
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD  

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY 

THE COMPETITIVENESS ENHANCEMENT PROGRAM  

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS 

STRATEGIC INITIATIVE  

“ACHIEVING LEADING POSITIONS IN THE FIELD  

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING” 



Lobachevsky State University of Nizhni Novgorod  

Computing Mathematics and Cybernetics faculty 

Sysoyev A.V. 

Software department 

02 Lecture 

 Collective and Point-to-Point  

Communications 

With the support of Microsoft 

Parallel Programming for Multiprocessor Distributed Memory Systems 



Contents 

Collective Communications 

– Data Broadcasting 

– Reduction Operations 

– Example: Calculating the Constant  

– Scattering and Gathering 

– Example: Calculating the Inner Product 

– All to All Communications 

– Computation Synchronization 

Communications between Two Processes 

– Communication Modes 

– Nonblocking Communications 

– Simultaneous Sending and Receiving 

Collective and Point-to-Point Communications N. Novgorod, 2014 3 



COLLECTIVE COMMUNICATIONS 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 4 

Data Broadcasting 

Reduction Operations 

Example: Calculating the Constant  
Scattering and Gathering 

Example: Calculating the Inner Product 

All to All Communications 

Computation Synchronization 



Collective Communications… 
Data Broadcasting 

To efficiently broadcast the data between processes the following 

MPI function should be used 

 

 

 

 

 

 

 

The function MPI_Bcast() carries out transmitting the data from 

the buffer buf, which contains count type elements, from the 

processor with the rank root to the processes within the 

communicator comm  

 
Collective and Point-to-Point Communications N. Novgorod, 2014 5 

int MPI_Bcast(void *buf, int count, MPI_Datatype type,  

  int root, MPI_Comm comm); 

 
- buf   – the address of the memory buffer, which contains the data of the 

             message to be transmitted 

- count – the number of the data elements in the message 

- type  - the type of the data elements in the message 

- root  - the rank of the process, which carries out data broadcasting 

- comm  - the communicator, within of which the data is transmitted 



Collective Communications… 
Data Broadcasting 

The function MPI_Bcast() is the collective operation, and thus, 

the call of this function is to be executed by all the processes of the 
communicator comm 

The memory buffer pointed in the function MPI_Bcast() has 

different designations in different processes: 

– For the root process, from which data broadcasting is performed, this 

buffer should contain the transmitted message, 

– For the rest of the processes the buffer is intended for data receiving 

Collective and Point-to-Point Communications N. Novgorod, 2014 6 



Collective Communications… 
Data Reduction 

To “reduce” some data from all processes to chosen one the 

following MPI function can be used 

Collective and Point-to-Point Communications N. Novgorod, 2014 7 

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, 

  MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm); 

 
- sendbuf – memory buffer with the transmitted message 

- recvbuf – memory buffer with the resulting message (only for the root  

              process) 

- count   – the number of the data elements in the message 

- type    - the type of the data elements in the message 

- op      - the operation, which should be carried out over the data 

- root    - the rank of the process, on which the result must be obtained 

- comm    - the communicator, within of which the operation is executed 



Collective Communications… 
Data Reduction 

The Basic MPI Operation Types for Data Reduction  

Collective and Point-to-Point Communications N. Novgorod, 2014 8 

Operation Description 

MPI_MAX  The maximum value calculation 

MPI_MIN  The minimum value calculation 

MPI_SUM  The calculation of the sum of the values 

MPI_PROD  The calculation of the product of the values 

MPI_LAND The execution of the logical operation “AND” over the message values 

MPI_BAND The execution of the bit operation “AND” over the message values 

MPI_LOR The execution of the logical operation “OR” over the message values 

MPI_BOR The execution of the bit operation “OR” over the message values 

MPI_LXOR The execution of the excluding logical operation “OR” over the message values 

MPI_BXOR The execution of the excluding bit operation “OR”over the message values  

MPI_MAXLOC The calculation of the maximum values and their indices 

MPI_MINLOC The calculation of the minimum values and their indices 



Collective Communications… 
Data Reduction 

The function MPI_Reduce() is the collective operation, and thus, 

the function call should be carried out by all the processes of the 
communicator comm. 

All the calls should contain the same values of the parameters 
count, type, op, root, comm 

The data transmission should be carried out by all the processes.  

