

The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

“Achieving leading positions in the field of supercomputer technology

and high-performance computing”

Introduction to MPI

Lecture 5. Principles of Parallel Method Development

Nizhni Novgorod

2014

Lecture_5_. Principles of Parallel Method Development

This lecture describes the principles of parallel algorithm development.

Development of parallel computation methods for solving time-consuming problems is al-

ways a serious work. To simplify the theme under consideration, we will leave aside the mathe-

matical aspect of development and the proof of algorithm convergence, as these issues are to this

or that extent considered in a number of “classical” courses of mathematics. Here we will as-

sume that the computation schemes for solving the problems discussed further are already

known.
)

 With regard to these assumptions, the course of actions to develop efficient parallel

computation methods may be as follows:

 To analyze the available computational schemes and subdivide them (decompose) in

parts (subtasks), which may be computed to substantial degree independently,

 To evolve the information interactions that should be carried out between subtasks in the

course of solving the originally formulated problem,

 To define the computer system, which is necessary (or available) for solving the problem,

and distribute the formulated set of subtasks among the system processors.

If we consider the problem in the most general way, it becomes evident that the amount of

computations for each processor being used should be approximately the same. It provides for

the uniform computational processor loading (load balancing). It is also evident that the distribu-

tion of subtasks among the processor should be carried out in such a way that the number of in-

formation links (communication interactions) among the subtasks should be minimal.

 In spite of the fact that for many scientific and technical problems not only sequential but also parallel solving methods are known, this

assumption is, of course, strong. Actually the algorithm development process for the newly emerging problems, which require time-consuming

computations, is a considerable part of all the work performed.

Figure 5.1. Parallel algorithm development scheme

After carrying out all the design stages mentioned above, it is possible to evaluate the effi-

ciency of the developed parallel methods. For this purpose the quality characteristics for the gen-

erated parallel computations should be evaluated (speedup, efficiency, scalability). It may appear

to be necessary to repeat some (in the limiting case even all) design stages according to the re-

sults of the analysis. It should be mentioned that the return to the previous design stages may

happen at any stage of parallel computational scheme design.

In this respect the additional action, which is repeated frequently in the design scheme de-

scribed above, is the adjustment of the number of the formulated subtasks after the available

number of processors has been defined. The subtasks may be aggregated, if only a small number

of processors are available, or vice versa subdivided. In general these actions may be considered

as scaling the developed algorithm and may be added as a separate stage of parallel computation

design.

To apply the parallel method, which is eventually obtained, it is necessary to develop pro-

grams for solving the formulated set of subtasks and distribute the developed programs among

the processors in accordance with the selected distribution scheme. The programs are started to

do the computations (at the execution stage the programs are called processes). To provide the

required interactions, the program should have the routines for information passing between sub-

task and the computer system should have some communication channels between processors.

It should be mentioned that each processor is usually appointed for solving a single subtask.

However, if there are many subtasks or the number of processors in use is limited, this rule may

not be observed. As a result, sevenral programs (processes) may be executed on each processor.

In particular, when a parallel program is being developed or is being tested (at the initial devel-

opment stage), one processor may be used for execution of all processes (in this case processes

are executed in the time-sharing mode).

Problem Decomposition

into Subtasks

Analysis of Information

Dependencies

Scaling the Subtasks

Distributing the Subtasks

among Processors

If we consider the developed scheme of parallel computation design and implementation

carefully, we will see that this approach is to a considerable extent designated for the distributed

memory computer system. The information interactions are realized in such systems by means of

message passing along the communication channels among the processors. Nevertheless, this

scheme may also be used without any loss of parallel computation efficiency for developing the

parallel methods for shared memory systems. In this case the mechanism of message passing for

providing the information interactions should be changed by operations of access to the shared

variables.

5.1. Stages of Parallel Algorithm Development

Let us consider the methodology described above in more detail. To demonstrate the formu-

lated methodology, we will further analyze the problem of searching the maximum value among

matrix elements (for instance, such calculations are executed for solving linear equation systems

by means of the Gauss method):

ji
Nji

ay



,1

max .

