

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

Introduction to MPI

Lecture 6-7. Parallel Methods for Matrix-Vector Multiplication.

Nizhni Novgorod

2014

Lecture_6,7_. Parallel Methods for Matrix-Vector Multiplication

Lectures 6 and 7 describe basic principles of parallel matrix-vector multiplication algorithm

construction.

Matrices and matrix operations are widely used in mathematical modeling of various pro-

cesses, phenomena and systems. Matrix calculations are the basis of many scientific and engi-

neering calculations. Computational mathematics, physics, economics are only some of the areas

of their application.

As the efficiency of carrying out matrix computations is highly important many standard

software libraries contain procedures for various matrix operations. The amount of software for

matrix processing is constantly increasing. New efficient storage structures for special type ma-

trix (triangle, banded, sparse etc.) are being created. Highly efficient machine-dependent algo-

rithm implementations are being developed. The theoretical research into searching faster matrix

calculation method is being carried out.

Being highly time consuming, matrix computations are the classical area of applying parallel

computations. On the one hand, the use of highly efficient multiprocessor systems makes possi-

ble to substantially increase the complexity of the problem solved. On the other hand, matrix op-

erations, due to their rather simple formulation, give a nice opportunity to demonstrate various

techniques and methods of parallel programming.

Let us assume that the matrices, we are considering, are dense, i.e. the number of zero ele-

ments in them is insignificant in comparison to the general number of matrix elements.

LECTURE 6

6.1. Parallelization Principles

The repetition of the same computational operations for different matrix elements is typical

of different matrix calculation methods. In this case we can say that there exist data parallelism.

As a result, the problem to parallelize matrix operations can be reduced in most cases to matrix

distributing among the processors of the computer system. The choice of matrix distribution

method determines the use of the definite parallel computation method. The availability of vari-

ous data distribution schemes generates a range of parallel algorithms of matrix computations.

The most general and the most widely used matrix distribution methods consist in decompo-

sition data into stripes (vertically and horizontally) or rectangular fragments (blocks).

1. Block-striped matrix decomposition. In case of block-striped decomposition each pro-

cessor is assigned a certain subset of matrix rows (rowwise or horizontal decomposition) or ma-

trix columns (columnwise or vertical decomposition) (Figure 6.1). Rows and columns are in most

cases subdivided into stripes on a continuous sequential basis. In case of such approach, in row-

wise decomposition (see Figure 6.1), for instance, matrix A is represented as follows:

 pmkkjjikiaaaAAAAA jiiii

T

p k
/,0,),,...,,(,),...,,(

110110 
 , (6.1)

where a i = (a i 1 , a i 2 ,… a i n) , 0 i <m, is i-th row of matrix A (it is assumed, that the number of

rows m is divisible by the number of processors p without a remainder, i.e. m = k p). Data de-

composition on the continuous basis is used in all matrix and matrix-vector multiplication algo-

rithms, which are considered in this and the following sections.

Another possible approach to forming rows is the use of a certain row or column alternation

(cyclic) scheme. As a rule, the number of processors p is used as an alternation parameter. In this

case the horizontal decomposition of matrix A looks as follows:

pmkkjjpiiaaaAAAAA
jiiii

T

p k

/,0,),,...,,(,),...,,(
110110




. (6.2)

2. Checkerboard Block Matrix Decomposition. In this case the matrix is subdivided into

rectangular sets of elements. As a rule, it is being done on a continuous basis. Let the number of

processors be qsp  , the number of matrix rows is divisible by s, the number of columns is di-

visible by q, i.e. skm  and qln  . Then the matrix A may be represented as follows:



























111211

100200

...

...

...

qsss

q

AAA

AAA

A ,

where Aij - is a matrix block, which consists of the elements:



























111101

101000

...

...

lkkk

l

jijiji

jijiji

ij

aaa

aaa

A , smkkvvikiv /,0,  , qnlluujlju /,0,  . (6.3)

In case of this approach it is advisable that a computer system have a physical or at least a

logical processor grid topology of s rows and q columns. Then, for data distribution on a contin-

uous basis the processors neighboring in grid structure will process adjoining matrix blocks. It

should be noted however that cyclic alteration of rows and columns can be also used for the

checkerboard block scheme.

