
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE

“ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

Sysoyev A.V.

Software department

07 Practice

Parallel Algorithms of Solving

the Linear Equation Systems

With the support of Microsoft

Parallel Programming for Multiprocessor Distributed Memory Systems

Contents

The Problem Statement of Solving the Linear Equation Systems

Gauss Algorithm Studying

Serial Implementation

Parallel Algorithm

Parallel Program

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 3

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 4

THE PROBLEM STATEMENT

OF SOLVING THE LINEAR EQUATION

SYSTEMS

Step 1. Problem Statement…

Linear equation with n independent unknowns

Set of n linear equations is termed a system of linear equations or

a linear system

 In matrix form

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 5

bxaxaxa
nn

 111100

...

0 ,0 0 0 ,1 1 0 , 1 1 0

1,0 0 1,1 1 1, 1 1 1

1,0 0 1,1 1 1, 1 1 1

...

...

...

...

n n

n n

n n n n n n

a x a x a x b

a x a x a x b

a x a x a x b

Ax b

Step 1. Problem Statement

The problem of solving a system of linear equation for the given

matrix A and the vector b is considered to be the problem of

searching the value of unknown vector x whereby all the system

equations hold

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 6

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 7

GAUSS ALGORITHM STUDYING

Step 2. Gauss Algorithm Studying…

The main concept of the method is a modification of matrix A by

means of equivalent transformations to a triangle form

After that the values of the desired unknown variables may be

obtained directly in an explicit form

Equivalent transformations:

– the multiplication of any equation by a nonzero constant

– the permutation of equations

– the addition of any system equation to other equation

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 8

Step 2. Gauss Algorithm Studying…

At the first stage (the Gaussian elimination stage) the initial

system of linear equations is reduced to the upper triangle form

with the use of sequential elimination of unknowns

At the back substitution (the second stage of the algorithm) the

values of unknown variables are determined

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 9

,cxU

0 ,0 0 ,1 0 , 1

1,1 1, 1

1, 1

...

0 ...

...

0 0 ...

n

n

n n

u u u

u u
U

u

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 10

SERIAL IMPLEMENTATION

Step 3. Serial Implementation…

Task 1 – Open the Project SerialGauss

Task 2 – Input the Matrix and Vector Sizes

Task 3 – Input the Initial Data

Task 4 – Terminate the Program Execution

Task 5 – Implement the Gaussian Elimination

Task 6 – Implement the Back Substitution

Task 7 – Carry out Computational Experiments

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 11

Step 3. Serial Implementation…

Task 1 – Open the Project SerialGauss

Start Microsoft Visual Studio

Open solution SerialGauss.sln from the folder

с:\ParLabs\SerialGauss

Open file SerialGauss.cpp in the window Solution Explorer

(Ctrl+Alt+L)

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 12

Step 3. Serial Implementation…

Task 1 – Open the Project SerialGauss

Next variables will be used in the program

The program code, which follows the declarations of the variables,

is the output of the initial message and the waiting for pressing any

key before the application exit

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 13

double* pMatrix; // The matrix of linear system

double* pVector; // The right parts of the linear system

double* pResult; // The result vector

int Size; // Sizes of the initial matrix and the vector

 printf("Serial Gauss algorithm for solving linear

systems\n");

 getch();

Step 3. Serial Implementation…

Task 2 – Input the Matrix and Vector Sizes

 In order to input the initial data of the Gauss algorithm implement
the function ProcessInitialization()

– determine the sizes of the objects

– allocate the memory for the objects involved in multiplication

(pMatrix, pVector and pResult)

– sets the values of the initial matrix and vector elements

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 14

// Function for process initialization

void ProcessInitialization(double* &pMatrix,

 double* &pVector, double* &pResult, int &Size);

Step 3. Serial Implementation…

Task 2 – Input the Matrix and Vector Sizes

Determine the sizes of the objects with correct input control

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 15

// Function for process initialization

void ProcessInitialization(double* &pMatrix,

 double* &pVector, double* &pResult, int &Size) {

 // Setting the size of the initial matrix and the vector

 do {

 printf("\nEnter size of the initial objects: ");

 scanf("%d", &Size);

 printf("\nChosen objects’ size = %d", Size);

 if (Size <= 0)

 printf("\nSize of objects must be greater than 0!\n");

