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Lecture_6,7_. Parallel Methods for Matrix-Vector Multiplication 

Lectures 6 and 7 describe basic principles of parallel matrix-vector multiplication algorithm 

construction. 

Matrices and matrix operations are widely used in mathematical modeling of various pro-

cesses, phenomena and systems. Matrix calculations are the basis of many scientific and engi-

neering calculations. Computational mathematics, physics, economics are only some of the areas 

of their application.  

As the efficiency of carrying out matrix computations is highly important many standard 

software libraries contain procedures for various matrix operations. The amount of software for 

matrix processing is constantly increasing. New efficient storage structures for special type ma-

trix (triangle, banded, sparse etc.) are being created. Highly efficient machine-dependent algo-

rithm implementations are being developed. The theoretical research into searching faster matrix 

calculation method is being carried out.  

Being highly time consuming, matrix computations are the classical area of applying parallel 

computations. On the one hand, the use of highly efficient multiprocessor systems makes possi-

ble to substantially increase the complexity of the problem solved. On the other hand, matrix op-

erations, due to their rather simple formulation, give a nice opportunity to demonstrate various 

techniques and methods of parallel programming. 

Let us assume that the matrices, we are considering, are dense, i.e. the number of zero ele-

ments in them is insignificant in comparison to the general number of matrix elements.  

 

LECTURE 6  

6.1. Parallelization Principles 

The repetition of the same computational operations for different matrix elements is typical 

of different matrix calculation methods. In this case we can say that there exist data parallelism. 

As a result, the problem to parallelize matrix operations can be reduced in most cases to matrix 

distributing among the processors of the computer system. The choice of matrix distribution 

method determines the use of the definite parallel computation method. The availability of vari-

ous data distribution schemes generates a range of parallel algorithms of matrix computations.  

The most general and the most widely used matrix distribution methods consist in decompo-

sition data into stripes (vertically and horizontally) or rectangular fragments (blocks).  



1. Block-striped matrix decomposition. In case of block-striped decomposition each pro-

cessor is assigned a certain subset of matrix rows (rowwise or horizontal decomposition) or ma-

trix columns (columnwise or vertical decomposition) (Figure 6.1). Rows and columns are in most 

cases subdivided into stripes on a continuous sequential basis. In case of such approach, in row-

wise decomposition (see Figure 6.1), for instance, matrix A is represented as follows: 
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where a i  = (a i 1 ,  a i 2 ,… a i n ) ,  0  i  <m,  is  i-th row of matrix A (it is assumed, that the number of 

rows m is divisible by the number of processors p without a remainder, i.e. m = k p). Data de-

composition on the continuous basis is used in all matrix and matrix-vector multiplication algo-

rithms, which are considered in this and the following sections.   

Another possible approach to forming rows is the use of a certain row or column alternation 

(cyclic) scheme. As a rule, the number of processors p is used as an alternation parameter. In this 

case the horizontal decomposition of matrix A looks as follows: 
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2. Checkerboard Block Matrix Decomposition. In this case the matrix is subdivided into 

rectangular sets of elements. As a rule, it is being done on a continuous basis. Let the number of 

processors be qsp  , the number of matrix rows is divisible by s, the number of columns is di-

visible by q, i.e. skm   and qln  . Then the matrix A may be represented as follows: 
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where Aij  - is a matrix block, which consists of the elements: 
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In case of this approach it is advisable that a computer system have a physical or at least a 

logical processor grid topology of s rows and q columns. Then, for data distribution on a contin-

uous basis the processors neighboring in grid structure will process adjoining matrix blocks. It 

should be noted however that cyclic alteration of rows and columns can be also used for the 

checkerboard block scheme.  



 

Figure 6.1 Most widely used matrix decomposition schemes 

In this lecture three parallel algorithms are considered for square matrix multiplication by a 

vector. Each approach is based on different types of given data (matrix elements and vector) dis-

tribution among the processors. The data distribution type changes the processor interaction 

scheme. Therefore, each method considered here differs from the others significantly.  

