
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE

“ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

Sysoyev A.V.

Software department

03 Lecture

 Derived Data Types, Communicators and

Virtual Topologies

With the support of Microsoft

Parallel Programming for Multiprocessor Distributed Memory Systems

Contents

Derived Data Types in MPI

– Type Map

– The Methods of Constructing

– Declaring and Deleting

– Data Packing

Groups of Processes and Communicators

– Managing Groups

– Managing Communicators

Virtual Topologies

– Cartesian Topologies (Grids)

– Graph Topologies

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 3

DERIVED DATA TYPES IN MPI

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 4

Type Map

The Methods of Constructing

Declaring and Deleting

Data Packing

Derived Data Types in MPI…
Type Map

 In all the above considered examples it was assumed, that the

messages are a certain continuous vector of the elements of the

type predetermined in MPI

The data necessary to be transmitted may not be located close to

each other and may contain the values of different types

– The data may be transmitted using several messages (this method will

not be efficient because of accumulating the latencies of the number of

executed data communication operations)

– The data necessary to be transmitted can be packed into the format of

a continuous vector (in that case there are some excessive operations

of copying the data)

– Derived Data Type in MPI may be created to describe the placement

of data in memory

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 5

Derived Data Types in MPI…
Type Map

The derived data type in MPI is the description of a set of the

values of the predetermined MPI types, the described values are

not necessarily located continuously in the memory:

The type is set in MPI by means of the type map in the form of the

sequential descriptions of values included into the type, each

separate value is described by pointing to the type and the offset of

the location address from a certain origin address

The part of the type map, which contains only the types of values,

is called in MPI a type signature

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 6

TypeMap = {(type0, disp0), (type1, disp1), … , (typen-1, dispn-1)}

TypeSignature = {type0, type1, … , typen-1}

Derived Data Types in MPI…
Type Map

Example

Let the message include the following variable values

Suppose we know the addresses of variables a, b, n in memory

Then the derived type for the description of the data should have

the map of the following form

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 7

double a; /* address 24 */

double b; /* address 40 */

int n; /* address 48 */

{

 (MPI_DOUBLE, 0),

 (MPI_DOUBLE, 16),

 (MPI_INT, 24)

}

Derived Data Types in MPI…
Type Map

The following concepts is used in MPI for the derived data types

– The lower boundary of type

– The upper boundary of type

– The extent of type (the extent is the memory size in bytes, which

should be allocated for a derived type element)

– The size of the data type is the number of bytes that is required to

place a single value of this data type

– The difference between the values of the extent and the size is in the

approximation value needed for the address alignment

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 8

)(min)(
jj

dispTypeMaplb

))((max)(
jjj

typesizeofdispTypeMapub

)()()(TypeMaplbTypeMapubTypeMapextent

Derived Data Types in MPI…
Type Map

MPI provides the following functions for obtaining the values ofthe

extent and the type size

The lower and the upper boundaries of the types may be

determined by means of the following functions

The function of getting the address of the variable is essential in

constructing the derived types

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 9

int MPI_Type_extent(MPI_Datatype type, MPI_Aint *extent);

int MPI_Type_size(MPI_Datatype type, MPI_Aint *size);

int MPI_Address(void *location, MPI_Aint *address);

int MPI_Type_lb(MPI_Datatype type, MPI_Aint *disp);

int MPI_Type_ub(MPI_Datatype type, MPI_Aint *disp);

Derived Data Types in MPI…
The Methods of Constructing

The continuous method makes possible to define a continuous

set of the elements of some data type as a new derived type

The vector method provides creating a new derived type as a set

of elements of some available type. Between the elements there

may be regular memory intervals. The size of the intervals is

determined in the number of the elements of the initial type, while

in case of the h-vector method this size has to be set in bytes

The index method differs from the vector method as the intervals

between the elements of the type are irregular

The structural method provides the most general description of

the derived type by pointing directly to the type map of the created

data type

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 10

Derived Data Types in MPI…
The Vector Method

The new derived type is constructed in case of the vector method

as a number of blocks of the initial type elements. The blocks are

separated by the regular interval

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 11

int MPI_Type_vector(int count, int blocklen, int stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