 } while (Size <= 0);

}

Step 3. Serial Implementation…

Task 2 – Input the Matrix and Vector Sizes

Add the call of the function ProcessInitialization() to the

main() function after the initial message line

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 16

void main() {

 double* pMatrix; // Initial matrix

 double* pVector; // Initial vector

 double* pResult; // Result vector

 int Size; // Sizes of initial matrix and vector

 printf("Serial Gauss algorithm for solving linear

systems\n");

 // Process initialization

 ProcessInitialization(pMatrix, pVector, pResult, Size);

 getch();

}

Step 3. Serial Implementation…

Task 2 – Input the Matrix and Vector Sizes

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 17

Step 3. Serial Implementation…

Task 3 – Input the Initial Data

Memory allocation

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 18

// Function for process initialization

void ProcessInitialization(double* &pMatrix,

 double* &pVector, double* &pResult, int &Size) {

 // Setting the size of the initial matrix and the vector

 <…>

 // Memory allocation

 pMatrix = new double[Size*Size];

 pVector = new double[Size];

 pResult = new double[Size];

}

Step 3. Serial Implementation…

Task 3 – Input the Initial Data

 Implement the function DummyDataInitialization() to set

the matrices elements by the following template

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 19

// Function for simple initialization of the matrix

// and the vector elements

void DummyDataInitialization (double* pMatrix,

 double* pVector, int Size);

1 0 0 0 1

1 1 0 0 2
,

1 1 1 0 3

1 1 1 1 4

pM atrix pVector

Step 3. Serial Implementation…

Task 3 – Input the Initial Data

Call the function DummyDataInitialization() after allocating

memory inside the function ProcessInitialization()

Print out the matrix pMatrix and the vector pVector in the main

function after calling the function ProcessInitialization()

Use of the formatted matrix output function PrintMatrix() and

formatted vector output function PrintVector(), which was

developed in the Practice 05

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 20

Step 3. Serial Implementation…

Task 3 – Input the Initial Data

Compile and run the application

Check the correctness of data input

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 21

Step 3. Serial Implementation…

Task 4 – Terminate the Program Execution

The function for correct program termination
ProcessTermination()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 22

// Function for computational process termination

void ProcessTermination(double* pMatrix,

 double* pVector, double* pResult) {

 delete [] pMatrix;

 delete [] pVector;

 delete [] pResult;

}

Step 3. Serial Implementation…

Task 4 – Terminate the Program Execution

The function ProcessTermination() should be called at the

end of the function main()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 23

 // Memory allocation and data initialization

 ProcessInitialization(pMatrix, pVector, pResult, Size);

 // Matrix and vector output

 printf("Initial Matrix \n");

 PrintMatrix(pMatrix, Size, Size);

 printf("Initial Vector \n");

 PrintVector(pVector, Size);

 // Process termination

 ProcessTermination(pMatrix, pVector, pResult);

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

To solve the linear equation system by means of the Gauss
algorithm develop the function SerialResultCalculation()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 24

// Function for the execution of Gauss algorithm

void SerialResultCalculation(double* pMatrix,

 double* pVector, double* pResult, int Size) {

 // Gaussian elimination

 SerialGaussianElimination(pMatrix, pVector, Size);

 // Back substitution

 SerialBackSubstitution(pMatrix, pVector, pResult, Size);

}

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

Declare two array variables

– pSerialPivotPos – to store the order of choosing the pivot rows

– pSerialPivotIter – to store the number of the iteration where

the row with the number i was chosen as the pivot one

Add memory allocation for declared array and initialize their

elements

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 25

int* pSerialPivotPos;

int* pSerialPivotIter;

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

 It is necessary to determine the pivot matrix row at each iteration

 Implement the function FindPivotRow()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 26

