

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

Introduction to MPI

Lectures 8-9. Parallel Matrix Multiplication Methods

Nizhni Novgorod

2014

Lectures_8,9_. Parallel Matrix Multiplication Methods

Matrix multiplication is one of the most important problems of matrix computations. Lec-

tures 8 and 9 review a number of parallel matrix multiplication algorithms. Two of them are

based on block striped data decomposition (Lecture 8). The other method (Lecture 9) uses

checkerboard data decomposition.

Lecture 8

8.1. Problem Statement

Multiplying an nm  matrix A with m rows and n columns and an ln  matrix B with n rows

and l columns produces an lm  matrix C with m rows and l columns. Each element of the matrix

C is calculated according to the formula:

ljmibac

n

k

kjikij  




0,0,

1

0

. (8.1)

As it can be seen in (8.1), each element of the matrix C is the result of the inner product of

the corresponding row of the matrix A and column of the matrix B:

     Tjnjj

T

jiniii

T

jiij bbbbaaaabac 11011,0 ,...,,,,...,,,   . (8.2)

This algorithm executes m·n·l multiplications and the same number of additions of the initial

matrix elements. In case of square matrices, the size of which is nn  , the number of the executed

operations is the order O(n
3
). There are also sequential matrix multiplication algorithms of

smaller computational complexity (for instance, the Strassen algorithm). But studying these algo-

rithms though requires certain efforts and for simplicity we will use the above described sequen-

tial algorithm as the basis for parallel method development in this section. We will also assume

further that all matrices are square and their sizes are nn  .

8.2. Sequential Algorithm

The sequential matrix multiplication algorithm includes three nested loops:

// Sequential matrix multiplication algorithm

double MatrixA[Size][Size];

double MatrixB[Size][Size];

double MatrixC[Size][Size];

int i,j,k;

...

for (i=0; i<Size; i++){

 for (j=0; j<Size; j++){

 MatrixC[i][j] = 0;

 for (k=0; k<Size; k++){

 MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j];

 }

 }

}

This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C.

In fact, a result matrix row is computed per outer loop (loop variable i) iteration (see Figure 8.1)

X =

A B C

Figure 8.1 During the first iteration of loop variable i the first matrix A

row and all the columns of matrix B are used to compute the elements of

the first result matrix C row

As each result matrix element is a scalar product of the initial matrix A row and the initial

matrix B column, it is necessary to carry out  12
2

nn operations to compute all elements of the

matrix C. As a result the time complexity of matrix multiplication is

   12
2

1 nnT (8.3)

where τ is the execution time for an elementary computational operation such as multiplication

or addition.

8.3. Matrix Multiplication in Case of Block-Striped Data Decomposition

Let us consider two parallel matrix multiplication algorithms. Matrices A and B are parti-

tioned into continuous sequences of rows or columns (stripes).

8.3.1. Computation Decomposition

As it is clear from the definition of matrix multiplication, all elements of the matrix C may

be computed independently. As a result, a possible approach for parallelizing the matrix multi-

plication is to define the basic computational subtask as the problem of computing an element of

the result matrix C. To carry out all the necessary computations each subtask must contain a row

of the matrix A and a column of the matrix B. The total number of subtasks in case of this ap-

proach appears to be equal to n
2
 (according to the number of elements of the matrix C).

One may note that the level of parallelism achieved in this approach is somewhat excessive.

As a rule, in carrying out practical computations the number of the subtasks formed exceeds the

number of the available processors. As a result, the aggregation stage of basic subtasks becomes

inevitable. In this respect it is reasonable to aggregate the computations at the stage of selecting

the basic subtasks. A possible solution is to combine all the computations related not with one,

but with several elements of the result matrix C in a single subtask. For further discussion we

will define the basic computational subtask as the problem of computing all row elements of the

matrix C. This approach decreases the total number of subtasks up to value n.

A row of the matrix A and all the columns of the matrix B must be available for carrying out

all the necessary computations of the basic subtasks. The simple solution to the problem is dupli-

cating the matrix B in all the subtasks, but it is unacceptable because of sizeable memory ex-

penses needed for data storage. As a result, computations should be implemented so that sub-

tasks contain only a part of the data needed for the computations at any given moment. The ac-

cess to the other part of the data should be provided by means of data communications. Two pos-

sible ways to carry out parallel computations of this type are considered in this lecture.