- count – the number of blocks

- blocklen – the number of elements in each block

- stride – the number of elements between start of the two neighboring blocks

- oldtype - the initial data type

- newtype - the new determined data type

Derived Data Types in MPI…
The Vector Method

 If the interval size are determined in bytes instead of the initial type

elements, to construct the derived data type one can use the

following function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 12

int MPI_Type_hvector(int count, int blocklen,

 MPI_Aint stride, MPI_Datatype oldtype,

 MPI_Datatype *newtype);

Derived Data Types in MPI…
The Vector Method

The derived data types for the description of the subarray of the

multidimensional arrays can also be created by the function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 13

int MPI_Type_create_subarray(int ndims, int sizes[],

 int subsizes[], int starts[], int order,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

- ndims – the array dimension

- sizes – the number of elements in each dimension of the initial array

- subsizes – the number of elements in each dimension of the determined subarray

- starts – the indices of the initial elements in each dimension of the determined

 subarray

- order - the storage order for the subarray as well as the full array

 (MPI_ORDER_C, MPI_ORDER_FORTRAN)

- oldtype - the data type of the initial array elements

- newtype - the new data type for the description of the subarray

Derived Data Types in MPI…
The Index Method

The new determined data type is created as a set of blocks of

different sizes of the initial type elements. The memory locations of

the blocks are set by the offset with respect to the origin of the type

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 14

int MPI_Type_indexed(int count, int blocklens[],

 int offsets[], MPI_Datatype oldtype,

 MPI_Datatype *newtype);

- count – the number of blocks

- blocklen – the number of elements in each block

- offsets – the offset of each block from the start of the type

 (in number of the initial type elements)

- oldtype - the initial data type,

- newtype - the new determined data type

Derived Data Types in MPI…
The Index Method

 If the block offsets are defined in bytes instead of the initial type

elements, to construct the derived data type one can use the

following function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 15

int MPI_Type_indexed(int count, int blocklens[],

 MPI_Aint offsets[], MPI_Datatype oldtype,

 MPI_Datatype *newtype);

Derived Data Types in MPI…
The Index Method

Example

Constructing a type for the description of the upper triangle matrix

of n x n size

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 16

int *blocklens, *offsets;

MPI_Datatype UTMatrixType;

// memory allocation for blocklens and offsets

for (i = 0, i < n; i++)

{

 blocklens[i] = n - i;

 offsets[i] = i * n + i;

}

MPI_Type_indexed(n, blocklens, offsets, MPI_DOUBLE,

 &UTMatrixType);

Derived Data Types in MPI…
The Structural Method

This method is the most general constructing method for creating

the derived data type, when the corresponding type map is set

explicitly

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 17

int MPI_Type_struct(int count, int blocklens[],

 int offsets[], MPI_Datatype oldtypes[],

 MPI_Datatype *newtype);

- count – the number of blocks

- blocklen – the number of elements in each block

- offsets – the offset of each block from the start of the type

 (in number of the initial type elements)

- oldtype - the initial data type for each block separately

- newtype - the new determined data type

Derived Data Types in MPI…
Declaring and Deleting

The created data type should be committed before being used by

means of the following function

After the termination of its use, the derived type must be annulled

by means of the following function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 18

int MPI_Type_commit(MPI_Datatype *type);

int MPI_Type_free(MPI_Datatype *type);

Derived Data Types in MPI…
Data Packing

An explicit method of assembling and disassembling the

messages, which contain values of different types and are located

in different memory locations

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 19

int MPI_Pack(void *data, int count, MPI_Datatype type,

 void *buf, int bufsize, int *bufpos, MPI_Comm comm);

- data – the memory buffer with the elements to be packed

- count – the number of elements in the buffer

- type – the data type for the elements to be packed

- buf - the memory buffer for packing

- buflen – the buffer size in bytes

- bufpos – the position for the beginning of buffering (in bytes from the origin

 address of the buffer)

- comm - the communicator for the packed message

Derived Data Types in MPI…
Data Packing

The Scheme of Data Packing and Unpacking

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 20

 The data to be packed

а) data packing b) data unpacking

The packing buffer

bufpos

The data to be packed

The packing buffer

bufpos

MPI_Pack

The buffer for data unpacking

The buffer to be unpacked

bufpos

The data after

unpacking

The buffer to be unpacked

bufpos

MPI_Unpack

Derived Data Types in MPI…
Data Packing

To determine the buffer size necessary for packing, it is possible to

use the following function

To send the packed data the prepared buffer must be used in the
function MPI_Send() with the type MPI_PACKED,