6.2. Problem Statement 

The result of multiplying the matrix A of order nm   by vector b, which consists of n ele-

ments, is the vector c of size m, each i-th element of which is the result of inner multiplication of 

i-th matrix A row (let us denote this row by ai) by vector b: 
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Thus, obtaining the result vector c can be provided by the set of the same operations of mul-

tiplying the rows of matrix A by the vector b. Each operation includes multiplying the matrix row 

elements by the elements of vector b (n operations) and the following summing the obtained 

products (n-l operations). The total number of necessary scalar operations is the value  

 12
1

 nmT . 

6.3. Sequential Algorithm  

The sequential algorithm of multiplying matrix by vector may be represented in the follow-

ing way: 

// Sequential algorithm of multiplying matrix by vector 

for (i = 0; i < m; i++){ 

  c[i] = 0; 

  for (j = 0; j < n; j++){ 

    c[i] += A[i][j]*b[j] 

  } 

} 

In the given program code the following notation is used: 



a. Input data: 

i. A[m][n] – matrix of order nm  , 

ii. b[n] – vector of n elements, 

b. Result: 

i. c[m] – vector of m elements. 

Matrix-vector multiplication is the sequence of inner product computations. As each compu-

tation of inner multiplication of vectors of size n requires execution of n multiplications and n-l 

additions, its time complexity is the order O(n). To execute matrix-vector multiplication it is 

necessary to execute m operations of inner multiplication. Thus, the algorithm’s time complexity 

is the order O(mn).  

6.4. Data Distribution 

While executing the parallel algorithm of matrix-vector multiplication, it is necessary to dis-

tribute not only the matrix A, but also the vector b and the result vector c. The vector elements 

can be duplicated, i.e. all the vector elements can be copied to all the processors of the multipro-

cessor computer system, or distributed among the processors. In case of block decomposition of 

the vector consisting of n elements, each processor processes the continuous sequence of k vector 

elements (we assume that the vector size n is divisible by the number of processors p, i.e. n = 

k·p).  

Let us make clear, why duplicating vectors b and c among the processors is an admissible 

decision (for simplicity further we will assume that m=n). Vectors b and c consist of n elements, 

i.e. contain as much data as one matrix row or column. If the processor holds a matrix row or 

column and single elements of the vectors b and c, the total size of used memory is the order 

O(n). If the processor holds a matrix row (column) and all the elements of the vectors b and c, 

the total number of used memory is the same order O(n). Thus, in cases of vector duplicating and 

vector distributing the requirements to memory size are equivalent.  

6.5. Matrix-Vector Multiplication in Case of Rowwise Data Decomposition  

As the first example of parallel matrix computations, let us consider the algorithm of matrix-

vector multiplication, which is based on rowwise block-striped matrix decomposition scheme. If 

this case, the operation of inner multiplication of a row of the matrix A and the vector b can be 

chosen as the basic computational subtask.  

6.5.1. Analysis of Information Dependencies  

To execute the basic subtask of inner multiplication the processor must contain the corre-

sponding row of matrix A and the copy of vector b. After computation completion each basic 

subtask determines one of the elements of the result vector c.  



To combine the computation results and to obtain the total vector c on each processor of the 

computer system, it is necessary to execute the all gather operation, in which each processor 

transmits its computed element of vector c to all the other processors. This can be executed, for 

instance, with the use of the function MPI_Al lgather  of MPI library.  

The general scheme of informational interactions among subtasks in the course of computa-

tionS is shown in Figure 6.2.  
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Figure 6.2 Computation scheme for parallel matrix-vector multiplication 

based on rowwise striped matrix decomposition 

6.5.2. Scaling and Subtask Distribution among Processors 

In the process of matrix-vector multiplication the number of computational operations for 

computing the inner product is the same for all the basic subtasks. Therefore, in case when the 

number of processors p is less than the number of basic subtasks m, we can combine the basic 

subtasks in such a way that each processor would execute several of these tasks. In this case each 

subtask will hold a row stripe of the matrix A After completing computations, each aggregated 

basic subtask determines several elements of the result vector c.  

Subtasks distribution among the processors of the computer system may be performed in an 

arbitrary way.  

6.5.1. Program Implementation  

Let us take a possible variant of parallel program for a matrix- vector multiplication with the 

use of the algorithm of rowwise matrix decomposition. The realization of separate modules is not 

given, if their absence does not influence the process of understanding of general scheme of par-

allel computations.  

1. The main program function. The main program function realizes the logic of the algo-

rithm operations and sequentially calls out the necessary subprograms. 

