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Lecture_12_. Estimation of Communication Complexity for Parallel Algorithms 

 

Time delays in case of data transmission via communication channels to ensure interaction 

of independent processes can to a large extent determine the efficiency of parallel computations. 

This lecture tackles the issues of analysis of data streams generated in the course of parallel algo-

rithm execution. It gives a general description of data transmission mechanisms, analyzes com-

plexity of basic communication operations and reviews logical representation methods of multi-

processor structure. These issues are studied in more detail by Kumar (1994) and Quinn (2004). 

12.1. Overview of Data Transmission Mechanisms  

12.1.1. Routing Algorithms 

The routing algorithms define the route of data transmission from the sending processor to 

the processor, which should receive the message. The methods for solving the problem are the 

following: 

 the optimum ones, which always define the shortest path for data transmission, and non-

optimum routing algorithms; 

 deterministic and adaptive methods of choosing routes (the adaptive algorithms define 

the route of data transmission depending on the available load of communication channels). 

Among the widely used optimum algorithms, there is the class of dimension-ordered routing 

methods. The search for data transmission routes is carried out in the methods for each topology  

dimension of communication network in turn. Thus, for the two-dimensional grid this approach 

leads to such type of routing, which involves data transmission first in one direction (for in-

stance, horizontally till the vertical line of processors, which contains the assigned processor, is 

reached), and then the data is transmitted along the other direction (the given scheme is known as 

the XY-routing algorithm).  

12.1.2. Data Transmission Methods 

The time necessary for transmitting data between the processors defines the communication 

overhead of the the duration of parallel algorithm execution in a multiprocessor computer sys-

tem. The basic set of parameters, which can help to evaluate the data transmission time, consists 

of the following values:  

 initializing time (t s) characterizes the duration of preparing the message for transmis-

sion, the search of the route in the network etc. 
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 control data transmission time (th) between two neighboring processors (i.e. the pro-

cessors, connected by a physical data transmission channel); to control data we may refer the 

message header, the error detection data block etc.; 

 transmission time of one data byte along a data transmission channel (tb); the duration 

of this transmission is defined by the communication channel bandwidth. 

There are two main communication methods among the most widely used data transmission 

techniques (see, for instance, Kumar (1994)). The first one is oriented at transmitting messages 

as indivisible  information blocks (store-and-forward routing or SFR). In case of this approach 

the processor, which contains a message for transmission, gets all the amount of data ready for 

transmission, defines the processor, which should receive the data, and initializes the operation 

of data transmission. The processor, to which the message has been sent, first receives all the 

transmitted data and only then begins to send the received message further along the route. The 

time of data transmission t c o m m  for the method of transmitting the message of m bytes along the 

route of length l is defined by the expression  

ltmttt hsscomm )(  . 

If the messages are long enough, the control data transmission time may be neglected, and 

the expression for data transmission time may be written in a simplified way:  

lmttt hscomm  . 

The second communication method is based on presenting the transmitted messages as in-

formation blocks of smaller sizes (packets). Data transmission, as a result, may be reduced to 

packet communication. In case of this method (cut-through routing or CTR) the receiving pro-

cessor may send the data further along the route immediately after receiving the current packet 

without waiting for the termination of the whole message data transmission. The data transmis-

sion time in case of packet communication method will be defined by the following expression: 

ltmttt bbscomm  . 

If we compare the obtained expressions, it is possible to notice that in the majority of cases 

the packet communication leads to faster data transmission.  Besides, this approach decreases the 

need for memory for storing the transmitted data. Different communication channels may be 

used for packet communication simultaneously. On the other hand, the implementation of the 

packet communication requires the development of more complex hardware and software. It may 

also increase the overhead expenses (initialization time and control data transmission time). 

Deadlocks may also occur in case of packet communication.  



  

12.2. The Complexity Analysis of the Data Transmission Operations  

Despite all the variety of the data transmission operations in case of parallel methods of 

solving complex time-consuming problems, certain procedures of network processor interactions 

may be referred to the basic communication operations. Such operations are either widely used 

in parallel computation practice or other message passing operations may be reduced to them. It 

is also important that there are procedures reverse in their actions to the initial operations among 

the basic set of communication operations. Thus, for instance, the operation of data transmission 

from a processor to all the available network processors corresponds to the operation of message 

accumulation by one processor from all the rest processors. As a result, the consideration of the 

communication procedures should be done pairwise. It is useful as the execution algorithm of the 

direct and the reverse operations may be in many cases obtained proceeding from the general 

statements.  