After the receiving the message with the type MPI_PACKED, the

data may be unpacked by means of the following function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 21

MPI_Pack_size(int count, MPI_Datatype type, MPI_Comm comm,

 int *size);

int MPI_Unpack(void *buf, int bufsize, int *bufpos,

 void *data, int count, MPI_Datatype type, MPI_Comm comm);

Derived Data Types in MPI…
Data Packing

The function MPI_Pack() is called sequentially for packing all the

necessary data. Thus, if message is a set of variables a, b and n

 it is necessary to carry out the following operations in order to pack

the data

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 22

double a; /* address 24 */

double b; /* address 40 */

int n; /* address 48 */

bufpos = 0;

MPI_Pack(a,1,MPI_DOUBLE,buf,buflen,&bufpos,comm);

MPI_Pack(b,1,MPI_DOUBLE,buf,buflen,&bufpos,comm);

MPI_Pack(n,1,MPI_INT,buf,buflen,&bufpos,comm);

Derived Data Types in MPI…
Data Packing

To unpack the data It is necessary to carry out the following

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 23

bufpos = 0;

MPI_Unpack(buf,buflen,&bufpos,a,1,MPI_DOUBLE,comm);

MPI_Unpack(buf,buflen,&bufpos,b,1,MPI_DOUBLE,comm);

MPI_Unpack(buf,buflen,&bufpos,n,1,MPI_INT,comm);

Derived Data Types in MPI
Data Packing

This approach causes the additional operations of packing and

unpacking the data

This method may be justified, if the message sizes are

comparatively small and the message is packed/unpacked

sufficiently rarely

Packing and unpacking may prove to be useful, if buffers are

explicitly used for the buffered data communication method

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 24

GROUPS OF PROCESSES AND

COMMUNICATORS

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 25

Managing groups

Managing communicators

Groups of Processes and Communicators…
Managing Groups

Processes are united into groups. The group may contain all the

processes of a parallel program or a part of the available

processes only. The same process may belong to several groups

The groups of processes are formed in order to create

communicators on their basis

The groups of processes may be defined on the basis of the

available groups only. The group associated with some

communicator may be excluding by means of the following

function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 26

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group);

Groups of Processes and Communicators…
Managing Groups

New groups may be created on the basis of the existing groups

 It is possible to create a new group newgroup on the basis of the

group oldgroup, which includes n processes

– The ranks of the processes to be included in newgroup are

enumerated in the array ranks

– The ranks of the processes that have not to be included in

newgroup are enumerated in the array ranks

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 27

int MPI_Group_excl(MPI_Group oldgroup, int n, int ranks[],

 MPI_Group *newgroup);

int MPI_Group_incl(MPI_Group oldgroup, int n, int ranks[],

 MPI_Group *newgroup);

Groups of Processes and Communicators…
Managing Groups

New groups may also be created by the following operations:

– Creating a new group newgroup by uniting the groups group1 and

group2

– Creating a new group newgroup from the common processes of the

groups group1 and group2

– Creating a new group newgroup by the difference of the groups

group1 and group2

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 28

int MPI_Group_intersection(MPI_Group group1,

 MPI_Group group2, MPI_Group *newgroup);

int MPI_Group_union(MPI_Group group1, MPI_Group group2,

 MPI_Group *newgroup);

int MPI_Group_difference(MPI_Group group1,

 MPI_Group group2, MPI_Group *newgroup);

Groups of Processes and Communicators…
Managing Groups

The following MPI functions provide obtaining information of the

group of processes

– Obtaining the number of processes in the group

– Obtaining the rank of the current process in the group

After the termination of its use, the group must be deleted

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 29

int MPI_Group_rank(MPI_Group group, int *rank);

int MPI_Group_size(MPI_Group group, int *size);

int MPI_Group_free(MPI_Group *group);