The operation result will be obtained only by root process, 

The execution of the reduction operation is carried out over 

separate elements of the transmitted messages  

Collective and Point-to-Point Communications N. Novgorod, 2014 9 



Collective Communications… 

Example: Calculating the Constant  
 
The value of constant  can be computed by means of the integral 

 

 

 

To compute this integral the method of rectangles can be used for 

numerical integration 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 10 

dx
x 



1

0

2
1

4


0

1

2

3

4

0 0,25 0,5 0,75 1



Collective Communications… 

Example: Calculating the Constant  
 
Cyclic scheme can be used to distribute the calculations among 

the processors 

Partial sums, that were calculated on different processors, have to 

be summed 

Collective and Point-to-Point Communications N. Novgorod, 2014 11 

0

1

2

3

4

0 0,25 0,5 0,75 1

- Processor 0 

- Processor 1 

- Processor 2 



Collective Communications… 

Example: Calculating the Constant  
#include "mpi.h"  

#include <math.h>  

double f(double a){ 

  return (4.0 / (1.0 + a*a));   

} 

void main(int argc, char *argv[]){ 

  int ProcRank, ProcNum, done = 0, n = 0, i;  

  double PI25DT = 3.141592653589793238462643;  

  double mypi, pi, h, sum, x, t1, t2;  

  MPI_Init(&argc, &argv);  

  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);  

  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 

  while (!done){ // main calculation loop 

    if (ProcRank == 0){ 

      printf("Enter the number of intervals: ");  

      scanf("%d", &n);  

      t1 = MPI_Wtime();  

    } 

N. Novgorod, 2014 12 Collective and Point-to-Point Communications 



Collective Communications… 

Example: Calculating the Constant  
    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);  

    if (n > 0){ // calculating the local sums 

      h = 1.0 / (double) n;  

      sum = 0.0;  

      for (i = ProcRank + 1; i <= n; i += ProcNum){  

        x = h * ((double)i - 0.5);  

        sum += f(x);  

      }  

      mypi = h * sum;  

      MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,  

        MPI_COMM_WORLD);   

      if (ProcRank == 0){ // printing results 

        t2 = MPI_Wtime();  

        printf("pi = %.15f, Error = %.15f\n", pi, fabs(pi - PI25DT));  

        printf("time = %f\n", t2 - t1);  

      }  

    }  

    else done = 1;   

  }  

  MPI_Finalize(); 

} 

N. Novgorod, 2014 13 Collective and Point-to-Point Communications 



Collective Communications… 
Scattering and Gathering 

To distribute (“scatter”) some data from chosen process to all the 

processes the following MPI function can be used 

 

 

 

 

 

 

 

When the message sizes for different processes may be different, 

the execution of data scattering is provided by means of the 
function MPI_Scatterv() 

 
Collective and Point-to-Point Communications N. Novgorod, 2014 14 

int MPI_Scatter(void *sbuf, int scount, MPI_Datatype stype,  

                void *rbuf, int rcount, MPI_Datatype rtype,  

                int root, MPI_Comm comm); 

 
- sbuf, scount, stype – the parameters of the transmitted message 

                                 (scount defines the number of elements transmitted to each process) 
- rbuf, rcount, rtype – the parameters of the received message 

- root - the rank of the process, on which the result must be obtained 

- comm - the communicator, within of which the operation is executed 



Collective Communications… 
Scattering and Gathering 

The function  MPI_Scatter() should be called by all the 

processes of the communicator comm. 

The root process transmits the equal sized (scount ) messages 

from the buffer sbuf to all the processes 

Each process (including root) receives the message of 

rcount=scount length into the buffer rbuf 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 15 

 

root 0 1 2    

 
p-1 

1 

0 

p-1 

   
 

   
 

а) Before the operation 

root 

1 

0 

p-1 

   
 

   
 

b) After the operation 

0 

1 

root 

p-1 

   

 

   
 



Collective Communications… 
Scattering and Gathering 

Gathering data from all the processes to a process is reverse to 

data scattering. The following MPI function provides the execution 

of this operation 

Collective and Point-to-Point Communications N. Novgorod, 2014 16 

int MPI_Gather(void *sbuf, int scount, MPI_Datatype stype,  

               void *rbuf, int rcount, MPI_Datatype rtype,  

               int root, MPI_Comm comm); 

 
- sbuf, scount, stype – the parameters of the transmitted message 

- rbuf, rcount, rtype – the parameters of the received message 

- root - the rank of the process, on which the result must be obtained 

- comm - the communicator, within of which the operation is executed 



Collective Communications… 
Scattering and Gathering 

The function  MPI_Gather() should be called by all the 

processes of the communicator comm. 