// Finding the pivot row

int FindPivotRow(double* pMatrix, int Size, int Iter) {

 int PivotRow = -1; // Index of the pivot row

 double MaxValue = 0; // Value of the pivot element

 // Choose the row, that stores the maximum element

 for (i=0; i<Size; i++)

 if ((pSerialPivotIter[i] == -1) &&

 (fabs(pMatrix[i*Size+Iter]) > MaxValue))) {

 PivotRow = i;

 MaxValue = fabs(pMatrix[i*Size+Iter]);

 }

 return PivotRow;

}

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

Add the call of the function FindPivotRow() to the function,

which carries out the Gaussian elimination –
SerialGaussianElimination()

Store the obtained value in corresponding element of the array
pPivotPos

Print the numbers of the selected pivot rows to check the

computation correctness

Comment the call of the function SerialBackSubstitution()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 27

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

Add the call of the function SerialResultCalculation() to

the main function

Compile the application and run. Make sure that the pivot rows are

chosen correctly (marked by the red color in example)

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 28

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

After selecting the pivot rows, these rows multiplied by the

corresponding multipliers are subtracted from the rows, which

have not yet been chosen as the pivot ones

To carry out the subtraction develop the function
SerialColumnElimination()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 29

// Column elimination

void SerialColumnElimination(double* pMatrix,

 double* pVector, int Pivot, int Iter, int Size);

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

 Implement the function SerialColumnElimination()

Call the function SerialColumnElimination() on each

iteration of Gauss Elimination

Print out the matrix after all iterations using the function
PrintMatrix()

Compile and run the application

Make sure that the Gaussian elimination is executed correctly

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 30

Step 3. Serial Implementation…

Task 5 – Implement the Gaussian Elimination

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 31

Step 3. Serial Implementation…

Task 6 – Implement the Back Substitution

 Implement the function SerialBackSubstitution() to execute

the back substitution

Uncomment the call of the function
SerialBackSubstitution() in the function

SerialResultCalculation()

Print out the matrix and result vector

Make sure all the result vector elements must be equal to 1

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 32

// Back substution

void SerialBackSubstitution(double* pMatrix,

 double* pVector, double* pResult, int Size);

Step 3. Serial Implementation…

Task 6 – Implement the Back Substitution

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 33

Step 3. Serial Implementation

Task 7 – Carry out the Computational Experiments

Develop the function RandomDataInitialization() for setting

the data with random values (initialize the random generator by the

current time value)

Call this function instead of the function
DummyDataInitialization()

Add time measurement and printing

Carry out the computational experiments with large objects

Fill the table with results of experiments

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 34

// Function for random initialization of object elements

void RandomDataInitialization(double* pMatrix,

 double* pVector, int Size);

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 35

PARALLEL ALGORITHM

Step 4. Parallel Algorithm…

Subtask definition

All the computations are reduced to the same computational

operations on the rows of the coefficient matrix of the linear

equation system

The data parallelism principle may be applied as the basis of the

Gauss algorithm parallel implementation

All the computations connected with processing a row of the matrix

A and the corresponding element of the vector b may be taken as

the basic computational subtask

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 36

Step 4. Parallel Algorithm…

Analysis of Information Dependencies

Each iteration with number i of the Gaussian elimination stage

includes the following stages

– The pivot row selection – the subtasks with the numbers k, k > i,

should exchange their coefficients of the eliminated variable xi
 for the

maximum value search

– Broadcast – the pivot subtask has to broadcast its pivot row of the

matrix A and the corresponding element of the vector b to all the other

subtasks with the numbers k, k > i

– Subtraction – after receiving the pivot row the subtasks perform the

subtraction of rows

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 37

Step 4. Parallel Algorithm…

Analysis of Information Dependencies

During the execution of the back substitution the subtasks perform

the necessary computations for calculating the value of the

unknowns

– As soon as some subtask i, 0 ≤ i < n-1, determines the value of its

variable xi, this value must be broadcasting to all the subtasks with the

numbers k, k < i

– After communications the subtasks substitute the variables xi
 for the

obtained value and modify the elements of the vector b.

