

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

Introduction to MPI

Lecture 4. Parallel Programming with MPI.

Collective Data Transmission Operations.

Nizhni Novgorod

2014

Lecture _4_. Parallel Programming with MPI. Collective Data Transmission Op-

erations

This lecture is dedicated to MPI-based parallel programming methods for distributed

memory systems. While Lecture 3 described the minimum required set of functions for MPI-

based software development, this one describes a number of collective operations ensuring a

more efficient data exchange. It also gives a program example demonstrating a way to handle

collective operations.

The functions MPI_Send and MPI_Recv, discussed in lecture 3, provide for pair data pass-

ing operations between two parallel program processes. To execute collective communication

operations characterized by participating of all the processes in a communicator, MPI provides a

special set of functions. This subsection discusses a number of such functions.

To demonstrate the example of MPI function applications we will use the problem of sum-

ming up vector x elements






n

i

ixS

1

.

The development of parallel algorithm for solving this problem is not complicated. It is neces-

sary to divide the data into equal blocks, to transmit these blocks to the processes, to carry out

the summation of the obtained data in the processes, to collect the values of the computed partial

sums on one of the processes and to add the values of partial sums to obtain the total result of the

problem. In further development of the demontrational programs this algorithm will be simpli-

fied. All the vector being summed and, not only separate blocks of the vector, will be transmit-

ted to the program processes.

4.1. Data Broadcasting

The first problem, which arises in the execution of the above discussed parallel algorithm is

the need for transmitting vector x values to all the parallel program processes. Of course, it is

possible to use the above discussed data transmission functions for solving the problem:

MPI_Comm_size(MPI_COMM_WORLD,&ProcNum);

for (i=1; i<ProcNum; i++)

 MPI_Send(&x,n,MPI_DOUBLE,i,0,MPI_COMM_WORLD);

However, this solution appears to be inefficient, as the repetition of the data transmission op-

erations leads to summing up the expenses (latencies) on the preparation of the transmitted mes-

sages. Besides, as it has been shown in Lecture 3, this operation may be executed in log 2p data

transmission iterations.

To achieve efficient broadcasting the following MPI function may be used:

int MPI_Bcast(void *buf,int count,MPI_Datatype type,int

root,MPI_Comm comm),

where

 - buf, count, type – memory buffer, which contains the

transmitted message (for the process 0) and for message

reception for the rest of the processes,

 - root – the rank of the process, which carries out data

broadcasing,

 - comm – the communicator, within of which data broadcasting

is executed.

The function MPI_Bcast carries out transmitting the data from the buffer buf, which contains

count type elements from the process with the root number to the processes within the communi-

cator comm – see Figure 4.1

root

1

0

p-1

  

  

processes

а) before the beginning of the operation

root

1

0

p-1

  

  

processes

b) after the com pletion o f the operation

*

  

  

*

*

*

*

Figure 4.1. The general scheme of the data broadcasting operation

The following aspects should be taken into consideration:

1. The function MPI_Bcast defines the collective operation, and thus, the call of the func-

tion MPI_Bcast, when the necessary data should be transmitted, is to be executed by all the pro-

cesses of a certain communicator (see further the example of the program),

2. The memory buffer defined in the function MPI_Bcast has different designations in dif-

ferent processes. For the root process, from which data broadcasting is performed, this buffer

should contain the transmitted message. For the rest of the processes the buffer is assigned for

data reception.

We will give the example of the program for solving the problem of vector elements summa-

tion with the use of the above described function.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main(int argc, char* argv[]){

 double x[100], TotalSum, ProcSum = 0.0;

 int ProcRank, ProcNum, N=100;

 MPI_Status Status;

 //initialization

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD,&ProcRank);

 // data preparation

 if (ProcRank == 0) DataInitialization(x,N);

// data broadcast

 MPI_Bcast(x, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // computing the partial sum on each of the processes

 // vector x elements from i1 to i2 are summed at each

process

 int k = N / ProcNum;

 int i1 = k * ProcRank;

 int i2 = k * (ProcRank + 1);

 if (ProcRank == ProcNum-1) i2 = N;

 for (int i = i1; i < i2; i++)

 ProcSum = ProcSum + x[i];