Figure 6.1 Most widely used matrix decomposition schemes

In this lecture three parallel algorithms are considered for square matrix multiplication by a

vector. Each approach is based on different types of given data (matrix elements and vector) dis-

tribution among the processors. The data distribution type changes the processor interaction

scheme. Therefore, each method considered here differs from the others significantly.

6.2. Problem Statement

The result of multiplying the matrix A of order nm  by vector b, which consists of n ele-

ments, is the vector c of size m, each i-th element of which is the result of inner multiplication of

i-th matrix A row (let us denote this row by ai) by vector b:

  10,,

1

0

 




mibabac

n

j

jjiii
. (6.4)

Thus, obtaining the result vector c can be provided by the set of the same operations of mul-

tiplying the rows of matrix A by the vector b. Each operation includes multiplying the matrix row

elements by the elements of vector b (n operations) and the following summing the obtained

products (n-l operations). The total number of necessary scalar operations is the value

 12
1

 nmT .

6.3. Sequential Algorithm

The sequential algorithm of multiplying matrix by vector may be represented in the follow-

ing way:

// Sequential algorithm of multiplying matrix by vector

for (i = 0; i < m; i++){

 c[i] = 0;

 for (j = 0; j < n; j++){

 c[i] += A[i][j]*b[j]

 }

}

In the given program code the following notation is used:

a. Input data:

i. A[m][n] – matrix of order nm  ,

ii. b[n] – vector of n elements,

b. Result:

i. c[m] – vector of m elements.

Matrix-vector multiplication is the sequence of inner product computations. As each compu-

tation of inner multiplication of vectors of size n requires execution of n multiplications and n-l

additions, its time complexity is the order O(n). To execute matrix-vector multiplication it is

necessary to execute m operations of inner multiplication. Thus, the algorithm’s time complexity

is the order O(mn).

6.4. Data Distribution

While executing the parallel algorithm of matrix-vector multiplication, it is necessary to dis-

tribute not only the matrix A, but also the vector b and the result vector c. The vector elements

can be duplicated, i.e. all the vector elements can be copied to all the processors of the multipro-

cessor computer system, or distributed among the processors. In case of block decomposition of

the vector consisting of n elements, each processor processes the continuous sequence of k vector

elements (we assume that the vector size n is divisible by the number of processors p, i.e. n =

k·p).

Let us make clear, why duplicating vectors b and c among the processors is an admissible

decision (for simplicity further we will assume that m=n). Vectors b and c consist of n elements,

i.e. contain as much data as one matrix row or column. If the processor holds a matrix row or

column and single elements of the vectors b and c, the total size of used memory is the order

O(n). If the processor holds a matrix row (column) and all the elements of the vectors b and c,

the total number of used memory is the same order O(n). Thus, in cases of vector duplicating and

vector distributing the requirements to memory size are equivalent.

6.5. Matrix-Vector Multiplication in Case of Rowwise Data Decomposition

As the first example of parallel matrix computations, let us consider the algorithm of matrix-

vector multiplication, which is based on rowwise block-striped matrix decomposition scheme. If

this case, the operation of inner multiplication of a row of the matrix A and the vector b can be

chosen as the basic computational subtask.

6.5.1. Analysis of Information Dependencies

To execute the basic subtask of inner multiplication the processor must contain the corre-

sponding row of matrix A and the copy of vector b. After computation completion each basic

subtask determines one of the elements of the result vector c.

To combine the computation results and to obtain the total vector c on each processor of the

computer system, it is necessary to execute the all gather operation, in which each processor

transmits its computed element of vector c to all the other processors. This can be executed, for

instance, with the use of the function MPI_Al lgather of MPI library.

The general scheme of informational interactions among subtasks in the course of computa-

tionS is shown in Figure 6.2.

1 x =

2 x =

3 x =

Figure 6.2 Computation scheme for parallel matrix-vector multiplication

based on rowwise striped matrix decomposition

6.5.2. Scaling and Subtask Distribution among Processors

In the process of matrix-vector multiplication the number of computational operations for

computing the inner product is the same for all the basic subtasks. Therefore, in case when the

number of processors p is less than the number of basic subtasks m, we can combine the basic

subtasks in such a way that each processor would execute several of these tasks. In this case each

subtask will hold a row stripe of the matrix A After completing computations, each aggregated

basic subtask determines several elements of the result vector c.

Subtasks distribution among the processors of the computer system may be performed in an

arbitrary way.