This problem is not very difficult and is formulated for purely illustrative purposes. In addi-

tion we will consider the development stages and describe the use of the methodology for paral-

lel algorithm development in more complicated case. Besides this development scheme will fur-

ther be applied for the description of all other parallel computation methods.

5.1.1. Computation Decomposition into Independent Subtasks

To decide what subtasks have to be formulated the computation scheme of solving the stud-

ied problem should be analyzed. The selected approach has to meet are the following require-

ments: it should be able to provide the equal amount of computations in the selected subtasks

and the minimum information dependencies among these subtasks (under the same conditions a

small number of large data communications should be preferred to the frequently executed short

communications). Generally, the analysis and the subtask decomposition is a rather complicated

problem. It may be solved more easily in case of the two frequently occurring types of computa-

tional schemes:

а) б)

Figure 5.2 Matrix data decomposition: a) a striped scheme, b) a checkerboard

block scheme

 For a wide class of problems the computations come up to carrying out the uniform pro-

cessing of a large set of data. Matrix computations, numerical methods of solving the partial de-

rivative equations and so on may be referred to this class. This is the case of the so-called data

parallelism, and subtasks selection comes up to partition of the available data. Thus, for instance,

for our problem of searching the maximum value the matrix A may be partitioned into separate

rows (or the groups of consecutive rows) – a striped scheme of data decomposition (see Figure

5.2) - or it may be separated into rectangular sets of elements – a checkerboard block scheme of

data decomposition. For a large number of problems, data decomposition leads to creating one -,

two-, three-dimensional sets (grids or meshes)of subtasks. The information links in these sub-

tasks exist only among the nearest neighbors.

Figure 5.3 Data decomposition into regular one-, two-, and three-dimensional sets

of basic subtasks

 For the other part of the problems the computations can consist in carrying out different

operations over the same set of data. This is the so-called functional parallelism (the examples

may be the problems of processing the sequence of queries to the information data bases, the

computations with the simultaneous use of different computational algorithms etc.). Functional

decomposition is frequently used for organizing the pipeline data processing (thus, for instance,

in carrying out some data transformation the computations may be reduced to functional se-

quence of data input, data processing and data output).

The choice of the adequate decomposition level is an important issue in formulating sub-

tasks. Generating the maximum possible amount of subtasks provides the use the maximum

achievable parallelism level for the problem being solved. However, it complicates the parallel

computation analysis. The use of only large-scale subtasks in computation decomposition leads

to a clear parallel computation scheme. However, it can make it more difficult to use a large

number of processors efficiently. A reasonable combination of these two approaches may consist

in the use of only those subtasks, for which the methods of parallel computations are known as

constructive decomposition elements. Thus, for instance, analyzing the problem of matrix multi-

plications, it is possible to formulate subtasks as the calculations of inner product or matrix-

vector multiplication. This intermediate method of decomposing computations makes it possible

to provide both the simplicity of computation decomposition scheme and the efficiency of paral-

lel calculations. The computations selected with the help of this approach will be further referred

to as the basic computational subtasks. They may be elementary (nondivisible), if they do not

allow further partitioning, or aggregated if otherwise.

For the problem discussed here sufficient decomposition level may consist, for instance, in

subdividing matrix A into a set of separate rows and obtaining on this basis a set of subtasks for

maximum value search in separate rows. The structure of the information links generated in this

case corresponds to the linear graph - see Figure 5.3

The list of questions given in Foster (1995) may be suggested for estimating the correct-

ness of the computation decomposition stage:

 Does the performed decomposition increase the amount of computations and the neces-

sary memory size?

 Is the balanced loading of all the available processors possible with the chosen decompo-

sition approach?

 Are the selected subtasks sufficient for efficient loading of the available processors (tak-

ing into account the possibility to increase their number)?