// Multiplication of a matrix by a vector – stripe horizontal decomposition 

// (the source and the result vectors are doubled amoung the processors) 

  int ProcRank;             // Rank of current process 



  int ProcNum;              // Number of processes 

void main(int argc, char* argv[]) { 

  double* pMatrix;  // The first argument - initial matrix 

  double* pVector;  // The second argument - initial vector 

  double* pResult;  // Result vector for matrix-vector multiplication  

  int Size;         // Sizes of initial matrix and vector 

  double* pProcRows; 

  double* pProcResult; 

  int RowNum; 

  double Start, Finish, Duration; 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 

  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 

   

  ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcResult,  

    Size, RowNum); 

 

  DataDistribution(pMatrix, pProcRows, pVector, Size, RowNum); 

 

  ParallelResultCalculation(pProcRows, pVector, pProcResult, Size, RowNum); 

 

  ResultReplication(pProcResult, pResult, Size, RowNum); 

 

  ProcessTermination(pMatrix, pVector, pResult, pProcRows, pProcResult); 

 

  MPI_Finalize(); 

} 

2. ProcessInitialization. This function defines the initial data for matrix A and vector b. The 

values for matrix A and vector b are formed in function RandomDataInitialization.  

// Function for memory allocation and data initialization 

void ProcessInitialization (double* &pMatrix, double* &pVector,  

  double* &pResult, double* &pProcRows, double* &pProcResult,  

  int &Size, int &RowNum) { 

  int RestRows; // Number of rows, that haven’t been distributed yet 

  int i;             // Loop variable 

 

  if (ProcRank == 0) { 

    do { 

      printf("\nEnter size of the initial objects: "); 

      scanf("%d", &Size); 

      if (Size < ProcNum) { 

        printf("Size of the objects must be greater than  

                number of processes! \n "); 

      } 

    } 

    while (Size < ProcNum); 

  } 

  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 

 

  RestRows = Size; 

  for (i=0; i<ProcRank; i++)  

    RestRows = RestRows-RestRows/(ProcNum-i); 

  RowNum = RestRows/(ProcNum-ProcRank); 

 

  pVector = new double [Size]; 

  pResult = new double [Size]; 

  pProcRows = new double [RowNum*Size]; 

  pProcResult = new double [RowNum]; 

 

  if (ProcRank == 0) { 



    pMatrix = new double [Size*Size]; 

    RandomDataInitialization(pMatrix, pVector, Size); 

  } 

} 

3. DataDistribution. DataDistribution pushes out vector b and distributes the rows of initial 

matrix A among the processes of the computational system. It should be noted that in case when 

the number of matrix rows n is not divisible by the number of processors p, the amount of data 

transferred for the processes may appear to be different. In this case it is necessary to use func-

tion MPI_Scatterv of MPI library for message passing.  

// Data distribution among the processes 

void DataDistribution(double* pMatrix, double* pProcRows, double* pVector, 

                      int Size, int RowNum) { 

  int *pSendNum; // the number of elements sent to the process 

  int *pSendInd; // the index of the first data element sent to the process 

  int RestRows=Size; // Number of rows, that haven’t been distributed yet 

 

  MPI_Bcast(pVector, Size, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

 

  // Alloc memory for temporary objects 

  pSendInd = new int [ProcNum]; 

  pSendNum = new int [ProcNum]; 

 

  // Define the disposition of the matrix rows for current process 

  RowNum = (Size/ProcNum); 

  pSendNum[0] = RowNum*Size; 

  pSendInd[0] = 0; 

  for (int i=1; i<ProcNum; i++) { 

    RestRows -= RowNum; 

    RowNum = RestRows/(ProcNum-i); 

    pSendNum[i] = RowNum*Size; 

    pSendInd[i] = pSendInd[i-1]+pSendNum[i-1]; 

  } 

 

  // Scatter the rows 

  MPI_Scatterv(pMatrix , pSendNum, pSendInd, MPI_DOUBLE, pProcRows,  

    pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 

 

  // Free the memory 

  delete [] pSendNum; 

  delete [] pSendInd;                 

} 

It should be noted that such separation of initial data generalization and initial data broadcast 

among processes might not be justified in real parallel computations with big amounts of data. 