Such network topologies as a ring and two-dimensional grid will be further used as exam-

ples for the consideration of the basic data transmission operations. For the two-dimensional grid 

it is also assumed that there are data transmission channels between the bordering processors in 

the rows and columns of the grid (i.e. the network topology is a torus).  

12.2.1. Data Transmission between Two Network Processors  

The complexity of this communication operation may be obtained by means of substitution 

of the maximum path (the network diameter – see Table 12.1) into the expression for data trans-

mission time in case of various communication methods.   

Table 12.1. Data transmission time between two processors  

Topology Data Transmission  Packet Communication 

Ring  2/pmtt кн    2/ptmtt скн   

Grid-torus  2/2 pmtt кн    2/2 ptmtt скн   

Hypercube pmtt кн 2log  ptmtt скн 2log  

12.2.1. Data Transmission from One Processor to All the Network Processors  

One-to-all broadcast or single-node broadcast (of the same message) is one of the most 

widely used communication operations. Single-node accumulation consists in receiving the mes-

sages by one of the processors from all the other network processors. Such operations are used in 
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particular in matrix-vector multiplication implementation, in solving linear equation systems by 

the Gauss method, as well as in searching for the shortest paths etc.  

The simplest way to realize broadcast operation is to carry it out as a sequence of pairwise 

network processor interactions. However, in case of this approach the greater part of broadcast-

ing is excessive. So a more efficient communication algorithm may be used. First we will de-

scribe the message transmission method, and then we will consider packet communication.  

Message transmission. In case of the ring topology the sending processor may initiate data 

transmission to two neighbors at once. These processors in their turn send the message further in 

the ring. The complexity of the operation execution in this case will be defined by the following 

relation:  

 2/)( pmttt bscomm  . 

For the grid-torus topology the broadcasting algorithm may be obtained basing on the data 

transmission method, which was used for the ring topology. Thus, broadcasting may be carried 

out as a two-stage procedure. At the first stage we arrange data broadcasting to all the processors 

of the network, which are located on the same horizontal line of the grid as the sending proces-

sor. During the second stage the processors, which have received the data copy at the first stage, 

send the messages along the corresponding vertical lines. The estimation of broadcasting dura-

tion in accordance to the described algorithm, is defined by the following formula:  

 2/)(2 pmttt bscomm  

For the hypercube broadcasting may be carried out as an N-stage data transmission proce-

dure. During the first stage the sending processor sends data to one of the neighbors (for in-

stance, along the first dimension). As a result, there are two processors, which have the copies of 

the data after the first stage (these results may be also interpreted as bisecting of the initial hy-

percube and obtaining two identical in size hypercubes of N-1 dimensionality, each of them has a 

copy of the initial message). At the second stage the two processors engaged at the first stage 

send messages to their neighbors along the second dimension etc. As a result of this broadcasting 

the operation execution time is estimated by the following expression:  

pmttt bscomm 2log)(  . 

The comparison of the obtained expressions for broadcasting execution duration demon-

strates that the hypercube topology shows the best results. Moreover, it is possible to demon-

strate that the given result is optimum for the selected communication method based on message 

transmission.  



  

Packet communication. The broadcast algorithm for the ring topology may be obtained by 

means of logical presentation of the ring structure as a hypercube. As a result, the sending pro-

cessor sends the data to the processor, which is at p/2 distance from the initial processor during 

the first broadcast stage. Further, during the second stage the two processors, which already have 

the data after the first stage, transmit the data to the processors, which are located at p/4 distance 

etc. The time complexity of the broadcast in case of this method is defined by the following ex-

pression:  






p

i

hbs

i

hbscomm ptpmttptmttt

2log

1

2 )1(log)()2/(  

(as previously, if messages are big enough, control data transmission time may be neglected). 