5.1.2. Analysis of Information Dependencies

Finding out information dependencies among subtasks does not usually cause many prob-

lems. However, it should be noted that it is actually difficult to separate the stages of subtask se-

lection and information analysis. Subtask selection must be carried out with regard for the

emerging information links. It may appear to be necessary to repeat the computation decomposi-

tion stage after completing the analysis of the volume and frequency of the necessary data com-

munication among subtasks.

The following forms of information interaction should be differentiated in analyzing the in-

formation dependencies (the preferable information interaction forms are underlined):

 Local and Global schemes of data communication – for local schemes the data communi-

cation s at every moment are executed only among a small number of subtasks (placed, as a rule,

on neighboring processors). For global data communication operations all subtasks participate in

the communication process;

 Structural and Arbitrary interaction methods – for structural methods interactions leads

to forming some standard communication schemes (for instance, in the form of a ring, a rectan-

gular mesh etc.). The scheme of data communication operation for arbitrary interaction struc-

tures is not homogeneous;

 Static or Dynamic schemes of data communication – for the static schemes the infor-

mation interaction moments and participants are fixed at the stages of design and parallel pro-

gram development. For the dynamic variant of interaction the structure of data communication

operation is determined in the course of computations;

 Synchronous and Asynchronous interaction methods – data communication operations

for synchronous methods are carried out only if all the interaction participants are ready for in-

teraction and end only after the completion of all the communication actions. If the operations

are carried out asynchronously, the interaction participants do not have to wait for the total com-

pletion of data communication actions. It is rather difficult to choose the preferable form of data

communication for these interaction methods: the synchronous mode is, as a rule, simpler to use,

while the asynchronous one makes possible to considerably decrease the time delays caused by

information interaction operations.

As it has been already mentioned in the previous section, for the problem of maximum value

search the structure of information links looks as shown in Figure 5.4, if the subtasks have been

selected as calculations of maximum value in separate rows of the matrix A.

Figure 5.4 The structure of the information links for the problem of maximum

value search

As in the previous case, estimating the stage of analyzing the information dependencies it

will be useful to examine the questions suggested Foster (1995):

 Does the computational complexity of subtasks correspond to the intensity of their in-

formation interactions?

 Is the intensity of information interactions the same for different subtasks?

 Is the information interaction scheme local?

 Will the formed information dependencies hinder parallel execution of subtask computa-

tions?

5.1.3. Subtask Set Scaling

Developed computing scheme of parallel computations has to be scaled, if the number of

available subtasks differs from the number of processors planned to be used. To decrease the

number of subtasks, it is necessary to perform the aggregation of calculations. The rules applied

in this case coincide with the recommendations of the computation decomposition stage. The

anew defined subtasks should have close computational complexity and the volume and the in-

tensity of information interactions among subtasks should stay at the minimum possible level. As

a result the first candidates for aggregation are subtasks with a high degree of information inter-

dependence.

If the available set of subtasks is not enough to load all the available processors, it is neces-

sary to perform decomposition of computations. As a rule, such decomposition does not cause

any difficulties, if the methods of parallel computations for basic subtasks are known.

In general the scalability stage should produce rules for subtask aggregation and decomposi-

tion, which should parametrically depend on the number of the processors used for computa-

tions.

For the problem of maximum value search discussed here the aggregation of computations

may consist in combining of separate rows into groups (a striped scheme of matrix separation –

see Figure 5.2a). The rows of the original matrix A may be subdivided into several parts (blocks)

if subtask decomposition is required.

The list of questions suggested in Foster (1995) for evaluation of the scalability stage cor-

rectness looks as follows:

 Will the computation locality deteriorate after scaling the available subtask set?

 Are the subtasks after scalability of the same computation and communication complexi-

ty?

 Does the number of subtasks correspond to the number of the available processors?

 Do scalability rules depend parametrically on the number of processors?