 // collecting partial sums on the process 0

 if (ProcRank == 0) {

 TotalSum = ProcSum;

 for (int i=1; i < ProcNum; i++) {

 MPI_Recv(&ProcSum, 1, MPI_DOUBLE, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD,

 &Status);

 TotalSum = TotalSum + ProcSum;

 }

 }

 else // all the processes send their partial sums

 MPI_Send(&ProcSum, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

 // result outprint

 if (ProcRank == 0)

 printf("\nTotal Sum = %10.2f",TotalSum);

 MPI_Finalize();

}

In the described program the function DataInitialization performs the preparation of the ini-

tial data. The necessary data may be input from the keyboard, read from a file, or generated by

means of a random number generator. The preparation of the function is given to the reader for

individual work.

4.2. Data Transmission from All the Processes to a Process. Reduction
Operation.

The procedure of collecting and further data summation available in the above described pro-

gram is an example of the high frequency operation of transmitting data from all the processes to

a process. Different kinds of data processing are carried out over the collected values in this op-

eration (to emphasize this fact the operation is often called as data reduction). As previously, the

implementation of reduction by means of usual point-to-point data transmission operations ap-

pears to be inefficient and rather time-consuming. To execute data reduction in the best way pos-

sible, MPI provides the following function:

int MPI_Reduce(void *sendbuf, void *recvbuf,int

count,MPI_Datatype type,

MPI_Op op,int root,MPI_Comm comm),

where

 - sendbuf – memory buffer with the transmitted message,

 - recvbuf – memory buffer for the resulting message (only for

the root rank process),

 - count - the number of elements in the messages,

 - type – the type of message elements,

 - op - the operation, which should be carried out over

the data,

 - root - the rank of the process, on which the result must

be obtained,

 - comm - the communicator, within of which the operation

is executed.

The operations predetermined in MPI (see Table 4.1) may be used as data reduction opera-

tions.

Table 4.1. The basic (predetermined) MPI operation types for data reduction functions

Operation Description

MPI_MAX
The maximum value deter-

mination

MPI_MIN
The minimum value deter-

mination

MPI_SUM
The Determination of the

sum of the values

MPI_PROD
The determination of the

product of the values

MPI_LAND

The execution of the log-

ical operation “AND” over

the message values

MPI_BAND

The execution of the bit

operation “AND” over the

message values

MPI_LOR

The execution of the log-

ical operation “OR” over

the message values

MPI_BOR

The execution of the bit

operation “OR” over the

message values

MPI_LXOR

The execution of the ex-

cluding logical operation

“OR” over the message

values

MPI_BXOR

The execution of the ex-

cluding bit operation

“OR” over the message

values

MPI_MAXLOC

The determination of the

maximum values and their

indices

MPI_MINLOC

The determination of the

minimum values and their

indices

There may be other complementary operations determined directly by the user of the MPI

library besides this given standard operation set (see, for instance, Group, et al. (1994), Pacheco

(1996).

The general scheme of the execution of data collecting and processing operation on a pro-

cessor is shown in Figure 4.1. The elements of the received message on the root process are the

results of processing the corresponding elements of the messages transmitted by the processes,

i.e.

njxу ij

n

i
j 





0,
1

0

,

where  is the operation, which is set when the function MPI_Reduce is called (to clarify this we

present an example of the execution of data reduction operation in Figure 4.2.).

root y0 y1 y2
  

yn -1

1

0

p-1

  

  

processes

а) after the term ination of the operation

i

1

0

p-1

  

  

processes

b) before the beginning of the operation

  

  

x00 x 01   

x0,n-1 x02

x10 x11   

x1,n-1 x12

x i0 x i1   

x i,n-1 x i2

xn-1,0 xn-1,1   

xn-1,n-1

Figure 4.2. The general scheme of collecting and processing the data on a

processor from all the other processes

The following aspects should be taken into consideration:

1. The function MPI_Reduce defines the collective operation, and thus, the call should be

carried out by all the processes of the specified communicator. All the calls should contain the

equal values of the parameters count, type, op, root, comm,

2. The data transmission should be carried out by all the processes. The operation result will

be obtained only by the root rank process,

3. The execution of the reduction operation is carried out over separate elements of the

transmitted messages. Thus, for instance, if messages contain two data elements each, and the

summation operation MPI_SUM is executed, then the result will consist of the two values: the

first will contain the sum of the first elements of all the transmitted messages, the second one

will be equal to the sum of all the second message elements correspondingly.