For the grid-torus topology the broadcast algorithm may be obtained using the method of 

data transmission applied to the ring network structure. The same way of generalization, that is 

used for message transmission method, may be also applied. The algorithm, which is obtained, is 

characterized by the following statement for estimating execution time:  

)1(2log)( 2  ptpmttt hbscomm . 

The packet communication broadcast algorithm for the hypercube (and correspondingly, 

execution time estimations) does not differ from the variant for message transmission method.  

  

12.3. Estimation of Communication Complexity for Clusters  

One of the most efficient methods of organizing the communication network for cluster 

computer systems is using hubs and switches. In these cases the cluster network topology is the 

complete graph. There are, however, certain limitations on communication operation simultanei-

ty in the cluster. Thus, data transmission at any given moment of time may be executed only be-

tween two processors, if hubs are used. Switches may provide the interactions of several non-

intersecting pairs of processors.  

Another solution, which is widely used in creating clusters, consists in using packet commu-

nication method (which is realized, as a rule, on the basis of TCP/IP protocol). This method is 

used as the basic means of executing communication operations.  

1. If we choose for the further analysis the clusters of this widely used type (the complete 

graph topology, packet communication method), then the time complexity of the communication 
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operation between two processors may be estimated according to the following formula (model 

A):  

hbscomm ttmtmt  *)( , 

the estimation of this type is caused by the expression of packet communication method, when 

the path length of data transmission is  l  = 1 . Such an approach is quite possible. However, it is 

possible to notice that in this model the time of data preparation 
st  is assumed to be constant (it 

does not depend on the amount of the transmitted data). The time of control data transmission 
ht  

does not depend on the number of the transmitted packets etc. These assumptions do not fully 

coincide with the real situation, and the time estimations obtained with the help of this model 

may be not accurate enough.  

2. If we take into account all these considerations, we may specify a new enhanced model 

which provide the estimation of the time transmission complexity for data transmission between 

two processors in accordance with the following expression (model B): 













1,)()(

1,)(

10

10

max ntnVmtVVt

ntVmtmt
t

bhshs

bhss

comm
, 

where  )/( max hVVmn   is the number of packets,  into which the transmitted message is parti-

tioned,  value 
maxV  defines the maximum size of the packet, which may be delivered in the net-

work, and 
hV  is the volume of control data in each of the transmitted packets. It should be noted 

that the constant 
0st  in the above given relations characterizes the hardware latency component 

and depends on the parameters of the network equipment being used; the value 
1s

t  defines the 

time for preparing a data byte for transmission. As a result, the latency value  

10 sss ttt    

increases linearly depending on the amount of the transmitted data. It is assumed that data prepa-

ration for transmitting the second and all the further packets may be combined with transmitting 

the previous packets. Thus, latency cannot exceed the following value 

10
)( max shss tVVtt  . 

Besides latency it is possible to specify the rule for computation of data transmission time in 

the suggested expressions for estimating the time communication complexity:  

bh tnVm  )( . 

It makes possible to take into account the effect of the increase of the transmitted data amount, if 

the number of the transmitted packets is increasing due to addition of the control information 

(packet headers). 



  

3. At the end of the problem analysis it should be noted that it is necessary to estimate the 

values of the parameters for the relations being used in order to use the above described models 

in practice. In this respect it may be useful to use simpler methods of computing the time ex-

penses for data transmission. One of the best known schemes of this type is the approach (the 

Hockney model; see, for instance, Hockney (1994)), which estimates the complexity of the 

communication between two processors according to the expression (model C):  

bscomm tmtmt )( . 

4. In order to check whether these models are adequate to  real data transmission processes, 

we will show the results of the computational experiments carried out in the network of the mul-

tiprocessor cluster of Nizhny Novgorod State University (computers IBM PC Pentium 4 1300 

Mhz and Fast Ethernet). Communication operations were realized with the help of MPI library in 

these experiments. 

A number of the experiments were carried out for estimating the model parameters: 

- the latency value 
st  for the models A and C was defined as the time of transmitting the 

message of zero length; 

- the value of bandwidth R was set as the maximal transmission speed observed in the 

course of experiments, i.e.: 

)/)((max mmtR comm
m

 , 

and it was assumed that t b=1/R ; 

- the values 
0st  and 

1s
t  were estimated by means of linear approximation of the data trans-

mission time for messages beginning with 0 size up to 
maxV  size, 

- there were also set 
maxV =1500 bytes and 

hV =78 bytes. 