5.1.4. Subtask Distribution among Processors

Distributing the subtasks among processors is the final stage of parallel method develop-

ment. It should be noted that the management of load distribution for processors is possible only

for computer system with the distributed memory. For multiprocessors (the systems with shared

memory) process distribution is usually performed by the operating system automatically. Be-

sides this stage of distributing subtasks among processors is redundant, if the number of subtasks

coincides with the number of available processors, and the data communication network topolo-

gy of a computer system is a complete graph (i.e. all the processors are connected by direct

communication links).

The basic criterion of the success for this stage is the efficiency of processor utilization,

which is defined as the relative fraction of time, during which the processors were being used for

computations connected with solving the original problem. The ways to achieve good results in

this direction remain the same. As previously, it is necessary to provide uniform distribution of

computational load among processors and minimize the number of messages transmitted among

processors. Exactly as it was at earlier design stages, the optimum solution of subtask distribu-

tion problem is based on the analysis of “subtasks-messages” graph connectivity. Thus, for in-

stance, the subtasks, among which there are information interactions, should be located on the

processors connected by direct data communication lines.

It should be noted, that the requirement to minimize the information communications among

processors may contradict to the condition of uniform processor loading. For instance, we may

place all subtasks on a processor and eliminate interprocessor message communications com-

pletely. It is obvious however, that for the majority of processors the loading will be minimal in

this case.

For the problem of maximum value search, distributing subtasks among processors does not

cause any difficulties. It is enough to provide placement of the subtasks, among which there are

information links, on the processors for which there are direct data communication channels. As

the structure of informational links for the problem discussed here looks as a linear graph, this

requirement can be met in case of practically any network topology of the computer system.

The problems of balancing the computational load become more complicated, if the compu-

tation scheme can be changed in the course of solving the problem. The reasons for this may be,

for instance, nonuniform grids when partial derivative equations are solved, sparse matrice com-

putations, etc.
1)

. Besides, the subtask complexity estimations used at design stages may be evalu-

ated approximately, and, finally, the number of subtasks may be vary in the course of computa-

tions. In these cases it may become necessary to redistribute the basic subtasks among processors

immediately in parallel program execution (or, as they say, to carry out dynamic balancing of

computational load). These issues are among the most complex (and interesting) ones in the field

of parallel computations. Unfortunately, discussion of these issues lies beyond the scope of the

Section (additional information may be found, for instance, in Buyya (1999) and Wilkinson and

Allen (1999)).

As an example we will briefly describe the widely used method of load dynamic manage-

ment, which is usually termed as manager-worker scheme. The use of the approach supposes

that subtasks can be generated and terminated in the course of computations. It is also assumed

that there are either no information interactions among the subtasks or their amount is minimal.

In accordance with the manager-worker scheme a single processor-manager is selected in the

system. This processor-manager has access to the information of all the available subtasks. The

rest of the processors are workerrs. They apply to processor-manager to obtain the computation

load. The new subtasks generated in the process of the computations are transmitted back to the

processor-manager and may be obtained for solving, if processors-workers apply to the proces-

sor-manager. Completion of computations occurs as soon as the processors-workers have ended

the solving process of all the subtasks transmitted to them, and the processor-manager does not

have any computation jobs for execution.

The list of questions suggested in Foster (1995) for checking subtasks distribution stage is as

follows:

 Will the placement of several tasks on one processor lead to the increase of additional

computational overhead?

 Is it necessary to balance the calculations dynamically?

 Cannot the processor-manager be a bottleneck in manager-worker scheme application?

1) It can be noted that even for our simple problem we can observe different computation complexity of the formulated basic subtasks.

Thus, for instance, the number of operations for search of the maximum value of a row where the first element has the maximum value and the

row in which the values are placed in ascending order will differ twice.

5.2. Parallel Solving the Gravitational Problem of N Bodies

Many computational problems in the field of physics can be reduced to data processing op-

erations for each pair of objects of the available physical system. This group of problems is rep-

resented by the well-known gravitational problem of N bodies (or simply the problem of N bod-

ies) - see, for instance, Andrews (2000). In the most general way the problem may be described

as follow.