The root process receives the equal sized (rcount ) messages 

into the buffer rbuf from all the processes 

Each process (including root) transmits the message of 

scount=rcount length from the buffer sbuf 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 17 

 

root 0 1 2    

 
p-1 

1 

0 

p-1 

   
 

   
 

а) After the operation 

root 

1 

0 

p-1 

   
 

   
 

b) Before the operation 

0 

1 

root 

p-1 

   

 

   
 



Collective Communications… 
Example: Calculating the Inner Product 

Let’s discuss the following problem 

 

 

To develop the parallel implementation it is necessary to 

– divide the vectors a and b into “equal” blocks 

– transmit these blocks to the processes 

– carry out the partial inner product in each process 

– reduce the values of the computed partial sums on one of the 

processes to obtain the general result of the problem 

Collective and Point-to-Point Communications N. Novgorod, 2014 18 

1

n

i i

i

S a b


 



Collective Communications… 
Example: Calculating the Inner Product 

#include "mpi.h" 

#include "stdio.h" 

 

void main(int argc, char *argv[]) { 

  double *a, *b; 

  int i, n, ProcNum, ProcRank; 

  double sum, sum_all; 

  MPI_Init(&argc, &argv);  

  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 

  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);  

  if (ProcRank == 0){ 

    scanf("%d", &n); 

    a = new double[n]; 

    b = new double[n]; 

    // initialization of vectors a and b 

  } 

  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

  n = n / ProcNum; 

N. Novgorod, 2014 19 Collective and Point-to-Point Communications 



Collective Communications… 
Example: Calculating the Inner Product 

  if (ProcRank != 0) { 

    a = new double[n]; 

    b = new double[n]; 

  } 

  MPI_Scatter(a, n, MPI_DOUBLE, a, n, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

  MPI_Scatter(b, n, MPI_DOUBLE, b, n, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

  sum = sum_all = 0; 

  for (i = 0; i < n; i++) 

    sum += a[i] * b[i]; 

  MPI_Reduce(&sum, &sum_all, 1, MPI_DOUBLE, MPI_SUM, 0,  

    MPI_COMM_WORLD); 

  if (ProcRank == 0) 

    printf("\nInner product = %10.2f", sum_all); 

  

  MPI_Finalize(); 

  delete [] a; 

  delete [] b; 

} 

N. Novgorod, 2014 20 Collective and Point-to-Point Communications 



Collective Communications… 
All to All Communications 

To obtain all the gathered data on each communicator process, it 

is necessary to use the function of gathering and distribution 
MPI_Allgather() 

 

 

 

 

The execution of the general variant of data gathering operation, 

when the sizes of the messages transmitted among the processes 
may differ, is provided by means of the functions MPI_Gatherv() 

and MPI_Allgatherv() 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 21 

int MPI_Allgather( 

  void *sbuf, int scount, MPI_Datatype stype,  

  void *rbuf, int rcount, MPI_Datatype rtype,  

  MPI_Comm comm); 



Collective Communications… 
All to All Communications 

The total data exchange among processes is provided by the 

function 

 

 

 

 

 

 

 

The variant of this operation in case when the sizes of the 

transmitted messages may differ is provided by means of the 
function MPI_Alltoallv() 

Collective and Point-to-Point Communications N. Novgorod, 2014 22 

int MPI_Alltoall(void *sbuf, int scount, MPI_Datatype stype,  

  void *rbuf, int rcount, MPI_Datatype rtype, MPI_Comm comm); 

 

p-1    

 

0 

   
 

   

 

а) Before the operation 

00 01    

 
0(p-1) 

1 
10 11    

 
1(p-1) 

i 
i 0 i  1    

 
i  (p-1) 

p-1 

(p-1)0 (p-1)1    

 
(p-1)(p-1) 

0 

b) After the operation 

00 10    

 
(p-1) 0 

1 
01 11    

 
(p-1) 1 

i 
0 i 1 i    

 
(p-1)  i 

0(p-1) 1(p-1)    

 
(p-1) (p-1) 

 

   

 

   
 

   

 



Collective Communications 
All to All Communications 

The function MPI_Reduce() provides obtaining the results of data 

reduction only on one process 

To obtain the data reduction results on each of the communicator 
processes, it is necessary to use the function MPI_Allreduce() 

Collective and Point-to-Point Communications N. Novgorod, 2014 23 

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,  

  MPI_Datatype type, MPI_Op Op, MPI_Comm comm); 