The data was transmitted between two cluster processors in the experiments. The size of the 

transmitted messages varied from 0 to 8 Mb. Each operation was carried out repeatedly (more 

than 100000) in order to obtain more accurate estimations. After that the results were averaged. 

For illustration the results of an experiment are given below when the size of the transmitted 

messages varied from 2000 up to 60000 bytes.  

 The numeric data concerning the errors of the above described models of communication 

complexity are given in Table 12.2 (the value of the error is given as relative deviation from the 

real time of data transmission operation execution).  

Table 12.2. The errors of the complexity models for data transmission  

(according to the results of the computational experiments) 

Message  
Transmission 

time (msec) 

The error of the theoretical estimation of 

data transmission time (%) 
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size (byte) Model А Model В Model С 

2000 495 33.45% 7.93% 34.80% 

10000 1184 13.91% 1.70% 14.48% 

20000 2055 8.44% 0.44% 8.77% 

30000 2874 4.53% -1.87% 4.76% 

40000 3758 4.04% -1.38% 4.22% 

50000 4749 5.91% 1.21% 6.05% 

60000 5730 6.97% 2.73% 7.09% 

The results of the experiments demonstrate that the estimations of data transmission com-

plexity according to model B have the least error. 

It should be also noted that model C accuracy may appear to be sufficient for the prelimi-

nary analysis of the time expenses on communication operations. Besides, this model is the sim-

plest one among all the models, which have been discussed here. With regard to the latter fact we 

will be using model C (the Hockney model) in all the further sections for estimating the data 

transmission complexity.  Moreover, further we will use the following format for the Hockney 

model (see Hockney (1994)): 

 /)( mmtcomm  , 

where α  is the latency of the data transmission network (i.e. α=t s),  β  is the network bandwidth 

(i.e. β=R=1/ t b). 

12.4. Examples of practical task solution time model construction  

Lectures 11 and 12 offer methods of solution time modeling for the developed algorithms. 

Let us try to put the methods into practice and solve the matrix-vector multiplication and matrix 

multiplication problems considered earlier. 

12.4.1. The problem of matrix-vector multiplication 

See the problem definition and program implementation of parallel methods in Lectures  6 

and 7. We will only list the result of efficiency analysis for parallel implementations. 

12.4.1.1. Rowwise data decomposition 

To analyze the efficiency of parallel computations, two kinds of estimations will be formed 

henceforward. To form the first type of them algorithm complexity is measured by the number of 

computational operations that are necessary for solving the given problem (without taking into 



  

account the overhead caused by data communications among the processors); the duration of all 

elementary computational operations (for instance, addition and multiplication) is considered to 

be the same. Besides, the obtained constants are not taken into consideration in relations.  It pro-

vides to obtain the order of algorithm complexity and, as a result, in most cases such estimations 

are rather simple and they can be used for the initial efficiency analysis of the developed parallel 

algorithms and methods.  

The second type of estimation is aimed at forming as many exact relationships for predicting 

the execution time of algorithms as possible. Such estimations are usually obtained with the help 

of refinement of the expressions resulting from the first stage. For that purpose the parameters, 

which determine the execution time, are introduced in the existing relations; time complexity of 

communication operations are estimated; all the necessary constants are stated. The accuracy of 

the obtained expressions is examined with the help of computational experiments. On the basis 

of their results the time of executed computations is compared to the theoretically predicted es-

timation of the execution time. As a result, such estimations are, as a rule, more complex, but 

they make it possible to estimate the efficiency of the developed parallel computation methods 

more precisely. 