root

1

0

processes

а) after the term ination of the operation

2

1

0

processes

b) before the beginning of the operation

-1 3 2 -2

 2 -1 3 1

 4 -2 1 -1 5 0 6 -2

Figure 4.3. The example of reduction in summing up the transmitted data

for three processes (each message contains 4 elements, the messages are

collected on rank 2 process)

Using the function MPI_Reduce to optimize the previously described program of summation

the fragment marked by the double frame can be rewrite in the following form:

// collecting of partial sums on 0 rank process

MPI_Reduce(&ProcSum,&TotalSum, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

4.3. Computation Synchronization

Sometimes the computational processes executed independently have to be sinchronized.

Thus, for instance, to measure the starting time of the parallel program operation it is necessary

to complete all the preparatory operations for all the processes simultaneously. Before the pro-

gram termination all the processes should complete their computations etc.

Process synchronization, i.e. simultaneous achieving certain points of computations by var-

ious processes is provided by means of the following MPI function

int MPI_Barrier(MPI_Comm comm);

The function MPI_Barrier defines collective operation. Thus, this function should be called

by all the processes of the communicator. When the function MPI_Barrier is called, the process

execution is blocked. The computations of the process will continue only after the function

MPI_Barrier is called by all the processes of the communicator.

4.3.1. Scattering Data from a Process to all the Processes

The difference between scattering data from a process to all the processes (data distribution)

and the broadcasting operation is that in case of scattering data, the process transmits different

data to the processes (see Figure 4.4). The execution of this operation may be provided by means

of the following function:

int MPI_Scatter(void *sbuf,int scount,MPI_Datatype stype,

 void *rbuf,int rcount,MPI_Datatype rtype,

 int root, MPI_Comm comm),

where

 - sbuf, scount, stype – the parameters of the transmitted

message

 (scount defines the number of elements transmitted to

each process),

 - rbuf, rcount, rtype – the parameters of the message received

in the

 processes,

 - root – the rank of the process, which performs data

scattering,

 - comm – the communicator, within of which data scattering is

performed.

root 0 1 2   

p-1

1

0

p-1

  

  

processes

а) before the beginning of the operation

root

1

0

p-1

  

  

processes

b) after the termination of the operation

0

1

root

p-1

  

  

Figure 4.4. The general scheme of scattering data from a process to all

the other processes

When this function is called, the process with rank root transmits data to all the other pro-

cesses in the communicator. Scount elements will be sent to each process. the process 0 will re-

ceive the data block of sbuf elements with the indices from 0 to scount-1; the process with rank 1

will receive the block of elements with the indices from scount to 2*scount-1 etc. Thus, the total

size of the transmitted message should be equal to scount*p elements, where p is the number of

the processes in the communicator comm.

It should be noted that as the function MPI_Scatter defines a collective operation, the call of

this function in the execution of data scattering should be provided in each communicator pro-

cess.

It should be also noted that the function MPI_Scatter transmits messages of the same size to

all the processes. The execution of a more general variant of data distribution operation, when

the message sizes for different processes may be different, is provided by means of the function

MPI_Scatterv.

4.4. Gathering Data from All the Processes to a Process

Gathering data from all the processes to a process (data gathering) is reverse to data distribu-

tion (see Figure 4.5). The following MPI function provides the execution of this operation:

int MPI_Gather(void *sbuf,int scount,MPI_Datatype stype,

 void *rbuf,int rcount,MPI_Datatype rtype,

 int root, MPI_Comm comm),

where

 - sbuf, scount, stype – the parameters of the transmitted

message,

 - rbuf, rcount, rtype – the parameters of the received

message,

 - root – the rank of the process which performs data

gathering,

 - comm – the communicator, within of which data transmission

is executed.

root 0 1 2   

p-1

1

0

p-1

  

  

processes

а) after the termination of the operation

root

1

0

p-1

  

  

processes

b) before the beginning of the operation

0

1

root

p-1

  

  

Figure 4.5. The general scheme of the data gathering from all the pro-

cesses to a process

When the fuinction MPI_Gather is being executed, each process in the communicator

transmits the data from the buffer sbuf to the process with rank root. The root rank process gath-

ers all the transmitted data in the buffer rbuf (the data is located in the buffer in accordance with

the ranks of the sending processes). In order to locate all the received data the buffer size rbuf

should be equal to scount*p elements, where p is the number of the processes in the communica-

tor comm.