8.3.2. Analysis of Information Dependencies

To compute a row of the matrix C each subtask must have a row of the matrix A and access

to all columns of the matrix B. Possible ways to organize parallel computations are described be-

low.

1. The first algorithm. The algorithm is an iterative procedure, the number of iterations is

equal to the number of subtasks. Each subtask holds a row of the matrix A and a column of the

matrix B at each algorithm iteration. At each iteration the scalar products of rows and columns

containing in the subtasks are computed, and the corresponding elements of the result matrix C

are obtained. After completing of all iteration computations the columns of matrix B must be

transmitted so that subtasks should have new columns of the matrix B and new elements of the

matrix C could be calculated. This transmission of columns among the subtasks must be execut-

ed in such a way that all the columns of matrix B should have appeared in each subtask sequen-

tially.

A possible simple scheme to provide the required communications of the columns of matrix

B among the subtasks is to present the topology of the information dependencies of the subtasks

as a ring structure. In this case the subtask i , 0 i<n,will transmit its column of matrix B to the

subtask i+1 at each iteration (in accordance with the ring structure subtask n-1 transmits its data

to the subtask 0) – see Figure 8.2. After the algorithm termination the required condition will be

provided, i.e. all the columns of matrix B will appear sequentially in each subtask.

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

Figure 8.2 General scheme of data communications for the first parallel

algorithm of matrix multiplication in case of block-striped decomposition

Figure 8.2 presents the iterations of the matrix multiplication algorithm for the case when

matrices have four rows and four columns (n=4). At the beginning of the computations each sub-

task i, 0 i<n, holds i-th row of the matrix A and i-th column of the matrix B. As a result the sub-

task i can compute the element cii of the result matrix C. Further each subtask transmits its col-

umn of matrix B to the following subtask in accordance with the ring structure. These actions

should be repeated until all the iterations of the parallel algorithm are completed.

Program realization. Let us consider software implementation of presented method:

int BaseMatrixMultiplication(double* pAMatrix,

 double* pBMatrix,

 double* pCMatrix,

 const int Size)

{

 MPI_Datatype ColumnType, Rtp;

 int ProcNum, ProcRank;

 MPI_Status status;

 int StripSize;

 double* Result;

 double* rbuf;

 double* vertStrip;

 int i, j, z, k;

 MPI_Comm_size (MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank (MPI_COMM_WORLD, &ProcRank);

 StripSize = Size / ProcNum;

 if (StripSize == 0)

 {

 StripSize = 1;

 }

 Result = (double*) malloc (StripSize * StripSize * sizeof(double));

 rbuf = (double*) malloc (Size * StripSize * sizeof(double));

 vertStrip =(double*) malloc (Size * sizeof(double));

 MPI_Type_vector (Size, 1, Size, MPI_DOUBLE, &ColumnType);

 MPI_Type_commit (&ColumnType);

 MPI_Type_vector (StripSize, StripSize, Size, MPI_DOUBLE, &Rtp);

 MPI_Type_commit (&Rtp);

 MPI_Scatter(pAMatrix, Size * StripSize, MPI_DOUBLE, rbuf,

 Size * StripSize, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 for (z = 0; z < ProcNum; z++)

 {

 if(ProcRank == 0)

 {

 for(i = 1; i < ProcNum; i++)

 {

 for (j = 0; j < StripSize; j++)

 MPI_Send(pBMatrix + j + z * StripSize , 1, ColumnType,

 i , 0, MPI_COMM_WORLD);

 }

 }

 else

 {

 double tmp;

 for (k = 0; k < StripSize; k++)

 {

 MPI_Recv(vertStrip, Size , MPI_DOUBLE, 0, 0,

 MPI_COMM_WORLD, &status);

 for(i = 0; i < StripSize; i++)

 {

 tmp = 0.0;

 for(j = 0; j < Size; j++)

 {

 tmp += rbuf[i * Size + j] * vertStrip[j] ;