Groups of Processes and Communicators…
Managing Communicators

A communicator in MPI is a specially designed control object,

which unites in its contents a group of processes and a number of

additional parameters (context), which are used in data

communication operations

This subsection discusses managing the intracommunicators,

which are used for data communication operation within a group of

processes

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 30

Groups of Processes and Communicators…
Managing Communicators

To create new communicators the two main methods are used

– The duplication of the available communicator

– The creation of a new communicator from the subset of the processes

of the available communicator

The operation of creating communicators is collective and must be

executed by all the initial communicator processes

After the termination of its use, the communicator should be

deleted

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 31

int MPI_Comm_dup(MPI_Comm oldcom, MPI_comm *newcomm);

int MPI_comm_create(MPI_Comm oldcom, MPI_Group group,

 MPI_Comm *newcomm);

int MPI_Comm_free(MPI_Comm *comm);

Groups of Processes and Communicators…
Managing Communicators

The following function provides a fast and useful method of

simultaneous creation of several communicators

The function MPI_Comm_split() should be called in each

process of the communicator oldcomm

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 32

int MPI_Comm_split(MPI_Comm oldcomm, int split, int key,

 MPI_Comm *newcomm)

- oldcomm – the initial communicator,

- split – the number of the communicator, to which the process should belong

- key – the rank order of the process in the communicator being created

- newcomm – the communicator being created

Groups of Processes and Communicators
Managing Communicators

The execution of the function MPI_Comm_split() leads to

separating the processes into disjoint groups

Each new group is formed from processes which have the same
values of the parameter split

On the basis of the created groups a set of communicators is

created

The order of enumeration for the process ranks is selected in such
a way that it corresponds to the order of the values key (the

process with the greater value key should have a higher rank)

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 33

VIRTUAL TOPOLOGIES

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 34

Cartesian Topologies (Grids)

Graph Topologies

Virtual Topologies…

The topology of a computer system is the structure of the network

nodes and communication links, which connect them. The

topology may be presented as a graph, where the vertices are the

system processors (processes), and the arcs correspond to the

available communication links (channels)

Point-to-point data communication operations may be executed for

any processes of the same communicator. All the processes of the

communicator participate in collective operations. In this respect,

the logical topology of the communication links in a parallel

program is a complete graph

We may organize the logical presentation of any necessary virtual

topology. For this purpose it is sufficient to form additional process

addressing

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 35

Virtual Topologies…
Cartesian Topologies (Grids)

Cartesian topologies assume the presentation of a set of

processes as a rectangular grid and the use of Cartesian

coordinate system for pointing to the processes

The following function is used for creating the Cartesian topology

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 36

int MPI_Cart_create(MPI_Comm oldcomm, int ndims, int *dims,

 int *periods, int reorder, MPI_Comm *cartcomm);

- oldcomm - the initial communicator

- ndims - the Cartesian grid dimension

- dims - the array of ndims length, it defines the number of processes in each

 dimension of the grid

- periods - the array of ndims length, which defines whether the grid is

 periodical along each dimension

- reorder - the parameter for pointing out if the process ranks can be reordered

- cartcomm – the communicator being created with the Cartesian process topology

Virtual Topologies…
Cartesian Topologies (Grids)

 In order to determine the Cartesian process coordinates according

to its rank, the following function can be used

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 37

int MPI_Card_coords(MPI_Comm comm, int rank, int ndims,

 int *coords);

- comm – the communicator with grid topology

- rank - the rank of the process, for which Cartesian coordinates are determined

- ndims - the Cartesian grid dimension

- coords - the Cartesian process coordinates calculated by the function

Virtual Topologies…
Cartesian Topologies (Grids)

The reverse operation, i.e. determining the process rank according

to its Cartesian coordinates, is provided by means of the following

function

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 38

int MPI_Cart_rank(MPI_Comm comm, int coords[], int *rank);

- comm – the communicator with grid topology

- coords - the Cartesian coordinates of the process

- rank - the process rank calculated by the function

Virtual Topologies…
Cartesian Topologies (Grids)

The procedure of splitting the grids into subgrids of smaller

dimension, which is useful in many applications, is provided by the

following function

The function MPI_Cart_sub() defines, while it is being carried

out, the communicators for each combination of the coordinates of

the fixed dimensions of the initial grid

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 39

int MPI_Card_sub(MPI_Comm comm, int subdims[],

 MPI_Comm *newcomm);

- comm - the initial communicator with grid topology

- subdims – the array for pointing the subgrid coordinates that can vary

- newcomm - the created communicator with the subgrid

Virtual Topologies…
Cartesian Topologies (Grids)