6.5.1. Program Implementation

Let us take a possible variant of parallel program for a matrix- vector multiplication with the

use of the algorithm of rowwise matrix decomposition. The realization of separate modules is not

given, if their absence does not influence the process of understanding of general scheme of par-

allel computations.

1. The main program function. The main program function realizes the logic of the algo-

rithm operations and sequentially calls out the necessary subprograms.

// Multiplication of a matrix by a vector – stripe horizontal decomposition

// (the source and the result vectors are doubled amoung the processors)

 int ProcRank; // Rank of current process

 int ProcNum; // Number of processes

void main(int argc, char* argv[]) {

 double* pMatrix; // The first argument - initial matrix

 double* pVector; // The second argument - initial vector

 double* pResult; // Result vector for matrix-vector multiplication

 int Size; // Sizes of initial matrix and vector

 double* pProcRows;

 double* pProcResult;

 int RowNum;

 double Start, Finish, Duration;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcResult,

 Size, RowNum);

 DataDistribution(pMatrix, pProcRows, pVector, Size, RowNum);

 ParallelResultCalculation(pProcRows, pVector, pProcResult, Size, RowNum);

 ResultReplication(pProcResult, pResult, Size, RowNum);

 ProcessTermination(pMatrix, pVector, pResult, pProcRows, pProcResult);

 MPI_Finalize();

}

2. ProcessInitialization. This function defines the initial data for matrix A and vector b. The

values for matrix A and vector b are formed in function RandomDataInitialization.

// Function for memory allocation and data initialization

void ProcessInitialization (double* &pMatrix, double* &pVector,

 double* &pResult, double* &pProcRows, double* &pProcResult,

 int &Size, int &RowNum) {

 int RestRows; // Number of rows, that haven’t been distributed yet

 int i; // Loop variable

 if (ProcRank == 0) {

 do {

 printf("\nEnter size of the initial objects: ");

 scanf("%d", &Size);

 if (Size < ProcNum) {

 printf("Size of the objects must be greater than

 number of processes! \n ");

 }

 }

 while (Size < ProcNum);

 }

 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 RestRows = Size;

 for (i=0; i<ProcRank; i++)

 RestRows = RestRows-RestRows/(ProcNum-i);

 RowNum = RestRows/(ProcNum-ProcRank);

 pVector = new double [Size];

 pResult = new double [Size];

 pProcRows = new double [RowNum*Size];

 pProcResult = new double [RowNum];

 if (ProcRank == 0) {

 pMatrix = new double [Size*Size];

 RandomDataInitialization(pMatrix, pVector, Size);

 }

}

3. DataDistribution. DataDistribution pushes out vector b and distributes the rows of initial

matrix A among the processes of the computational system. It should be noted that in case when

the number of matrix rows n is not divisible by the number of processors p, the amount of data

transferred for the processes may appear to be different. In this case it is necessary to use func-

tion MPI_Scatterv of MPI library for message passing.

// Data distribution among the processes

void DataDistribution(double* pMatrix, double* pProcRows, double* pVector,

 int Size, int RowNum) {

 int *pSendNum; // the number of elements sent to the process

 int *pSendInd; // the index of the first data element sent to the process

 int RestRows=Size; // Number of rows, that haven’t been distributed yet

 MPI_Bcast(pVector, Size, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Alloc memory for temporary objects

 pSendInd = new int [ProcNum];

 pSendNum = new int [ProcNum];

 // Define the disposition of the matrix rows for current process

 RowNum = (Size/ProcNum);

 pSendNum[0] = RowNum*Size;

 pSendInd[0] = 0;

 for (int i=1; i<ProcNum; i++) {

 RestRows -= RowNum;

 RowNum = RestRows/(ProcNum-i);

 pSendNum[i] = RowNum*Size;

 pSendInd[i] = pSendInd[i-1]+pSendNum[i-1];

 }

 // Scatter the rows

 MPI_Scatterv(pMatrix , pSendNum, pSendInd, MPI_DOUBLE, pProcRows,

 pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Free the memory

 delete [] pSendNum;

 delete [] pSendInd;

}

It should be noted that such separation of initial data generalization and initial data broadcast

among processes might not be justified in real parallel computations with big amounts of data.

The approach, which is widely used in such cases, consists in arranging data transfer to the pro-

cesses immediately after the data of the processors are generated. The decrease of memory re-

sources needed for data storage may be achieved also at the expense of data generation in the last

process (in case of such approach the memory for the transferred data and for the process data

may be the same).