 }

 Result [i * StripSize + k] = tmp;

 }

 }

 MPI_Send(Result, StripSize * StripSize,

 MPI_DOUBLE , 0, 0, MPI_COMM_WORLD);

 }

 if(ProcRank == 0)

 {

 double tmp;

 for (i = 0; i < StripSize; i++)

 {

 for (j = 0; j < Size; j++)

 {

 tmp = 0.0;

 for(k = 0; k < Size; k++)

 {

 tmp += pAMatrix[j * Size + k] *

 pBMatrix[k * Size + i + z * StripSize];

 }

 pCMatrix[j * Size + i + z * StripSize] = tmp;

 }

 }

 for(i = 1; i < ProcNum; i++)

 {

 MPI_Recv(pCMatrix + i*Size*StripSize + z * StripSize, 1,

 Rtp, i, 0, MPI_COMM_WORLD, &status);

 }

 }

 }

 MPI_Type_free (&ColumnType);

 MPI_Type_free (&Rtp);

 free (Result);

 free (rbuf);

 free (vertStrip);

 return 0;

}

2. The second algorithm. The difference of the second algorithm from the first one is that

the subtasks contain not columns but rows of matrix B. As a result, data multiplication of each

subtask is the multiplication of the row elements of the matrix B by a corresponding row element

of the matrix A. Therefore, a row of partial results for matrix C is obtained in each subtask.

In case of this scheme of data decomposition for matrix multiplication, it is necessary to

provide sequential obtaining all rows of the matrix B by all in the subtasks, the multiplication of

the row elements of the matrix B by a corresponding row element of the matrix A and summation

of the new values and the previously computed ones. The ring structure of information depend-

encies may be also used to provide the necessary sequence of communications of the rows of the

matrix B among the subtasks (see Figure 8.3).

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

x = x =

Figure 8.3 General scheme of data communications for the second paral-

lel algorithm of matrix multiplication in case of block-striped decompo-

sition

Figure 8.3 presents the iterations of the matrix multiplication algorithm in the case when ma-

trices have 4 rows and 4 columns (n=4). At the beginning of the computations each subtask i, 0

i<n, holds i-th rows of the matrix A and the matrix B. As a result of multiplication the subtask

defines i-th row of the partial results for the matrix C. Then each subtask transmits its row of the

matrix B to the following subtask according to the ring structure of information dependencies.

The described actions are repeated until all the iterations of the parallel algorithm are completed.

Program realization. Let us consider software implementation of presented method:

void MatrixMultiplication(double *pAMatrix, double *pBMatrix,

 double *pCMatrix, const int Size)

{

 MPI_Status Status;

 int iter;

 int NextProc;

 int PrevProc;

 int shift;

 int k, i, j;

 int ProcNum;

 int ProcRank;

 int RowSize;

 double *AMatrixRow;

 double *BMatrixRow;

 double *ProcSum;

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 RowSize = Size / ProcNum;

 if(RowSize == 0)

 {

 RowSize = 1;

 }

 assert(RowSize * ProcNum == Size);

 AMatrixRow = (double*) malloc (Size * RowSize * sizeof(double));

 BMatrixRow = (double*) malloc (Size * RowSize * sizeof(double));

 ProcSum = (double*) calloc (Size * RowSize , sizeof(double));

 MPI_Scatter(pAMatrix, Size * RowSize, MPI_DOUBLE,

 AMatrixRow, Size * RowSize, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 MPI_Scatter(pBMatrix, Size * RowSize, MPI_DOUBLE,

 BMatrixRow, Size * RowSize, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 for(iter = 0; iter < Size / RowSize; iter++)

 {

 shift = (ProcRank * RowSize + iter * RowSize) % (Size);

 for(k = 0; k < RowSize; k++)

 {

 for (i = 0; i < RowSize; i++)

 {

 for(j = 0; j < Size; j++)

 {

 ProcSum[k * Size + j] += (AMatrixRow + shift) [k * Size + i]

 * BMatrixRow[i * Size + j];

 }

 }

 }

 NextProc = ProcRank - 1;

 if(NextProc < 0)

 {

 NextProc = ProcNum - 1;