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 38

Step 4. Parallel Algorithm

Scaling and Distributing the Subtask among the Processors

When the number of processors p is less than the number of basic

subtasks m (p < n), we can combine the basic subtasks in such a

way that each processor would execute several of these tasks

One-to-all broadcast is the main form of the information

communication of the subtasks

The data transmission network topology must be a hypercube or a

complete graph in order to implement the desired information

communications among the basic subtasks efficiently

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 39

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 40

PARALLEL PROGRAM

Step 5. Parallel Program…

Task 1 – Open the Project ParallelGauss

Task 2 – Input the Initial Data

Task 3 – Terminate the Parallel Program

Task 4 – Distribute the Data among the Processes

Task 5 – Implement the Gaussian Elimination

Task 6 – Implement the Back Substitution

Task 7 – Gather the Result

Task 8 – Test the Parallel Program Correctness

Task 9 – Carry out the Computational Experiments

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 41

Step 5. Parallel Program…

Task 1 – Open the Project ParallelGauss

Start Microsoft Visual Studio

Open solution ParallelGauss.sln from the folder

с:\ParLabs\ParallelGauss

Open file ParallelGauss.cpp in the window Solution Explorer

(Ctrl+Alt+L)

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 42

Step 5. Parallel Program…

Task 1 – Open the Project ParallelMatrixMult

The project contains the following functions

– DummyDataInitialization() – simple data initialization

– RandomDataInitialization() – random data initialization

– SerialResultCalculation() – serial algorithm implementation

– PrintMatrix(), PrintVector() – matrix and vector printing

main() function contains declarations of variables ProcNum,
ProcRank, pMatrix, pVector, pResult, Size

The environment of the MPI program is initialized, number of
processes ProcNum and the rank of each process ProcRank is

determined

Compile and run the applications. Make sure that the initial
message is output into the command console
"Parallel Gauss algorithm for solving linear systems"

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 43

Step 5. Parallel Program…

Task 2 – Input the Initial Data

Determine the variables for storing the blocks and the block sizes

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 44

double *pProcRows; // The rows of matrix A on the process

double *pProcVector; // The elements of vector b

 // on the process

double *pProcResult; // The elements of vector x

 // on the process

int RowNum; // The Number of the matrix rows on

 // the current process

Step 5. Parallel Program…

Task 2 – Input the Initial Data

Develop the function ProcessInitialization()

– Input the matrix size and the vector size (on the root process)

– Broadcast sizes

– Calculate the number of matrix rows, which will be processed by a

given process

– Allocate the memory for storing the matrix, the vectors and their blocks

– Generate the initial matrix and vector elements

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 45

void ProcessInitialization(double* &pMatrix,

 double* &pVector, double* &pResult, double* &pProcRows,

 double* &pProcVector, double* &pProcResult, int &Size,

 int &RowNum);

Step 5. Parallel Program…

Task 2 – Input the Initial Data

 Implement the function ProcessInitialization()

Call the function from the main function of application

To control the correctness of the initial data input use the function
of the formatted matrix output PrintMatrix() and the vector

PrintVector()

Print out the linear equation system matrix and the right part vector

on the root process

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 46

Step 5. Parallel Program…

Task 2 – Input the Initial Data

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 47

Step 5. Parallel Program…

Task 3 – Terminate the Parallel Program

Modify the function for correct program termination
ProcessTermination()

Deallocate the memory for storing the initial matrix pMatrix (on

the root process), and the memory for storing the initial vector
pVector, the result vector pResult, matrix stripe pProcRows,

the blocks of the right part vector pProcVector and the result

vector block pProcResult

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 48

// Function for computational process termination

void ProcessTermination(double* pMatrix, double* pVector,

 double* pResult, double* pProcRows, double* pProcVector,

 double* pProcResult);

Step 5. Parallel Program…

Task 4 – Distribute the Data among the Processes

 In accordance with the parallel computation scheme the system of
linear equations must be distributed among the processes in
horizontal stripes (divided into continuous sequences of rows)

