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07_PRACTICE. PARALLEL METHODS  

OF SOLVING THE LINEAR EQUATION SYSTEMS 

 

OBJECTIVES 

An objective of the practice is to demonstrate a practical application of the parallel linear al-

gebra algorithms by example of solving the linear equation systems. 

ABSTRACT 

The work is organized in the following way. The problem of solving the linear equation sys-

tems is stated. Gauss algorithm is discussed. Implementation of serial solving method is demon-

strated. Possible parallel algorithm and scheme of data distribution are considered. Implementa-

tion of parallel algorithm using MPI is described. 

BRIEF OVERVIEW 

Linear equation systems appear in the course of solving a number of applied problems, which 

are formulated by differential, integral equations or by systems of non-linear (transcendent) 

equations. They may appear also in the problems of mathematical programming, statistical data 

processing, function approximation, or in discretization of boundary differential problems by 

methods of finite differences or of finite elements, etc. 

The coefficient matrices of linear equation systems may be of various structures and have 

various characteristics. The matrices of the systems solved may be dense and their order may 

reach several thousands of rows and columns. In solving many problems there can be the sys-

tems, which possess symmetric positively definite stripe matrices with the order of tens of thou-

sands and the width of the stripe of the several thousand elements. And finally in consideration 

of a great number of problems there may appear systems of linear equations with sparse matrices 

of the order of millions of columns and rows. 

This practice discusses one of the direct methods of solving linear equation systems, i.e. the 

Gauss method and its parallel generalization. 

The first section of practice contains the problem statement of solving the linear equation 

systems. 

In the second section of the practice Gauss algorithm is considered including Gauss elimina-

tion and back substitution stages. 



In the third section the project for Microsoft Visual Studio is developed step-by-step. The 

developed application implements the serial algorithm as well as the necessary steps to input ini-

tial data (matrix and vector), finish the execution correctly, and carry out the computational ex-

periments. 

In the next section the data distribution scheme is considered. 

The last section is devoted to implementation of previously described parallel algorithm as an 

MPI parallel program. Serial implementation is used as the basis. Parallel program is developed 

step-by-step like serial one. Necessary steps include parallel program initialization, data input 

(matrices), data distribution, parallel Gauss elimination and back substitution, gathering the re-

sults. 

The parallel variant of the Gauss method is based on the row-wise block-striped matrix dis-

tribution among the processors and the use of the cyclic scheme of row distribution. This scheme 

makes possible to balance the computational load. To develop the parallel variant of the method 

a complete design cycle is carried out. The basic computational subtasks are defined, information 

communications are analyzed, the issues of scaling are discussed, efficiency characteristics are 

estimated, software implementation is suggested and the results of the computational experi-

ments are given. According to the efficiency analysis, the use of the parallel variant of the Gauss 

method does not provide the speedup of computations, because of the big number of communi-

cation operations. 

FOR STUDENTS  

The description of the classical variants of the algorithms is included in Kincaid, et al. (1991) 

and Burden, et al. (2000). The implementations of the parallel algorithms on pseudocode (for the 

case of distributed memory) are stated in Quinn (2004). 
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EXERCISES 

1. Study the conjugate gradient method of solving the linear equation systems. 

2. Develop the serial and the parallel variants of the method. 

TEST QUESTIONS 

1. What is the complexity order of the Gaussian elimination method when applying to triangu-

lar matrix? 

a. O(n) 

b. (+) O(n
2
) 

c. O(n
3
) 

2. What is the complexity order of the Gaussian elimination method when applying to square 

matrix? 

a. O(n) 

b. O(n
2
) 

c. (+) O(n
3
) 

3. What is the relation between the error of the Gaussian method without choosing the pivot el-

ement and the error of the Gaussian method with choosing the pivot element by column?  

a. The errors are the same and they are comparable to rounding error  

b. The error of the common Gaussian method is smaller than the error of the method with 

choosing the pivot element 

c. (+) The error of the Gaussian method with choosing the pivot element is smaller than of 

the common method. 

4. What is the relation between the error of the Gaussian method without choosing the pivot el-

ement and the error of the Gaussian method with choosing the pivot element by column and 

by row? 

a. The errors are the same and they are comparable to rounding error  

b. The error of the common Gaussian method is smaller than of the method with choosing 

the pivot element 

c. (+) The error of the Gaussian method with choosing the pivot element is smaller than of 

the common method. 



5. What number of processes may be used during the execution of parallel implementation of 

Gaussian method? 

a. (+) Any possible number of processes may be used. 

b. The number of processes should be a perfect square. 

c. The number of processes should be equal the number of matrix rows. 

6. What function should be used to distribute between processes the matrix size in parallel 

Gaussian method? 

a. MPI_Send 

b. (+) MPI_Bcast 

c. MPI_Scatter 

d. MPI_Gather 

7. What function should be used to distribute between processes the matrix in parallel Gaussian 

method? 

a. MPI_Send 

b. MPI_Bcast 

c. (+) MPI_Scatter 

d. MPI_Gather 

8. What function should be used to get the result vector in parallel Gaussian method (Gaussian 

elimination stage)? 

a. (+) MPI_AllReduce 

b. MPI_Bcast 

c. MPI_Scatter 

d. MPI_Gather 

9. What function should be used to get the result vector in parallel Gaussian method (back sub-

stitution stage)? 

a. MPI_AllReduce 

b. MPI_Bcast 

c. MPI_Scatter 

d. (+) MPI_Gather 

10. What virtual topology should be used to implement parallel Gaussian method? 

a. (+) MPI_COMM_WORLD is enough. 

b. Cartesian topology 

c. Special graph topology 