 }

 PrevProc = (ProcRank + 1)%ProcNum;

 MPI_Sendrecv_replace(BMatrixRow, Size * RowSize, MPI_DOUBLE,

 NextProc, 0, PrevProc, 0, MPI_COMM_WORLD, &Status);

 }

 MPI_Gather(ProcSum, RowSize * Size, MPI_DOUBLE, pCMatrix,

 RowSize * Size, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 free (ProcSum);

 free (AMatrixRow);

 free (BMatrixRow);

}

8.3.3. Computational Experiment Results

The experiments were carried out on the computational cluster on the basis of processors In-

tel XEON 4 EM64T, 3000 Mhz and Gigabit Ethernet under OS Microsoft Windows Server 2003

Standard x64 Edition.

The results of the computational experiments are shown in Table 8.1. The experiments were

performed with the use of 2, 4 and 8 processors.

Table 8.1. The results of the computational experiments for the first parallel algorithm of

matrix multiplication based on the block-striped data decomposition

Matrix

Size

Serial Al-

gorithm

2 processors 4 processors 8 processors

Time Speed Up Time Speed Up Time Speed Up

500 0,8752 0,3758 2,3287 0,1535 5,6982 0,0968 9,0371

1000 12,8787 5,4427 2,3662 2,2628 5,6912 0,6998 18,4014

1500 43,4731 20,9503 2,0750 11,0804 3,9234 5,1766 8,3978

2000 103,0561 45,7436 2,2529 21,6001 4,7710 9,4127 10,9485

2500 201,2915 99,5097 2,0228 56,9203 3,5363 18,3303 10,9813

3000 347,8434 171,9232 2,0232 111,9642 3,1067 45,5482 7,6368

0

2

4

6

8

10

12

14

16

18

20

2 4 8

Number of Processors

S
p

e
e

d
 U

p

500

1000

1500

2000

2500

3000

Figure 8.4 Speedup for the first parallel algorithm of matrix multiplica-

tion (block-striped matrix decomposition)

8.4. References

The problem of matrix multiplication is broadly discussed in science. As additional training

materials we may recommend the works by Kumar, et al. (1994) and Quinn (2004). The prob-

lems of parallel execution of matrix multiplication are also discussed in Dongarra, et al. (1999).

Blackford, et al. (1997) may be useful for considering some aspects of parallel software de-

velopment. This book describes the software library of numerical methods ScaLAPACK, which

is well-known and widely used.

Lecture 9

9.1. Fox Algorithm of Matrix Multiplication in Case of Checker-
board Data Decomposition

In designing the parallel methods of matrix multiplication the checkerboard block matrix

decomposition is widely used just as the block-striped matrix partitioning. Let us analyze this

method of computations in detail.

9.2 Computation Decomposition

In case of this method of data decomposition the initial matrices A and B and the result ma-

trix C are subdivided into sets of blocks. For simplicity the further explanations we will assume

all the matrices are square of n×n size, the number of vertical blocks and the number of horizon-

tal blocks are the same and are equal to q (i.e. the size of all block is equal to k×k, k=n/q). In

case of this data decomposition method the multiplying matrices A and B as blocks may be rep-

resented as follows:













































































111110

100100

111110

100100

111110

100100

...

...

...

...

...

...

qqqq

q

qqqq

q

qqqq

q

CCc

CCC

BBB

BBB

AAA

AAA

 ,

where each block Cij of matrix C is computed in accordance with the expression:








1

0

q

s

sjisij BAC .

In case of the checkerboard block data decomposition it is reasonable to define the basic

computational subtasks on the basis of the computations performed over the matrix blocks. As a

result the basic subtask can be defined as the problem of computing of a block of the matrix C.

To perform all the necessary computations the basic subtasks should have the corresponding

sets of the matrix A rows and the matrix B columns. The placement all the necessary data in each

subtask will inevitably lead to duplicating and to a considerable increase of the size of memory

used. As a result, the computations must be executed in such a way that the subtasks should con-

tain only a part of the data necessary for computations at any given moment, and the access to

the rest of the data should be provided by means of data communications. One of the possible

approaches (the Fox algorithm) will be discussed further in this Lecture.