Collective Communications 
Computation Synchronization 

Process synchronization, i.e. simultaneous achieving the specified 

points of the parallel program by various processes is provided by 

means of the MPI function 

 

The function MPI_Barrier() is collective operation 

 It should be called by all the processes of the communicator comm 

When the function MPI_Barrier() is called, the process 

execution is blocked. The computations of the process will 
continue only after the function MPI_Barrier() is called by all 

the communicator 

 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 24 

int MPI_Barrier(MPI_Commcomm); 



COMMUNICATIONS BETWEEN TWO 

PROCESSES  

 

Collective and Point-to-Point Communications N. Novgorod, 2014 25 

Communication Modes 

Nonblocking Communications 

Simultaneous Sending and Receiving 



Communications between Two Processes…  
Communication Modes 

The Standard mode: 

 It is provided by the function MPI_Send() 

The sending process is blocked during the time of the function 

execution 

The buffer may be used repeatedly after the function termination 

The state of the transmitted message may be different at the 

moment of the function termination, i.e. the message may be 

located in the sending process, may be being transmitted, may be 

stored in the receiving process, or may be received by the 
receiving process by means of the function MPI_Recv() 

Collective and Point-to-Point Communications N. Novgorod, 2014 26 



Communications between Two Processes…  
Communication Modes 

The Synchronous mode 

The message communication function is terminated only when the 

process got the confirmation that the receiving process has started 

receiving the transmitted message 

 

 

The Ready mode 

May be used only if the message receiving operation has already 

been initiated. The message buffer may be repeatedly used after 

the termination of the message sending function: 

Collective and Point-to-Point Communications N. Novgorod, 2014 27 

MPI_Ssend - the function of sending message in the Synchronous mode 

MPI_Rsend - the function of sending message in the Ready mode 



Communications between Two Processes…  
Communication Modes 

The Buffered mode 

Assumes the use of additional buffer for copying the transmitted 

messages in them; the function of message sending is terminated 

immediately after the message has been copied in the buffer 

 

To use the buffered communication mode, the MPI memory buffer 

for buffering messages should be created and passed into MPI 
 

 

 

After all the operations with the buffer are terminated, it mustbe 

disconnected from MPI by means of the following function 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 28 

MPI_Bsend - the function of sending message in the Buffered mode 

int MPI_Buffer_attach(void *buf, int size) 

 - buf  - the memory buffer for buffering messages 

 - size – buffer size 

int MPI_Buffer_detach(void *buf, int *size); 



Communications between Two Processes…  
Communication Modes 

The Ready mode is formally the fastest of all, but it is used quite 

seldom, as it is usually rather difficult to provide the readiness of 

the receiving 

The Standard and the Buffered modes can also be executed 

sufficiently fast, but may lead to sizeable recourse expenses 

(memory). In general, they may be recommended for transmitting 

short messages 

The Synchronous mode is the slowest of all, as it requires the 

confirmation of receiving. At the same time, this mode is the most 

reliable one. It may be recommended for transmitting long 

messages 

Collective and Point-to-Point Communications N. Novgorod, 2014 29 



Communications between Two Processes…  
Nonblocking Communications 

Blocking functions block the process execution until the called 

functions terminate their operations 

Nonblocking functions provide the possibility to execute the 

functions of data exchange without blocking the processes in order 

to carry out the message communications and the computations in 

parallel 

The nonblocking method 

– Is rather complicated 

– May provide significant decreasing the efficiency losses for parallel 

computations, which arise because of rather slow communication 

operations 

Collective and Point-to-Point Communications N. Novgorod, 2014 30 



Communications between Two Processes…  
Nonblocking Communications 

The names of the nonblocking functions are formed by means of 
adding the prefix I (Immediate) to the corresponding blocking 

function names  

Collective and Point-to-Point Communications N. Novgorod, 2014 31 

int MPI_Isend(void *buf, int count, MPI_Datatype type,  

  int dest, int tag, MPI_Comm comm, MPI_Request *request); 

int MPI_Issend(void *buf, int count, MPI_Datatype type, 

  int dest, int tag, MPI_Comm comm, MPI_Request *request); 

int MPI_Ibsend(void *buf, int count, MPI_Datatype type, 

  int dest, int tag, MPI_Comm comm, MPI_Request *request); 

int MPI_Irsend(void *buf, int count, MPI_Datatype type, 

  int dest, int tag, MPI_Comm comm, MPI_Request *request); 

int MPI_Irecv(void *buf, int count, MPI_Datatype type, 

  int src, int tag, MPI_Comm comm, MPI_Request *request); 