Let us consider the time complexity of the algorithm of matrix-vector multiplication. If ma-

trix A is square (m=n), the sequential algorithm of matix-vector multiplication has the complexi-

ty T1=n
2
. In case of parallel computations each processor performs multiplication of only a part 

(stripe) of the matrix A by the vector b. The size of these stripes is equal to n/p rows. In case of 

computing the inner product of one matrix row by a vector, it is necessary to perform the n mul-

tiplications and (n-l) additions. Therefore, computational complexity of the parallel algorithm is 

determined as:  

Tp=n
2
/p.            (12.1) 

Taking into account this estimation, the criteria of speedup and efficiency of the parallel al-

gorithm are: 

p
pn

n
S p 

/
2

2

,    1
)/(

2

2





pnp

n
E p .        (12.2) 

The estimations (12.1), (12.2) of the computation execution time are expressed in the number 

of operations. Besides, they are formed without taking into consideration the execution of data 

communication operations. Let us use the above mentioned assumptions that the executed multi-

plications and additions are of equal duration τ. Besides, let us assume that the computer system 
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is homogeneous, i.e. all the processors of the system have the same performance. With regard to 

the introduced assumptions, the computation time of the parallel algorithm is:  

       12npncalcT p  

(    is denoted rounding up to the nearest integer number). 

As it has been mentioned before, this operation can be executed in  p2log  iterations
1
.
)
 At 

the first iteration the interacting pairs of processors exchange messages of size  pnw  (w is the 

size of one element of the vector c in bytes). At the second iteration the size becomes doubled 

and is equal to  pnw2  etc. As a result, the all gather operation execution time when the Hock-

ney model is used can be represented as:  

     
 

 







p

i

pi

p pnwppnwcommT

2

2

log

1

log

2

1
/)12(/log)//2()(  ,     

where α is the latency of data communication network, β is the network bandwidth. Thus, the 

total time of parallel algorithm execution is 

     /1)/(log12)/( 2  ppnwpnpnT p  .      (12.3) 

(to simplify the expression , it was assumed that the values  n/p  and  p2log  are whole numbers). 

Let us analyze the results of the computational experiments carried out in order to estimate 

the efficiency of the discussed parallel algorithm of matrix-vector multiplication. Besides, the 

obtained results will be used for the comparison of the theoretical estimations and experimental 

values of the computation time. Thus, the accuracy of the obtained analytical relations will be 

checked. The experiments were carried out on the computational cluster on the basis of the pro-

cessors Intel XEON 4 EM64T, 3000 Mhz and the network Gigabit Ethernet under OS Microsoft 

Windows Server 2003 Standard x64 Edition.  

Now let us describe the way the parameters of the theoretical dependencies (values τ, w, α, β) 

were evaluated. To estimate the duration τ of the basic scalar computational operation, we solved 

the problem of matrix-vector multiplication using the sequential algorithm. The computation 

time obtained by this method was divided into the total number of the operations performed. As 

a result of the experiments the value of τ was equal to 1.93 nsec. The experiments carried out in 

order to determine the data communication network parameters demonstrated the value of laten-

                                                 

1) Let us assume that the topology of the computer system allows to carry out this efficient method of all gather operation (it is possible, in 

particular, if the structure of the data communication network is a hypercube or a complete graph). 



  

cy α and bandwidth β correspondingly 47 msec and 53.29 Mbyte/sec. All the computations were 

performed over the numerical values of the double type, i.e. the value w is equal to 8 bytes. 

The results of the computational experiments are shown in Table 12.3. The experiments were 

carried out with the use of 2, 4 and 8 processors. The algorithm execution time is given in se-

conds.  

Table 12.3 The results of the computational experiments for the parallel algorithm of 

matrix-vector multiplication with rowwise block-striped data decomposition  

Matrix 

Size 

Sequential Algo-

rithm 

Parallel Algorithm 

2 processors 4 processors 8 processors 

Time Speed Up Time Speed Up Time Speed Up 

1000 0,0041 0,0021 1,8798 0,0017 2,4089 0,0175 0,2333 

2000 0,016 0,0084 1,8843 0,0047 3,3388 0,0032 4,9443 

3000 0,031 0,0185 1,6700 0,0097 3,1778 0,0059 5,1952 

4000 0,062 0,0381 1,6263 0,0188 3,2838 0,0244 2,5329 

5000 0,11 0,0574 1,9156 0,0314 3,4993 0,0150 7,3216 
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Figures 12.1 Speedup for parallel matrix-vector multiplication (rowwise 

block-striped matrix decomposition) 

The comparison of the experiment execution time *

pT  and the theoretical time pT  calculated 

in accordance with the expression (12.3) is shown in Table 12.4. It is also shown graphically in 

Figures 12.1 and 12.2.  