9.3 Analysis of Information Dependencies

To develop a parallel matrix multiplication method based on the checkerboard decomposi-

tion scheme it should be reminded that in this case the basic subtasks are responsible for compu-

ting the separate blocks of the matrix C. It is also required that each subtask should hold only one

block of the multiplying matrices at each iteration.

To enumerate the subtasks the indices of the blocks Cij contained in the subtasks can be used

for enumeration. Thus, the subtask (i,j) computes the block Cij. So the set of subtasks forms a

square grid, which corresponds to the structure of the checkerboard block decomposition of the

matrix C.

The Fox algorithm can be used to perform matrix multiplication computations under these

conditions (see for instance, Fox et al. (1987), Kumar et al. (1994)).

In accordance with the Fox algorithm each basic subtasks (i,j) holds four matrix blocks:

 Block Cij of matrix C, computed by the subtask;

 Block Aij of matrix A, placed in the subtask before the beginning of computations;

 Blocks A'ij , B'ij of matrices A and B, obtained by the subtask in the course of computa-

tions.

Parallel algorithm execution includes:

 The initialization stage. Each subtask (i,j) obtains blocks Aij, Bij. All elements of blocks

Cij in all subtasks are set to zero;

 The computation stage. At this stage the following operations are carried out at each it-

eration l, 0 l<q,:

 For each row i, 0 i<q, the block Aij of subtask (i,j) is transmitted to all the subtasks of

the same processor grid row; index j, which defines the position of the subtask in the

row, is computed according to the following expression:

j = (i+l) mod q,

 where mod is operation of obtaining the remainder in integer division;:

 Blocks A'ij, B'ij obtained as a result of subtask communications are multiplied and added

to block Cij:

ijijijij
BACC  ;

 Blocks B'ij of each subtask (i,j) are transmitted to the subtasks, which are upper neigh-

bors in the processor grid columns (the first row blocks are transmitted to the last row

of the grid).

To illustrate these rules we show the state of blocks in each subtask in the course of execut-

ing iterations of the computation stage (for the grid of 2×2). See Figure 9.1.

A 0 ,0

C0 ,0 =0

A 0 ,0

B0 ,0

A 0 ,1

C0 ,1 =0

A 0 ,1

B0 ,1

A 1 ,0

C1 ,0 =0

A 1 ,0

B1 ,0

A 1 ,1

C1 ,1 =0

A 1 ,1

B1 ,1

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

A 0 ,0

B0 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

A 0 ,0

B0 ,1

A 1 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

A 1 ,1

B1 ,0

A 1 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

A 1 ,1

B1 ,1

Ite ration 1

Ite ration 2

A 1 ,1

A 1 ,0

B0 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

+ A 1 ,0 ·B0 ,1

A 1 ,0

A 1 ,0

B0 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

+ A 1 ,0 ·B0 ,0

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

A 0 ,0

B1 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

A 0 ,1

B1 ,1

A 1 ,0

C1 ,0 = A 1 ,1 ·B1 ,0

A 1 ,0

B0 ,0

A 1 ,1

C1 ,1 = A 1 ,1 ·B1 ,1

A 1 ,1

B0 ,1

A 0 ,0

C0 ,0 =A 0 ,0 ·B0 ,0

+ A 0 ,1 ·B1 ,0

A 0 ,1

B1 ,0

A 0 ,1

C0 ,1 =A 0 ,0 ·B0 ,1

+ A 0 ,1 ·B1 ,1

A 0 ,1

B1 ,1

Figure 9.1 Block distribution among subtasks on iterations of the Fox algorithm

9.4 Scaling and Distributing Subtasks among Processors

The number of blocks at the checkerboard decomposition scheme cam be regulated by varia-

tion of matrix block sizes. These sizes may be chosen so that the total number of the basic sub-

tasks coincides with the number of processors p. Thus, for instance, in the simplest case when

the number of processors is equal to p=2
, the size of the block grid may be chosen equal to 

(i.e. q=). This way to define the number of blocks makes the amount of computations in each

subtask the same and, thus, uniform balancing of the computational load is achieved. In a more

general case, when the number of processors and the sizes of matrices are arbitrary, computa-

tional load may not be distributed among processors equally but proper setting the sizes of the

matrix blocks can provide uniform load balancing with adequate accuracy.