The function MPI_Gather also defines a collective operation and its call in gathering the da-

ta must be provided in each communicator process.

It should be noted that when the MPI_Gather function is used, data gathering should be car-

ried out only on one process. To obtain all the gathered data on each communicator process, it is

necessary to use the function:

int MPI_Allgather(void *sbuf, int scount, MPI_Datatype stype,

 void *rbuf, int rcount, MPI_Datatype rtype,

MPI_Comm comm).

The execution of the general variant of data collecting operation, when the sizes of the mes-

sages transmitted among the processes may be different, is provided by means of the functions

MPI_Gatherv and MPI_Allgatherv.

4.5. Collective operation use example

The π computation problem will serve as an example of problem requiring distribution.

Theoretically, computation of π can be resolved to computation of an integral:

This integral may be computed numerically using the method of rectangles. For the purposes of

implementation, all processes, first of all, have to know the number of sections the original inte-

gration interval will be split into. Then each process must compute the integral value within its

integration section. In the end, the zero process will sum all the integral parts that have been

computed. See the implementation below.

#include "mpi.h"

#include <math.h>

double f(double a) {

 return (4.0 / (1.0 + a*a));

}

int main(int argc, char *argv) {

 int ProcRank, ProcNum, done = 0, n = 0, i;

 double PI25DT = 3.141592653589793238462643;

 double mypi, pi, h, sum, x, t1, t2;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD,&ProcRank);

 while (!done) { // основной цикл вычислений

 if (ProcRank == 0) {

 printf("Enter the number of intervals: ");

 scanf("%d",&n);

 t1 = MPI_Wtime();

 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 if (n > 0) { // вычисление локальных сумм

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = ProcRank + 1; i <= n; i += ProcNum) {

 x = h * ((double)i 0.5);

 sum += f(x);

 }

 mypi = h * sum;

 // сложение локальных сумм (редукция)

MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);

 if (ProcRank == 0) { // вывод результатов

 t2 = MPI_Wtime();

 printf("pi is approximately %.16f, Error is

 %.16f\n",pi, fabs(pi PI25DT));

 printf("wall clock time = %f\n",t2-t1);

 }

 } else done = 1;

 }

 MPI_Finalize();

}

4.6. Review of references

There are a number of sources, which provide information about MPI. First of all, this is the

internet resource, which describes the standard MPI: http://www.mpiforum.org. One of the most

widely used MPI realizations, the library MPICH, is presented on http://www-

unix.mcs.anl.gov/mpi/mpich (the library MPICH2 with the realization of the standard MPI-2 is

located on http://www-unix.mcs.anl.gov/mpi/mpich2).

The following works may be recommended: Group, et al. (1994), Pacheco (1996), Snir, et

al. (1996), Group, et al. (1999a). The description of the standard MPI-2 may be found in Group,

et al. (1999b).

We may also recommend the work by Quinn (2003), which described a number of typical

problems of parallel programming for the purpose of studying MPI. These are the problems of

matrix computations, sorting, graph processing etc.

Test questions

1. What is the difference between point-to-point and collective data transmission opera-

tions?

2. Which MPI function provides transmitting data from a process to all the processes?

3. What is the data reduction operation?

4. In what cases should we apply barrier synchronization?

5. What collective data transmission operations are supported in MPI?

Practice

1. Develop a program for finding the minimum (maximum) value of the vector elements.

2. Develop a program for computing the scalar product of two vectors.

3. Develop a program for definite integral computation using the method of rectangles.

http://www.mpiforum.org/
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich

References

1. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

2. Gropp, W., Lusk, E., Skjellum, A. (1999a). Using MPI - 2nd Edition: Portable Parallel Pro-

gramming with the Message Passing Interface (Scientific and Engineering Computation). -

MIT Press.

3. Gropp, W., Lusk, E., Thakur, R. (1999b). Using MPI-2: Advanced Features of the Message

Passing Interface (Scientific and Engineering Computation). - MIT Press.

4. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. (1996). MPI: The Complete

Reference. - MIT Press, Boston, 1996.

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://mitpress.mit.edu/book-home.tcl?isbn=0262692155