The additional function MPI_Cart_shift() provides the support

of shift communications along a grid dimension

– The cyclic shift on k elements along the grid dimension. The data

from the process i is transmitted to the process (i+k) mod n, where n is

the size of the dimension, along which the shift is performed

– The linear shift on k positions along the grid dimension. In this variant

of the operation the data from the processor i is transmitted to the

processor i+k (if the latter is available)

The function MPI_Cart_shift() only determines the rank of the

processes, which are to exchange data in the course of shift

operation. The execution of data transmission may be carried out,
for instance, by means of the function MPI_Sendrecv()

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 40

Virtual Topologies…
Cartesian Topologies (Grids)

The function MPI_Cart_shift() provides obtaining the ranks of

the processes, which are to exchange the data with the current

process (the process, which has called up the function
MPI_Cart_shift()):

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 41

int MPI_Card_shift(MPI_Comm comm, int dir, int disp,

 int *source, int *dst);

- comm – the communicator with grid topology

- dir - the number of the dimension, along which the shift is performed

- disp - the shift value (<0 – the shift towards the beginning of the dimension)

- source – the rank of the process, from which the data should be obtained

- dst - the rank of the process, to which the data should be sent

Virtual Topologies…
Graph Topology

To create a communicator with the graph topology the following

function is intended in MPI

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 42

int MPI_Graph_create(MPI_Comm oldcomm, int nnodes,

 int index[], int edges[], int reorder,

 MPI_Comm *graphcomm);

- oldcomm - the initial communicator

- nnodes - the number of the graph vertices

- index - the number of the arcs proceeding from each vertex

- edges - the sequential list of the graph arcs

- reorder - the flag for pointing out if the process ranks can be reordered

- graphcomm – the created communicator with the graph type topology

Virtual Topologies…
Graph Topology

Example

The number of processes is equal to 5, the graph vertices orders

are (4,1,1,1,1), and the incidence matrix looks as follows

To create the topology with the graph of this type, it is necessary to

perform the following program code

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 43

int index[] = { 4,1,1,1,1 };

int edges[] = { 1,2,3,4,0,0,0,0 };

MPI_Comm StarComm;

MPI_Graph_create(MPI_COMM_WORLD,5,index,edges,1,&StarComm);

0

2

1

4

3

Processes Communication Lines

 0 1,2,3,4

 1 0

 2 0

 3 0

 4 0

Virtual Topologies…
Graph Topology

The number of the neighboring processes, which contain the

outgoing arcs from the current process, may be obtained by the

following function

Obtaining the ranks of the neighboring vertices is provided by the

following function

 (where mneighbors is the size of the array neighbors)

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 44

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank,

 int *nneighbors);

int MPI_Graph_neighbors(MPI_Comm comm, int rank,

 int mneighbors, int *neighbors);

Summary

The use of derived data types in MPI is discussed

Group and communicator management are considered

Virtual topologies are overviewed

N. Novgorod, 2014 Derived Data Types, Communicators and Virtual Topologies 45

Exercises

Develop a sample program for each method of constructing the

derived data types available in MPI

Develop a sample program using data packing and unpacking

functions. Carry out the experiments and compare the results to

the results obtained in case of the use of the derived data types

Develop the derived data types for the rows, columns and

diagonals of matrices

Develop a sample program for the Cartesian topology

Develop a sample program for a graph topology

Develop subprograms for creating a set of additional virtual

topologies (a star, a tree, etc.)

N. Novgorod, 2014 Derived Data Types, Communicators and Virtual Topologies 46

References

1. The internet resource, which describes the standard MPI:

http://www.mpiforum.org

2. One of the most widely used MPI realizations, the library MPICH, is presented

on http://www.mpich.org

3. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New

York, NY: McGraw-Hill.

4. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. (1996). MPI:

The Complete Reference. – MIT Press, Boston, 1996.

6. Group, W., Lusk, E., Skjellum, A. (1999). Using MPI – 2nd Edition: Portable

Parallel Programming with the Message Passing Interface (Scientific and

Engineering Computation). – MIT Press.

7. Group, W., Lusk, E., Thakur, R. (1999). Using MPI-2: Advanced Features of the

Message Passing Interface (Scientific and Engineering Computation). – MIT

Press.

Derived Data Types, Communicators and Virtual Topologies N. Novgorod, 2014 47

http://www.mpiforum.org/
http://www.mpich.org/