To execute the Fox algorithm efficiently, when the basic subtasks form a square grid and da-

ta communications consist in block transmission along rows and columns of the subtask grid, the

network topology should be also a square grid. In this case it is possible to map easily the set of

subtasks onto the set of processors by placing the basic subtasks (i,j) on processors Pi,j. The re-

quired structure of the data communication network may be provided at the physical level, if the

network topology is a grid or a complete graph.

9.5 Software Implementation

Here we discuss possible software implementation of the Fox algorithm for matrix multipli-

cation in case of the checkerboard block data decomposition. The given program code contains

the basic modules of the parallel program. The absence of some auxiliary functions will not hin-

der the process of understanding of this parallel computation scheme.

1. The main function. The main function implements the computational method scheme by

sequential calling out the necessary subprograms.

// The Fox algorithm of matrix multiplication – checkerboard decomposition

// Program execution conditions:

// all matrices and their blocks are square,

// matrix blocks and processors form square grids of the same size

int ProcNum = 0; // Number of available processes

int ProcRank = 0; // Rank of current process

int GridSize; // Size of virtual processor grid

int GridCoords[2]; // Coordinates of current processor in grid

MPI_Comm GridComm; // Grid communicator

MPI_Comm ColComm; // Column communicator

MPI_Comm RowComm; // Row communicator

void main (int argc, char * argv[]) {

 double* pAMatrix; // The first argument of matrix multiplication

 double* pBMatrix; // The second argument of matrix multiplication

 double* pCMatrix; // The result matrix

 int Size; // Size of matricies

 int BlockSize; // Sizes of matrix blocks on current process

 double *pAblock; // Initial block of matrix A on current process

 double *pBblock; // Initial block of matrix B on current process

 double *pCblock; // Block of result matrix C on current process

 double *pMatrixAblock;

 double Start, Finish, Duration;

 setvbuf(stdout, 0, _IONBF, 0);

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 GridSize = sqrt((double)ProcNum);

 if (ProcNum != GridSize*GridSize) {

 if (ProcRank == 0) {

 printf ("Number of processes must be a perfect square \n");

 }

 }

 else {

 if (ProcRank == 0)

 printf("Parallel matrix multiplication program\n");

 // Creating the cartesian grid, row and column communcators

 CreateGridCommunicators();

 // Memory allocation and initialization of matrix elements

 ProcessInitialization (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,

 pCblock, pMatrixAblock, Size, BlockSize);

 DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock, Size,

 BlockSize);

 // Execution of Fox method

 ParallelResultCalculation(pAblock, pMatrixAblock, pBblock,

 pCblock, BlockSize);

 ResultCollection(pCMatrix, pCblock, Size, BlockSize);

 TestResult(pAMatrix, pBMatrix, pCMatrix, Size);

 // Process Termination

 ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,

 pCblock, pMatrixAblock);

 }

 MPI_Finalize();

}

2. The function CreateGridCommunicators. This function creates a communicator as a

two-dimensional square grid, determines the coordinates of each process in the grid and creates

communicators for each row and each column separately.

The grid is created by the function MPI_Cart_create (the vector Periodic defines the per-

missibility of data communications among the bordering processes of the grid columns and

rows). After the grid has been created, each parallel program process will have its coordinates in

the grid. The coordinates may be obtained by means of the function MPI_Cart_coords.

Then in addition to the grid topology a set of communicators for each grid column and row

separately is created by the function MPI_Cart_sub.

void CreateGridCommunicators() {

 int DimSize[2]; // Number of processes in each dimension of the grid

 int Periodic[2]; // =1, if the grid dimension should be periodic

 int Subdims[2]; // =1, if the grid dimension should be fixed

 DimSize[0] = GridSize;

 DimSize[1] = GridSize;

 Periodic[0] = 0;

 Periodic[1] = 0;

 // Creation of the Cartesian communicator

 MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm);

 // Determination of the cartesian coordinates for every process

 MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords);

 // Creating communicators for rows

 Subdims[0] = 0; // Dimensionality fixing

 Subdims[1] = 1; // The presence of the given dimension in the subgrid

 MPI_Cart_sub(GridComm, Subdims, &RowComm);

 // Creating communicators for columns

 Subdims[0] = 1;

 Subdims[1] = 0;

 MPI_Cart_sub(GridComm, Subdims, &ColComm);

}

3. The function ProcessInitialization. This function sets the matrix sizes and allocates

memory for storing the initial matrices and their blocks, initializes all the original problem data.