The approach, which is widely used in such cases, consists in arranging data transfer to the pro-

cesses immediately after the data of the processors are generated. The decrease of memory re-

sources needed for data storage may be achieved also at the expense of data generation in the last 

process ( in case of such approach  the memory for the transferred data and for the process data 

may be the same).  



4. ParallelResultCaculation. ResultCalculation performs the multiplication of the matrix 

rows, which are at a given moment distributed to a given process, by a vector. Thus, the function 

forms the block of the result vector c.  

// Function for calculating partial matrix-vector multiplication 

void ParallelResultCalculation(double* pProcRows, double* pVector, double* 

pProcResult, int Size, int RowNum) { 

  int i, j;  // Loop variables 

  for (i=0; i<RowNum; i++) { 

    pProcResult[i] = 0; 

    for (j=0; j<Size; j++) 

      pProcResult[i] += pProcRows[i*Size+j]*pVector[j]; 

  } 

} 

5. ResultReplication. This function unites the blocks of the result vector c, which have been 

obtained on different processors and replicates the result vector to all the computational system 

processes. 

// Function for gathering the result vector 

void ResultReplication(double* pProcResult, double* pResult, int Size,  

    int RowNum) { 

  int i;             // Loop variable 

  int *pReceiveNum;  // Number of elements, that current process sends 

  int *pReceiveInd;  /* Index of the first element from current process  

                        in result vector */ 

  int RestRows=Size; // Number of rows, that haven’t been distributed yet 

 

  //Alloc memory for temporary objects 

  pReceiveNum = new int [ProcNum]; 

  pReceiveInd = new int [ProcNum]; 

 

  //Define the disposition of the result vector block of current processor 

  pReceiveInd[0] = 0; 

  pReceiveNum[0] = Size/ProcNum; 

  for (i=1; i<ProcNum; i++) { 

    RestRows -= pReceiveNum[i-1]; 

    pReceiveNum[i] = RestRows/(ProcNum-i); 

    pReceiveInd[i] = pReceiveInd[i-1]+pReceiveNum[i-1]; 

  } 

  //Gather the whole result vector on every processor 

  MPI_Allgatherv(pProcResult, pReceiveNum[ProcRank], MPI_DOUBLE, pResult,  

    pReceiveNum, pReceiveInd, MPI_DOUBLE, MPI_COMM_WORLD); 

 

  //Free the memory 

  delete [] pReceiveNum;  

  delete [] pReceiveInd; 

} 

 

6.5.2. Computational Experiment Results  

Let us analyze the results of the computational experiments carried out in order to estimate 

the efficiency of the discussed parallel algorithm of matrix-vector multiplication. Besides, the 

obtained results will be used for the comparison of the theoretical estimations and experimental 

values of the computation time. Thus, the accuracy of the obtained analytical relations will be 



checked. The experiments were carried out on the computational cluster on the basis of the pro-

cessors Intel XEON 4 EM64T, 3000 Mhz and the network Gigabit Ethernet under OS Microsoft 

Windows Server 2003 Standard x64 Edition.  

The results of the computational experiments are shown in Table 6.1. The experiments were 

carried out with the use of 2, 4 and 8 processors. The algorithm execution time is given in se-

conds.  

Table 6.1 The results of the computational experiments for the parallel algorithm of 

matrix-vector multiplication with rowwise block-striped data decomposition  

Matrix 

Size 

Sequential Algo-

rithm 

Parallel Algorithm 

2 processors 4 processors 8 processors 

Time Speed Up Time Speed Up Time Speed Up 

1000 0,0041 0,0021 1,8798 0,0017 2,4089 0,0175 0,2333 

2000 0,016 0,0084 1,8843 0,0047 3,3388 0,0032 4,9443 

3000 0,031 0,0185 1,6700 0,0097 3,1778 0,0059 5,1952 

4000 0,062 0,0381 1,6263 0,0188 3,2838 0,0244 2,5329 

5000 0,11 0,0574 1,9156 0,0314 3,4993 0,0150 7,3216 
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Figure 6.3 Speedup for parallel matrix-vector multiplication (rowwise 

block-striped matrix decomposition) 

6.6. Review of references 

The problem of matrix-vector multiplication is frequently used as an example of parallel 

programming and, as a result, is widely discussed. The books by Kumar, et al. (1994) and Quinn 

(2004) may be recommended as additional materials on the problem. Parallel matrix computa-

tions are discussed in detail in Dongarra, et al. (1999). 