To distribute the matrix pMatrix and the vector pVector use the
function MPI_Scatterv()

 Implement the function DataDistribution()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 49

// Data distribution among the processes

void DataDistribution(double* pMatrix, double* pProcRows,

 double* pVector, double* pProcVector, int Size,

 int RowNum);

Step 5. Parallel Program…

Task 4 – Distribute the Data among the Processes

Call the function DataDistribution() from the main program

To test the correctness of the data distribution among the

processes implement the “debugging print” function
TestDistribution()

– Print the initial matrix pMatrix and vector pVector on the root

process

– Print the matrix stripes and the vector blocks, which are distributed on

each of the processes

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 50

// Function for testing the data distribution

void TestDistribution (double* pMatrix, double* pVector,

 double* pProcRows, double* pProcVector, int Size,

 int RowNum);

Step 5. Parallel Program…

Task 4 – Distribute the Data among the Processes

Make sure that the data is distributed correctly

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 51

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

The computational scheme of the Gauss algorithm consists of the

two stages: the Gaussian elimination and the back substitution

 Implement the ParallelResultCalculation() function

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 52

// Function for execution of the parallel Gauss algorithm

void ParallelResultCalculation(double* pProcRows,

 double* pProcVector, double* pProcResult, int Size,

 int RowNum) {

 // Gaussian elimination

 ParallelGaussianElimination(pProcRows, pProcVector, Size,

 RowNum);

 // Back substitution

 ParallelBackSubstitution(pProcRows, pProcVector,

 pProcResult, Size, RowNum);

}

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

To develop the parallel version of Gauss algorithm we will need
two auxiliary arrays pParallelPivotPos and pProcPivotIter

Allocate the memory for storing these objects before the execution

of the parallel Gauss method stages in the function
ParallelResultCalculation() function and initialize them

Deallocate the memory After the termination of the back

substitution

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 53

// The number of rows selected as the pivot ones

int *pParallelPivotPos;

// The number of iterations, at which the processor rows

// were used as the pivot ones

int *pProcPivotIter;

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

To reduce the matrix of the linear equation system to the upper

triangle form using equivalent transformations implement the
function ParallelGaussianElimination()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 54

// Gaussian elimination

void ParallelGaussianElimination(double* pProcRows,

 double* pProcVector, int Size, int RowNum);

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

The function ParallelGaussianElimination()

– Select the local pivot rows on each process

– Choose the maximum element among the obtained pivot elements and

determine, at which process it is located. Use the function

MPI_Allreduce()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 55

int MPI_AllReduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype type, MPI_Op op, MPI_Comm comm);

- sendbuf – memory buffer with the transmitted message

- recvbuf – memory buffer with the resulting message (only for the root

 process)

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- op - the operation, which should be carried out over the data

- comm - the communicator, within of which the operation is executed

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

The function ParallelGaussianElimination()

– Broadcast the pivot row

– Carry out the subtraction of rows on each process

 Implement the subtraction with the help of the function
ParallelEliminateColumns()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 56

// Fuction for column elimination

void ParallelEliminateColumns(double* pProcRows,

 double* pProcVector, double* pPivotRow, int Size,

 int RowNum, int Iter);

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

 Implement the function ParallelEliminateColumns()

Call the function ParallelEliminateColumns() on each

iteration of Gauss Elimination

Call the function ParallelResultCalculation() from the

main function of the application

To check the correctness of executing the Gaussian elimination,
call the function TestDistribution()

Compile and run the application

Make sure the developed functions are operated correctly

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 57

Step 5. Parallel Program…

Task 5 – Implement the Gaussian Elimination

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 58

Step 5. Parallel Program…

Task 6 – Implement the Back Substitution

The processes carry out the calculations necessary for obtaining

the values of the unknown variables

As soon as any process determines the value of its variable, this

variable must be broadcast to all the processes

The processes substitute the obtained value of the new unknown

variable and correct the values for the elements of the right part

vector

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 59

Step 5. Parallel Program…

Task 6 – Implement the Back Substitution

The back substitution execution consists of Size iterations

At each iteration it is necessary to determine the row, which makes
possible to calculate the value of the next result vector element