In order to determine the elements of the initial matrices we will use the functions DummyDa-

taInitialization and RandomDataInitialization.

// Function for memory allocation and data initialization

void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,

 double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock,

 double* &pTemporaryAblock, int &Size, int &BlockSize) {

 if (ProcRank == 0) {

 do {

 printf("\nEnter size of the initial objects: ");

 scanf("%d", &Size);

 if (Size%GridSize != 0) {

 printf ("Size of matricies must be divisible by the grid size! \n");

 }

 }

 while (Size%GridSize != 0);

 }

 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 BlockSize = Size/GridSize;

 pAblock = new double [BlockSize*BlockSize];

 pBblock = new double [BlockSize*BlockSize];

 pCblock = new double [BlockSize*BlockSize];

 pTemporaryAblock = new double [BlockSize*BlockSize];

 for (int i=0; i<BlockSize*BlockSize; i++) {

 pCblock[i] = 0;

 }

 if (ProcRank == 0) {

 pAMatrix = new double [Size*Size];

 pBMatrix = new double [Size*Size];

 pCMatrix = new double [Size*Size];

 //DummyDataInitialization(pAMatrix, pBMatrix, Size);

 RandomDataInitialization(pAMatrix, pBMatrix, Size);

 }

}

4. The function ParallelResultCalculation. The function ParallelResultCalculation exe-

cutes the parallel Fox algorithm of matrix multiplication. The matrix blocks and their sizes must

be given to the function as its arguments.

According to the scheme of parallel computations described in Exercise 3, it is necessary to

carry out GridSize iterations in order to execute matrix multiplication with the use of Fox algo-

rithm. Each of the iterations consists of the execution of the following operations:

 The broadcast of the matrix A block along the processor grid row (to execute the step we

should develop the function ABlockCommunication),

 The multiplication of matrix blocks (to carry out the multiplication of matrix blocks we

may use the function SerialResultCalculation, which was implemented in the course of the de-

velopment of the serial matrix multiplication program),

The cyclic shift of the matrix B blocks along the column of the processor grid (the function

ВBlockCommunication).

void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,

 double* pBblock, double* pCblock, int BlockSize) {

 for (int iter = 0; iter < GridSize; iter ++) {

 // Sending blocks of matrix A to the process grid rows

 ABlockCommunication (iter, pAblock, pMatrixAblock, BlockSize);

 // Block multiplication

 BlockMultiplication(pAblock, pBblock, pCblock, BlockSize);

 // Cyclic shift of blocks of matrix B in process grid columns

 BblockCommunication(pBblock, BlockSize);

 }

}

5. The function AblockCommunication. The function broadcasts matrix A blocks to the

process grid rows. The leading process Pivot that responsible for sending is chosen in each row

of the grid. For broadcasting the pivot processes are used their blocks pMatrixAblock (let us to

remind that these blocks transmitted to the processes at the moment of the initial data distribu-

tion). The required communications are executed by means of the function MPI_Bcast. It should

be noted that the operation is collective, and its localization in separate process grid rows is pro-

vided by the communicators RowComm, which are created for the set of processes of each row

separately.