4. ParallelResultCaculation. ResultCalculation performs the multiplication of the matrix

rows, which are at a given moment distributed to a given process, by a vector. Thus, the function

forms the block of the result vector c.

// Function for calculating partial matrix-vector multiplication

void ParallelResultCalculation(double* pProcRows, double* pVector, double*

pProcResult, int Size, int RowNum) {

 int i, j; // Loop variables

 for (i=0; i<RowNum; i++) {

 pProcResult[i] = 0;

 for (j=0; j<Size; j++)

 pProcResult[i] += pProcRows[i*Size+j]*pVector[j];

 }

}

5. ResultReplication. This function unites the blocks of the result vector c, which have been

obtained on different processors and replicates the result vector to all the computational system

processes.

// Function for gathering the result vector

void ResultReplication(double* pProcResult, double* pResult, int Size,

 int RowNum) {

 int i; // Loop variable

 int *pReceiveNum; // Number of elements, that current process sends

 int *pReceiveInd; /* Index of the first element from current process

 in result vector */

 int RestRows=Size; // Number of rows, that haven’t been distributed yet

 //Alloc memory for temporary objects

 pReceiveNum = new int [ProcNum];

 pReceiveInd = new int [ProcNum];

 //Define the disposition of the result vector block of current processor

 pReceiveInd[0] = 0;

 pReceiveNum[0] = Size/ProcNum;

 for (i=1; i<ProcNum; i++) {

 RestRows -= pReceiveNum[i-1];

 pReceiveNum[i] = RestRows/(ProcNum-i);

 pReceiveInd[i] = pReceiveInd[i-1]+pReceiveNum[i-1];

 }

 //Gather the whole result vector on every processor

 MPI_Allgatherv(pProcResult, pReceiveNum[ProcRank], MPI_DOUBLE, pResult,

 pReceiveNum, pReceiveInd, MPI_DOUBLE, MPI_COMM_WORLD);

 //Free the memory

 delete [] pReceiveNum;

 delete [] pReceiveInd;

}

6.5.2. Computational Experiment Results

Let us analyze the results of the computational experiments carried out in order to estimate

the efficiency of the discussed parallel algorithm of matrix-vector multiplication. Besides, the

obtained results will be used for the comparison of the theoretical estimations and experimental

values of the computation time. Thus, the accuracy of the obtained analytical relations will be

checked. The experiments were carried out on the computational cluster on the basis of the pro-

cessors Intel XEON 4 EM64T, 3000 Mhz and the network Gigabit Ethernet under OS Microsoft

Windows Server 2003 Standard x64 Edition.

The results of the computational experiments are shown in Table 6.1. The experiments were

carried out with the use of 2, 4 and 8 processors. The algorithm execution time is given in se-

conds.

Table 6.1 The results of the computational experiments for the parallel algorithm of

matrix-vector multiplication with rowwise block-striped data decomposition

Matrix

Size

Sequential Algo-

rithm

Parallel Algorithm

2 processors 4 processors 8 processors

Time Speed Up Time Speed Up Time Speed Up

1000 0,0041 0,0021 1,8798 0,0017 2,4089 0,0175 0,2333

2000 0,016 0,0084 1,8843 0,0047 3,3388 0,0032 4,9443

3000 0,031 0,0185 1,6700 0,0097 3,1778 0,0059 5,1952

4000 0,062 0,0381 1,6263 0,0188 3,2838 0,0244 2,5329

5000 0,11 0,0574 1,9156 0,0314 3,4993 0,0150 7,3216

0

1

2

3

4

5

6

7

8

2 4 8

number of processors

s
p

e
e
d

 u
p

1000

2000

3000

4000

5000

Figure 6.3 Speedup for parallel matrix-vector multiplication (rowwise

block-striped matrix decomposition)

6.6. Review of references

The problem of matrix-vector multiplication is frequently used as an example of parallel

programming and, as a result, is widely discussed. The books by Kumar, et al. (1994) and Quinn

(2004) may be recommended as additional materials on the problem. Parallel matrix computa-

tions are discussed in detail in Dongarra, et al. (1999).

Blackford, et al. (1997) may be useful for considering some aspects of parallel software de-

velopment. This book describes the software library of numerical methods ScaLAPACK, which

is well-known and widely used.