Let there be a great number of bodies (planets, stars, etc.). The mass, the initial position and

the velocity are known for each of the bodies. The position of the bodies is changed continually

due to the influence of gravitation. The problem is to compute all the system’s changes during a

certain given time interval. To provide such computations the time interval is usually divided

into short time intevals. Further for each time interval the forces affecting each body are comput-

ed. Then the velocities and positions of the bodies get renewed.

The evident algorithm for solving the problem of N bodies consists in carrying out all the

necessary computations for each pairs of bodies. As a result, the time of one iteration execution

will be the following
2)

:

2/)1(
1

 NNT  ,

where τ is the time of parameter recalculation for a pair of bodies.

The description shows that the computation scheme of the described algorithm is simple

enough. It makes possible to use the problem of N bodies as an illustration of applying the ap-

proaches to parallel algorithm development.

5.2.1. Computation Decomposition into Independent Subtasks

The choice of computation decomposion method does not cause any difficulties. The evident

approach is to choose all the set of computations connected with processing data of a physical

system’s body as the basic computational subtask.

5.2.2. Analysis of Information Dependencies

Calculation execution connected with each subtask becomes possible only if data (position

and velocity) concerning all the bodies are available in the subtasks. As a result, before each cal-

culation iteration start, each subtask must get all the necessary data from the other subtasks of the

system. This procedure of data communications, as it was pointed out in section 3, is called sin-

2) It should be noted that there are more efficient sequential algorithms for solving the problem of N bodies. However, studying them may

require considerable efforts. With regard to these circumstances this particular “evident” but not the fastest method is chosen for further consider-

ation though generally the best computation schemes should be chosen for parallelizing.

gle-node gather. In the algorithm discussed here this operation must be executed for each sub-

task. This variant of data communications is usually called multi-node gather or all gather.

Defining requirements to the necessary results of information communications does not

uniquely lead to determining the necessary algorithms of information communications among

subtasks. Obtaining the required results may be provided through various algorithms of multi-

mode gather operation execution.

The simplest way to carry out the necessary information communications is to execute a se-

quence of steps, at each of which all the available subtasks are splitted into pairs, and the data

communications are carried out between the subtasks, which form these pairs. If the pairwise

subtask division is proper, then (N-1) iterations of the described above procedure will lead to

complete implementation of the required data gather operation.

The described above method of information communications is rather time-consuming. To

gather all the necessary data, (N-1) iterations are required. (N/2) data communication operations

are performed simultaneously at each iteration stage. To decrease the required number of itera-

tions, it is worthwhile to pay attention to the fact that after completing the iteration 1 of data

gather operation, the subtasks will contain not only their own data, but also the data of their

matches (the subtasks they formed pairs with). As a result, at the second iteration of data gather-

ing it will be possible to form pairs of subtasks to exchange data simultaneously about two bod-

ies of the physical system. Thus after completing the second iteration each subtask will contain

the information about four bodies of the system, etc. It is evident that this method of information

communications allows executing all the necessary communications in log2N iterations. It should

be noted that the amount of data transmitted in each exchange operation is doubled from iteration

to iteration. At the first iteration the data about only one body is transmitted between the sub-

tasks, at the second iteration – about two bodies, etc.

The application of this method of multi-node gather operation implementation leads to the

definition of information link structure among the subtasks as a N-dimensional hypercube.

5.2.3. Scaling and Distributing Subtasks among Processors

As a rule, the number of bodies in a physical system N exceeds the number of processors p.

As a result, the subtasks discussed previously must be aggregated. They should be united in the

framework of one computation subtask for the group of (N/p) bodies. After this aggregation the

number of subtasks and the number of processors will coincide. Distributing these subtasks

among processors is evident, it will only be necessary to use processors with direct communica-

tion lines for subtasks, which execute information communication of data gather operations.