Table 12.4 The comparison of the experimental and theoretical execution time for par-

allel algorithm of matrix-vector multiplication based on rowwise matrix decomposition 

Matrix Size 2 processors 4 processors 6 processors 
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pT (model) *

pT  
pT (model) *

pT  
pT (model) *

pT  

1000 0,0069 0,0021 0,0108 0,0017 0,0152 0,0175 

2000 0,0132 0,0084 0,0140 0,0047 0,0169 0,0032 

3000 0,0235 0,0185 0,0193 0,0097 0,0196 0,0059 

4000 0,0379 0,0381 0,0265 0,0188 0,0233 0,0244 

5000 0,0565 0,0574 0,0359 0,0314 0,0280 0,0150 

 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1000 2000 3000 4000 5000

matrix size

ti
m

e Experiment

Model

 

Figures 12.2 Experimental and theoretical execution time with respect to 

matrix size (rowwise block-striped matrix decomposition, 2 processors) 

12.4.2. Matrix multiplication 

See Lectures 8-9 for problem description and parallel method implementation. Here we will 

indicate only the results of parallel implementation efficiency analysis. 

12.4.2.1. Block-striped data decomposition scheme  

Let us estimate the efficiency of the first matrix multiplication parallel algorithm.  

The total time complexity of the sequential algorithm, as it has been stated earlier, is propor-

tional to n
3
. In case of the parallel algorithm each processor multiplies the stripes of the matrix A 

and the matrix B at each iteration (the stripe size is equal to n/p and, as a result, the total number 

of the multiplication operations performed is equal to n
3
/p

2
). As the number of the algorithm it-

erations is the same as the number of processors the complexity of the parallel algorithm, with no 

account for data communication, may be evaluated by means of the following expression:  

pnppnT p /)/(
323

 .          (12.4) 



  

With regard to this estimation, the speedup and efficiency of the given parallel algorithm of 

matrix multiplication look as follows:  

p
pn

n
S p 

)(
3

3

  and  
 

1
3

3





pnp

n
E p

.       (12.5) 

Thus, the general efficiency analysis gives ideal characteristics of the parallel computation 

efficiency. To specify the obtained relations we should estimate more precisely the number of 

computational operations of the algorithm and take into account the overhead of data communi-

cations among the processors.  

With regards to the number and the duration of the operations the time for carrying out the 

computations for parallel algorithm may be estimated as follows:  

     12)/(
2

npncalcT p           (12.6) 

(where, as previously, τ  is the execution time of an basic computational operation). 

For the purpose of estimating the communication complexity of parallel computations we 

will assume that all data communication operations among the processors in the course of an al-

gorithm iteration may be executed in parallel. The amount of the data transmitted among the 

processors is determined by the stripe size and is equal to n/p rows or columns of size n. The to-

tal number of parallel data communication operations is equal to the number of algorithm itera-

tions minus one (at the last iteration data communication is not compulsory). Thus, the time 

complexity estimation for the data communication operations performed may be evaluated as:  

       /1 pnnwpcommT p  ,       (12.7) 

where α is the latency, β is the network bandwidth, and w is the size of the matrix element in 

bytes. 

With regard to the relations obtained the total execution time for the parallel algorithm of 

matrix multiplication can be estimated by the following expression: 

       /112)/(
2

pnnwpnpnT
p

 .      (12.8) 

The results of the computational experiments are shown in Table 12.5. The experiments were 

performed with the use of 2, 4 and 8 processors.  

Table 12.5. The results of the computational experiments for the first parallel algorithm of 

matrix multiplication based on the block-striped data decomposition 

Matrix 

Size 

Serial Al-

gorithm 

2 processors 4 processors 8 processors 

Time Speed Up Time Speed Up Time Speed Up 



 1

09 

500 0,8752 0,3758 2,3287 0,1535 5,6982 0,0968 9,0371 

1000 12,8787 5,4427 2,3662 2,2628 5,6912 0,6998 18,4014 

1500 43,4731 20,9503 2,0750 11,0804 3,9234 5,1766 8,3978 

2000 103,0561 45,7436 2,2529 21,6001 4,7710 9,4127 10,9485 

2500 201,2915 99,5097 2,0228 56,9203 3,5363 18,3303 10,9813 

3000 347,8434 171,9232 2,0232 111,9642 3,1067 45,5482 7,6368 
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Figure 12.3 Speedup for the first parallel algorithm of matrix multiplica-

tion (block-striped matrix decomposition) 

The comparison of the experimental execution time *

pT  and the theoretical time pT  from ex-

pression (12.8) is given in Table 12.6  and in Figure 12.4.  

