the examples of the problems, which make use of the matrix multiplication opera-

tions. 

3. Give the examples of various sequential algorithms of matrix multiplication operations. 

Is the complexity various in case of different algorithms? 

4. What methods of data distribution are used in developing parallel algorithms of matrix 

multiplication? 

5. Analyze and compute the efficiency of the block-striped algorithm for horizontal parti-

tioning of the multiplied matrices. 

6. What information communications are carried out for the algorithms in case of the 

block-striped data decomposition?  

 

 

Practice 

1. Implement two block striped algorithms of matrix multiplication. Compare runtimes.  

2. Implement the Fox algorithm. Perform computational experiments. Compare experi-

mental results with previous implementations.  
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