Communications between Two Processes…  
Nonblocking Communications 

The state of the executed nonblocking data communication 

operation may be checked by means of the following function 

 

 

 

 

 

 

This function is a nonblocking one 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 32 

int MPI_Test( MPI_Request *request, int *flag,  

  MPI_status *status); 

 

- request - is the operation descriptor, which is defined when  

            the nonblocking function is called 

- flag    - is the result of checking (=true, if the operation is terminated) 

- status  - the result of the function execution  

            (only for the terminated operation) 



Communications between Two Processes…  
Nonblocking Communications 

The following scheme of combining the computations and the 

execution of the nonblocking communication operation is possible 

 

 

 

 

 

Blocking operation of waiting for the nonblocking operation 

termination 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 33 

MPI_Irecv(buf, count, type, dest, tag, comm, &request); 

... 

do { 

  ... 

  MPI_Test(&request, &flag, &status); 

} while (!flag ); 

int MPI_Wait(MPI_Request *request, MPI_status *status); 



Communications between Two Processes…  
Nonblocking Communications 

Additional checking and waiting functions for nonblockingexchange 

operations 

Collective and Point-to-Point Communications N. Novgorod, 2014 34 

MPI_Testall  - checking the termination of all the enumerated communication  

               operations 

MPI_Waitall  – waiting for the termination of all the enumerated communication  

               operations 

MPI_Testany  - checking the termination of at least one of the enumerated  

               communication operations 

MPI_Waitany  – waiting for the termination of any of the enumerated  

               communication operations 

MPI_Testsome - checking the termination of each enumerated communication  

               operation  

MPI_Waitsome - waiting for termination of at least one of the enumerated  

               communication operations and estimating the state of all the  

               operations 



Communications between Two Processes  
Simultaneous Sending and Receiving 

Efficient simultaneous execution of data sending and receiving 

operations may be provided by means of the following MPI function 

 

 

 

 

 

 

 In case when the messages are of the same type, MPI is able to 

use a single buffer 

 

Collective and Point-to-Point Communications N. Novgorod, 2014 35 

int MPI_Sendrecv(void *sbuf, int scount, MPI_Datatype stype, 

  int dest, int stag, void *rbuf, int rcount, MPI_Datatype rtype,  

  int src, int rtag, MPI_Comm comm, MPI_Status *status),  

 

- sbuf, scount, stype, dest, stag - the parameters of the transmitted message 

- rbuf, rcount, rtype, src, rtag  - the parameters of the received message 

- comm - the communicator, within of which the data communication is executed 

- status – the results of the operation execution 

int MPI_Sendrecv_replace(void *buf, int count,  

  MPI_Datatype type, int dest, int stag, int source,  

  int rtag, MPI_Comm comm, MPI_Status *status); 



Summary 

 

Collective data communication operations are considered 

The data communication between two processes are discussed 

The modes of operation execution, such as the standard, 

synchronous, buffered and ready ones, are described in detail 

Nonblocking data communications between the processes is 

discussed for every operation 

Examples of the MPI based parallel programs are presented 

 

N. Novgorod, 2014 Collective and Point-to-Point Communications 36 



Exercises 

 

Develop a sample program for each collective operation available 

in MPI. 

Develop the implementations of collective operations using point-

to-point communications. Carry out the computational experiments 

and compare the execution time of the developed programs to the 

functions of MPI for collective operations. 

Develop a program, carry out the experiments and compare the 

results for different algorithms of data gathering, processing and 
broadcasting (the function MPI_Allreduce()). 

N. Novgorod, 2014 Collective and Point-to-Point Communications 37 



References 

1. The internet resource, which describes the standard MPI: 

http://www.mpiforum.org 

2. One of the most widely used MPI realizations, the library MPICH, is presented 

on http://www.mpich.org  

3. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New 

York, NY: McGraw-Hill. 

4. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann. 

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. (1996). MPI: 

The Complete Reference. – MIT Press, Boston, 1996. 

6. Group, W., Lusk, E., Skjellum, A. (1999). Using MPI – 2nd Edition: Portable 

Parallel Programming with the Message Passing Interface (Scientific and 

Engineering Computation). – MIT Press. 

7. Group, W., Lusk, E., Thakur, R. (1999). Using MPI-2: Advanced Features of the 

Message Passing Interface (Scientific and Engineering Computation). – MIT 

Press. 

Collective and Point-to-Point Communications N. Novgorod, 2014 38 

http://www.mpiforum.org/
http://www.mpich.org/