Table 12.6. The comparison of the experimental and theoretical execution time of the first 

matrix multiplication parallel algorithm based on the block-striped data decomposition 

Matrix 

Size 

2 processors 4 processors 8 processors 

pT  *

pT  pT  *

pT  pT  *

pT  

500 0,8243 0,3758 0,4313 0,1535 0,2353 0,0968 

1000 6,51822 5,4427 3,3349 2,2628 1,7436 0,6998 

1500 21,9137 20,9503 11,1270 11,0804 5,7340 5,1766 

2000 51,8429 45,7436 26,2236 21,6001 13,4144 9,4127 

2500 101,1377 99,5097 51,0408 56,9203 25,9928 18,3303 

3000 174,6301 171,9232 87,9946 111,9642 44,6772 45,5482 
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Figure 12.4 Theoretical and experimental execution time with respect to 

matrix size (block-striped matrix decomposition, 2 processors)  

 

12.4.2.2. Checkerboard block matrix data partitioning (Fox algorithm) 

Let us evaluate the computational complexity of the Fox algorithm. To formulate the re-

quired estimations we will suppose that all the previous assumptions are met, i.e. all matrices are 

square, their sizes are n×n, the block grid is square and its size is equal to q (i.e. the size of all 

blocks is k×k, k=n/q), processors form a square grid and their number is p=q
2
. 

As it has been previously mentioned, the execution of the Fox algorithm requires q itera-

tions, during which each processor multiplies its current blocks of the matrices A and B, and adds 

the multiplication results to the current block of the matrix C. With regard to the above men-

tioned assumptions, the total number of the executed operations will be of the order n
3
/p. As a 

result, the speedup and efficiency of the algorithm look as follows:  

p
pn

n
S p 

)(
3

3

  and  
 

1
3

3





pnp

n
E p

.       (12.9) 

The general efficiency analysis indicates that parallel computation efficiency is ideal. To 

make the obtained relations more precise we will estimate more exactly the number of algorithm 

computational operations and take into account the overhead related with data communications 

among the processors.  

Let us evaluate the number of computational operations. The complexity of scalar multiplica-

tion of the block row of the matrix A by the block column of the matrix B may be estimated as   

2(n/q)-1. The number of rows and columns in the blocks is equal to n/q. As a result, the time 
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complexity of block multiplication appears to be equal to (n
2
/p)(2n/q-1). The addition of the 

blocks requires n
2
/p operations. With regard to the above given expressions the computational 

time of the Fox algorithm may be estimated in the following way:  

     )]/(1/2)/[(
22

pnqnpnqcalcT p .        (12.10) 

(as previously that τ is the execution time of an basic computational operation). 

Let us estimate now the overhead on data communications among the processors. One of the 

processors of the processor grid row transmits its matrix A block to the rest of the grid row pro-

cessors at each iteration. As it has been mentioned previously, the execution of this operation 

may be provided in log2q steps, if the topology of the network is a hypercube or a complete 

graph. As a result, the time complexity of data communications in accordance with the Hockney 

model may be estimated as follows:  

  )/)/((log
2

2

1

p  pnwqcommT          (12.11) 

where α is the latency, β is the network bandwidth,  w is the size of a matrix elements in bytes. In 

case of the ring topology the expression for time estimation looks as follows:  

  )/)/(()2/(
~ 21

p  pnwqcommT  . 