Blackford, et al. (1997) may be useful for considering some aspects of parallel software de-

velopment. This book describes the software library of numerical methods ScaLAPACK, which 

is well-known and widely used.  

LECTURE 7 

7.1. Matrix-Vector Multiplication in Case of Columnwise Data Decomposition 

Let us analyze the other approach to parallel matrix-vector multiplication, which is based on 

decomposition the matrix into continuous sets (vertical stripes) of columns. 

7.2 Computation Decomposition and Analysis of Information Dependencies  

In case of columnwise matrix decomposition the operation of multiplying a column of matrix 

A by one of the vector b elements may be chosen as the basis computational subtask. As a result 

to perform computations each basic subtask i, 0 i< n, must contain the  i-th column of matrix A 

and the  i-th elements   bi  and  ci of vectors  b and  с.  

At the starting point of the parallel algorithm of matrix-vector multiplication each basic task i 

carries out the multiplication of its matrix A column by element bi. As a result, vector c'(i)  (the 

vector of intermediate results) is obtained in each subtask. The subtasks must further exchange 

their intermediate data in order to obtain the elements of the result vector c (element j, 0 j< n, 

of the partial result c'(i) of the subtask i, 0 i< n, must be sent to the subtask j). This all- to-a ll  

communica t ion  or  to tal  exchange  is the most general communication procedure and may be ex-

ecuted with the help of the function MPI_Alltoall of MPI library. After the completion of data 

communications each basic  subtask i, 0 i< n, will contain n partial values  c'i(j), 0 j<n. Ele-

ment ci  of the result vector c is determined after the addition of the partial values (see Figure 

7.1). 

Figure 7.1 Computation scheme for parallel matrix-vector multiplication 

based on columnwise striped matrix decomposition 

 

x  =  

x  =  

x  =  

+ +  =  

+  +  =  

+  +  =  



7.3  Scaling and Subtask Distribution among Processors  

The selected basic subtasks are of equal computational intensity and have the same amount 

of the data transferred. If the number of matrix columns exceeds the number of processors, the 

basic subtasks may be aggregated by uniting several neighboring columns within one subtask. In 

this case, the initial matrix A is partitioned into a number of vertical stripes. If all the stripe sizes 

are the same the above discussed method of computation aggregating provides equal distribution 

of the computational load among the processors.  

As with the previous algorithm, the subtasks may be arbitrarily distributed among the com-

puter system processors. 

7.4 Computational Experiment Results  

The results of the computational experiments are given in Table 7.1.  

Table 7.1. The results of the computational experiments for parallel matrix-vector multipli-

cation algorithm based on columnwise matrix decomposition 

Matrix 

Size 
Sequential Algorithm 

2 processors 4 processors 8 processors 

Time  Speed up Time  Speed up Time  Speed up 

1000 0,0041 0,0022 1,8352 0,0132 0,3100 0,0008 4,9409 

2000 0,016 0,0085 1,8799 0,0046 3,4246 0,0029 5,4682 

3000 0,031 0,019 1,6315 0,0095 3,2413 0,0055 5,5456 

4000 0,062 0,0331 1,8679 0,0168 3,6714 0,0090 6,8599 

5000 0,11 0,0518 2,1228 0,0265 4,1361 0,0136 8,0580 
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Figure 7.2 Speedup for parallel matrix-vector multiplication (columnwise 

block-striped matrix decomposition) 



Test questions 

1. What are the main methods of distributing matrix elements among processors?  

2. What is the statement of the matrix-vector multiplication problem? 

3. What is the computational complexity of the sequential matrix-vector multiplication? 

4. Why is it admissible to duplicate the vector-operand to all the processors in developing a 

parallel algorithm of matrix-vector multiplication? 

5. What approaches of the development of parallel algorithms may be suggested? 

6. What functions of the library MPI appeared to be necessary in the software implementation 

of the algorithms? 

Practice 

1. Develop the implementation of the parallel algorithm based on the columnwise striped 

matrix decomposition. Carry out computational experiments. Compare actual results to those 

given in the lecture.  

2. Develop the implementation of the parallel algorithm based on checkerboard block matrix 

decomposition. Carry out computational experiments. Compare actual results to those given in 

the lecture. 
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