5.2.4. Efficiency Analysis of Parallel Computations

Let us estimate the efficiency of the developed parallel computation methods for solving the

problem of N bodies. As the suggested variants differ from each other only by the methods of

carrying out information communications, it is enough to define the duration of multi-node gath-

er operation in order to compare them. Let us use the model suggested by Hockney (see section

3) to evaluate the message communication time. The duration of data gather operation for the

first parallel computation method may be expressed as:

)/)/()(1()(
1

 pNmpcommT p  ,

where α,  are the parameters of the Hockney model (latency and bandwidth of data communica-

tion network), and m sets the transmitted data size for one body of the physical system.

For the second information communication method, as it has already been mentioned previ-

ously, the sizes of the transmitted data at different iterations of data gather operation are differ-

ent. At the first iteration the size of the transmitted data is (mN/p). At the second iteration this

size doubles and appears to be equal to 2(mN/p), etc. Generally, for iteration number i the data

size is estimated as 2
i-1

(mN/p). As a result, the duration of data gather operation execution in this

case may be defined by the following equation:







p

i

i

p ppNmppNmcommT

log

1

12
/)1)(/(log)/)/(2()( .

The comparison of the obtained expressions shows that the second developed parallel com-

putation method is far more efficient, involves fewer communication overhead and allows better

scalability, if the number of available processors is increased.

Review of references

The methods discussed in this chapter were first proposed in Foster (1995). This work con-

siders the methodology in more detail. Besides, it contains several examples of their application

for parallel method development for solving a number of computation problems.

The information given in the work by Quinn (2004) may appear to be useful in consideration

of the issues connected with design and development of parallel algorithms.

The gravitational problem of N bodies is considered in detail in Andrews (2000).

Test questions

1. What are the initial assumptions for the methodology of parallel algorithm development

discussed in the Section?

2. What are the basic stages of the methodology of parallel computation design and devel-

opment?

3. How is the “subtasks-messages” model defined?

4. How is the “processors-channels” model defined?

5. What basic requirements should be met in parallel algorithm development?

6. What are the basic operations at the stage of subtask selection?

7. What are the basic operations at the stage of analyzing information dependencies?

8. What are the main operations at the stage of scaling the available subtask set?

9. What are the main operations at the stage of distributing subtasks among the processors

of a computer system?

10. How does the “manager-worker” scheme provide dynamic management ofe com-

putational load?

11. Which parallel computation method was developed for solving the gravitational

problem of N bodies?

12. Which method of multi-node gather operation execution is the most efficient?

Practice

1. Design a scheme of parallel computations using the methodology described in the Section

for designing and developing parallel methods:

 For the problem of searching the maximum value among minimal elements of matrix

rows (such calculations occur in solving the problems of matrix games):

ij
NjNi

ay



11

minmax ,

(pay special attention to the situation when the number of processors exceeds the matrix order,

i.e. p>N),

 For the problem of computing a definite integral using the method of rectangles:

Nabhhixxfffhdxxfy iii

N

i

i

b

a

/)(,),(,)(

1

0

 




.

(the description of this numerical integration method is given, for instance, in Kahaner, Moler

and Nash (1988))

References

1. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Program-

ming.. – Reading, MA: Addison-Wesley.

2. Bertsekas, D.P., Tsitsiklis, J.N. (1989) Parallel and distributed Computation. Numerical

Methods. - Prentice Hall, Englewood Cliffs, New Jersey.

3. Buyya, R. (Ed.) (1999). High Performance Cluster Computing. Volume1: Architectures and

Systems. Volume 2: Programming and Applications. - Prentice Hall PTR, Prentice-Hall Inc.

4. Kahaner, D., Moler, C., Nash, S. (1988). Numerical Methods and Software. – Prentice Hall.

5. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Soft-

ware Engineering. Reading, MA: Addison-Wesley.

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, NY:

McGraw-Hill.

7. Wilkinson, B., Allen, M. (1999). Parallel programming. – Prenrice Hall.