After multiplying the matrix blocks the processors send their matrix B blocks to the proces-

sors, which are upper neighbors in the processor grid columns (the first row processors send their 

data to the last row processors). These operations may be carried out by the processors in parallel 

and, thus, the time complexity of these communication operations is the following:  

   /)(
22

pnwcommT p  .        (12.12) 

After the summation of all the obtained expressions, it becomes clear that the total execution 

time for the Fox algorithm may be defined by means of the following relations:  

   

  )/)/()()1(log()]/(1/2)/[(

)/)/((1)/)/((log)]/(1/2)/[(

2

2

22

22

2

22





pnwqqqpnqnpnq

pnwqpnwqqpnqnpnqT p




 

(12.13) 

(it should be reminded that parameter  q  defines the size of the processor grid  and pq  ). 

The results of the experiments with the use of 4 and 9 processors are given in Table 12.7.  

Table 12.7 The Results of the computational experiments for estimating the Fox parallel al-

gorithm efficiency  

Matrix Serial Algorithm Parallel Algorithm 



  

Size 4 processors 9 processors 

Time Speed Up Time Speed Up 

500 0,8527 0,2190 3,8925 0,1468 5,8079 

1000 12,8787 3,0910 4,1664 2,1565 5,9719 

1500 43,4731 10,8678 4,0001 7,2502 5,9960 

2000 103,0561 24,1421 4,2687 21,4157 4,8121 

2500 201,2915 51,4735 3,9105 41,2159 4,8838 

3000 347,8434 87,0538 3,9957 58,2022 5,9764 
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Figure 12.5 Speedup of the Fox Parallel Algorithm with Respect to 

Number of Processors 

The comparison of the experiment execution time *

pT  and the theoretical time pT , calculated 

according to expression 12.13, is shown in Table 12.8 and in Figure 12.6. 

Table 12.8. The comparison of the experimental and theoretical execution time for the Fox 

parallel algorithm  

Matrix 

Size 

4 processors 9 processors 

p
T  *

pT  
p

T  *

pT  

500 0,4217 0,2190 0,2200 0,1468 

1000 3,2970 3,0910 1,5924 2,1565 

1500 11,0419 10,8678 5,1920 7,2502 

2000 26,0726 24,1421 12,0927 21,4157 

2500 50,8049 51,4735 23,3682 41,2159 

3000 87,6548 87,0538 40,0923 58,2022 
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Figure 12.8 Experimental and theoretical execution time of the Fox par-

allel algorithm with respect to matrix size (checkerboard block matrix 

decomposition, 4 processors) 

12.5. References 

The works by Kumar (1994) and Quinn (2004) may be recommended as additional teaching 

material on the problems discussed in the subsection. 

Creating models for estimating the time of communication operations is widely discussed in 

many papers. Such works as Culler, et al. (1996), Skillicorn and Talia (1998), Andrews (2000) 

might be of use. The Hockney model was first published in Hockney (1994). Model B from sub-

section 3.4 is presented in Gergel, Strongin (2001). 

Discussions 

1. What basic characteristics are used for the estimation of the data transmission network 

topology? Give the values of the characteristics for the following types of communication struc-

tures (a complete graph, a linear array, a grid etc.) 

2. What basic methods are applied to routing the data transmitted in the network? 

3. What are the basic methods of data transmission? Give the analytical estimations of the 

execution time for these methods. 

4. What data transmission operations may be selected as the basic ones? 

5. What are the execution algorithms of one-to-all broadcast for the ring, the grid and the 

hypercube topologies? Give the estimations of the time complexity for these algorithms. 

6. What are the execution algorithms of all-to-all broadcast for the ring, the grid and the hy-

percube topologies? Give the estimations of the time complexity for these algorithms. 

7. What are the possible execution algorithms of reduction? Which of them is the best as far 

as the execution time is concerned? 

8. What does the execution algorithm of the circular shift consist in?  

9. Why is it efficient to use logical topologies? Give the examples of the algorithms for log-

ical presentation of communication network structure.  



  

10. How do the models for estimating the execution time of data transmission in clus-

ter computer systems differ from one another? Which model is the most accurate? Which of 

them may be used for the preliminary analysis of the time complexity of the communication op-

erations? 

12.6. Practive 

1. Develop the execution algorithms of the basic data transmission operations for the net-

work topology in the form of a three-dimensional grid. 

2. Develop the execution algorithm of the basic data transmission operations for the net-

work topology in the form of a binary tree. 
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