// Broadcasting matrix A blocks to process grid rows

void ABlockCommunication (int iter, double *pAblock, double* pMatrixAblock,

 int BlockSize) {

 // Defining the leading process of the process grid row

 int Pivot = (GridCoords[0] + iter) % GridSize;

 // Copying the transmitted block in a separate memory buffer

 if (GridCoords[1] == Pivot) {

 for (int i=0; i<BlockSize*BlockSize; i++)

 pAblock[i] = pMatrixAblock[i];

 }

 // Block broadcasting

 MPI_Bcast(pAblock, BlockSize*BlockSize, MPI_DOUBLE, Pivot, RowComm);

}

6. The function BlockMultiplication. The function executes block multiplication of the ma-

trices A and B. The easiest way to perform this multiplication is to use the serial matrix multipli-

cation algorithm. It should be noted that we provide the simplest variant of the function imple-

mentation for better understanding of the program. These calculations may be optimized to de-

crease the computation time. This optimization may be aimed, for instance, at increasing the ef-

ficiency of the processor cache, vectorizing the executed operations etc.

7. The function BblockCommunication. The function performs the cyclic shift of blocks of

the matrix B in the process grid columns. Each process transmits its block to the upper neighbor-

ing process NextProc in the process column and receives the block transmitted from the process

PrevProc , which stands below it in the grid column. Data transmission is executed by means of

the function MPI_SendRecv_replace, which provides all the necessary block transmissions using

the same memory buffer pBblock. Besides, this function prevents possible deadlocks, which

happen when data transmission begins to be performed simultaneously by several processes in

the ring network topology.

// Cyclic shift of matrix B blocks in the process grid columns

void BblockCommunication (double *pBblock, int BlockSize) {

 MPI_Status Status;

 int NextProc = GridCoords[0] + 1;

 if (GridCoords[0] == GridSize-1) NextProc = 0;

 int PrevProc = GridCoords[0] - 1;

 if (GridCoords[0] == 0) PrevProc = GridSize-1;

 MPI_Sendrecv_replace(pBblock, BlockSize*BlockSize, MPI_DOUBLE,

 NextProc, 0, PrevProc, 0, ColComm, &Status);

}

9.6 Computational Experiment Results

The results of the experiments with the use of 4 and 9 processors are given in Table 9.1.

Table 9.1 The Results of the computational experiments for estimating the Fox parallel al-

gorithm efficiency

Matrix

Size
Serial Algorithm

Parallel Algorithm

4 processors 9 processors

Time Speed Up Time Speed Up

500 0,8527 0,2190 3,8925 0,1468 5,8079

1000 12,8787 3,0910 4,1664 2,1565 5,9719

1500 43,4731 10,8678 4,0001 7,2502 5,9960

2000 103,0561 24,1421 4,2687 21,4157 4,8121

2500 201,2915 51,4735 3,9105 41,2159 4,8838

3000 347,8434 87,0538 3,9957 58,2022 5,9764

0

1

2

3

4

5

6

7

4 9

Number of Processors

S
p

e
e
d

 U
p

500

1000

1500

2000

2500

3000

Figure 9.1 Speedup of the Fox Parallel Algorithm with Respect to Num-

ber of Processors

Test questions

1. What is the statement of the matrix multiplication problem?

2. Give the examples of the problems, which make use of the matrix multiplication opera-

tions.

3. Give the examples of various sequential algorithms of matrix multiplication operations.

Is the complexity various in case of different algorithms?

4. What methods of data distribution are used in developing parallel algorithms of matrix

multiplication?

5. Analyze and compute the efficiency of the block-striped algorithm for horizontal parti-

tioning of the multiplied matrices.

6. What information communications are carried out for the algorithms in case of the

block-striped data decomposition?

Practice

1. Implement two block striped algorithms of matrix multiplication. Compare runtimes.

2. Implement the Fox algorithm. Perform computational experiments. Compare experi-

mental results with previous implementations.

References

1. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical Linear Alge-

bra for High Performance Computers (Software, Environments, Tools). Soc for Industrial &

Applied Math.

2. Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.

J., Hammarling, S., Henry, G., Petitet, A., Stanley, D. Walker, R.C. Whaley, K. (1997). Sca-

lapack Users' Guide (Software, Environments, Tools). Soc for Industrial & Applied Math.

3. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

4. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Program-

ming.. – Reading, MA: Addison-Wesley.

5. Kahaner, D., Moler, C., Nash, S. (1988). Numerical Methods and Software. – Prentice Hall.

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY:

McGraw-Hill.

7. Wilkinson, B., Allen, M. (1999). Parallel programming. – Prenrice Hall.