LECTURE 7

7.1. Matrix-Vector Multiplication in Case of Columnwise Data Decomposition

Let us analyze the other approach to parallel matrix-vector multiplication, which is based on

decomposition the matrix into continuous sets (vertical stripes) of columns.

7.2 Computation Decomposition and Analysis of Information Dependencies

In case of columnwise matrix decomposition the operation of multiplying a column of matrix

A by one of the vector b elements may be chosen as the basis computational subtask. As a result

to perform computations each basic subtask i, 0 i< n, must contain the i-th column of matrix A

and the i-th elements bi and ci of vectors b and с.

At the starting point of the parallel algorithm of matrix-vector multiplication each basic task i

carries out the multiplication of its matrix A column by element bi. As a result, vector c'(i) (the

vector of intermediate results) is obtained in each subtask. The subtasks must further exchange

their intermediate data in order to obtain the elements of the result vector c (element j, 0 j< n,

of the partial result c'(i) of the subtask i, 0 i< n, must be sent to the subtask j). This all- to-a ll

communica t ion or to tal exchange is the most general communication procedure and may be ex-

ecuted with the help of the function MPI_Alltoall of MPI library. After the completion of data

communications each basic subtask i, 0 i< n, will contain n partial values c'i(j), 0 j<n. Ele-

ment ci of the result vector c is determined after the addition of the partial values (see Figure

7.1).

Figure 7.1 Computation scheme for parallel matrix-vector multiplication

based on columnwise striped matrix decomposition

x =

x =

x =

+ + =

+ + =

+ + =

7.3 Scaling and Subtask Distribution among Processors

The selected basic subtasks are of equal computational intensity and have the same amount

of the data transferred. If the number of matrix columns exceeds the number of processors, the

basic subtasks may be aggregated by uniting several neighboring columns within one subtask. In

this case, the initial matrix A is partitioned into a number of vertical stripes. If all the stripe sizes

are the same the above discussed method of computation aggregating provides equal distribution

of the computational load among the processors.

As with the previous algorithm, the subtasks may be arbitrarily distributed among the com-

puter system processors.

7.4 Computational Experiment Results

The results of the computational experiments are given in Table 7.1.

Table 7.1. The results of the computational experiments for parallel matrix-vector multipli-

cation algorithm based on columnwise matrix decomposition

Matrix

Size
Sequential Algorithm

2 processors 4 processors 8 processors

Time Speed up Time Speed up Time Speed up

1000 0,0041 0,0022 1,8352 0,0132 0,3100 0,0008 4,9409

2000 0,016 0,0085 1,8799 0,0046 3,4246 0,0029 5,4682

3000 0,031 0,019 1,6315 0,0095 3,2413 0,0055 5,5456

4000 0,062 0,0331 1,8679 0,0168 3,6714 0,0090 6,8599

5000 0,11 0,0518 2,1228 0,0265 4,1361 0,0136 8,0580

0

1

2

3

4

5

6

7

8

9

number of processors

s
p

e
e
d

 u
p

1000

2000

3000

4000

5000

Figure 7.2 Speedup for parallel matrix-vector multiplication (columnwise

block-striped matrix decomposition)

Test questions

1. What are the main methods of distributing matrix elements among processors?

2. What is the statement of the matrix-vector multiplication problem?

3. What is the computational complexity of the sequential matrix-vector multiplication?

4. Why is it admissible to duplicate the vector-operand to all the processors in developing a

parallel algorithm of matrix-vector multiplication?

5. What approaches of the development of parallel algorithms may be suggested?

6. What functions of the library MPI appeared to be necessary in the software implementation

of the algorithms?

Practice

1. Develop the implementation of the parallel algorithm based on the columnwise striped

matrix decomposition. Carry out computational experiments. Compare actual results to those

given in the lecture.

2. Develop the implementation of the parallel algorithm based on checkerboard block matrix

decomposition. Carry out computational experiments. Compare actual results to those given in

the lecture.

References

1. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical Linear Alge-

bra for High Performance Computers (Software, Environments, Tools). Soc for Industrial &

Applied Math/

2. Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.

J., Hammarling, S., Henry, G., Petitet, A., Stanley, D. Walker, R.C. Whaley, K. (1997). Sca-

lapack Users' Guide (Software, Environments, Tools). Soc for Industrial & Applied Math.

3. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