– The row number is stored in the array pParallelPivotIter

– Using the row number determine the number of process, where the
row is stored, and the number of the row in the stripe pProcRows of

the process

 Implement the function FindBackPivotRow()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 60

// Function to find the pivot row of the back substitution

void FindBackPivotRow(int RowIndex, int Size,

 int &IterProcRank, int &IterPivotPos);

Step 5. Parallel Program…

Task 6 – Implement the Back Substitution

 Implement the functions FindBackPivotRow() and

ParallelBackSubstitution()

After the execution of the parallel Gauss algorithm, print the result

vector blocks on each parallel process

Compile and run the application

Test the correctness of the program execution

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 61

Step 5. Parallel Program…

Task 7 – Gather the Result

After the execution of the back substitution of the Gauss algorithm

the result vector blocks are located on each process

 It is necessary to collect the result vector on the root process

 Implement the function ResultCollection()

Use the function MPI_Gatherv()

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 62

// Function for gathering the result vector

void ResultCollection(double* pProcResult,

 double* pResult) {

 // Gathering the result vector on the pivot processor

 MPI_Gatherv(pProcResult, pProcNum[ProcRank],

 MPI_DOUBLE, pResult, pProcNum, pProcInd, MPI_DOUBLE,

 0, MPI_COMM_WORLD);

}

Step 5. Parallel Program…

Task 7 – Gather the Result

Add the call of the function for gathering the result vector into the

main function of the application

 Implement the function PrintResultVector() to print the

result vector

– the order of the unknowns in pResult vector is the same with the

order of pivot rows selection

– this order is stored in the pParallelPivotPos array

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 63

// Function for formatted result vector output

void PrintResultVector(double* pResult, int Size) {

 int i;

 for (i=0; i<Size; i++)

 printf("%7.4f ", pResult[pParallelPivotPos[i]]);

}

Step 5. Parallel Program…

Task 7 – Gather the Result

Add the call of the function ResultCollection() to the main

function of the application

Compile and run the application

Check the correctness of the algorithm execution: if the function
DummyDataInitialization() is used to generate the initial

data, all the result vector elements must be equal to 1

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 64

Step 5. Parallel Program…

Task 8 – Test the Parallel Program Correctness

To test the correctness of the program execution develop the
function TestResult().

 It will perform the multiplication of the linear system matrix by the
vector of unknowns, that has been obtained by the means of
Gauss method

The result of the multiplication will be stored in the variable
pRightPartVector. Then, the function will compare the vector
of right parts pVector and the result of multiplication
pRightPartVector element by element

The result of the function is the print of the diagnostic message

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 65

Step 5. Parallel Program…

Task 8 – Test the Parallel Program Correctness

Comment on the calls of the functions, using the debugging print,

which have been previously used

 Implement the function TestResult() and call it in main program

 Instead of the function DummyDataInitialization(), call the

function RandomDataInitialization()

Compile and run the application

Set various amounts of the initial data

Make sure that the application is functioning properly

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 66

Step 5. Parallel Program

Task 9 – Carry out the Computational Experiments

Determine the parallel algorithm execution time

Carry out the computational experiments with large objects

Determine the given speedup

Fill the table with results of experiments

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 67

Summary

Parallel Gauss method of solving the linear equation systems is

considered

Serial and parallel Gauss algorithm are implemented

Computational experiments are performed, comparison of serial

and parallel algorithms is made

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 68

Exercises

Study the conjugate gradient method of solving the linear equation

systems

Develop the serial and the parallel variants of the method

N. Novgorod, 2014 Parallel Algorithms of Solving the Linear Equation Systems 69

References

1. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V. (1999). Numerical

Linear Algebra for High Performance Computers (Software, Environments,

Tools). Soc for Industrial & Applied Math.

2. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New

York, NY: McGraw-Hill.

3. Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel

Computing. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn.,

2003)

4. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

5. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and

Tools for Software Engineering. Reading, MA: Addison-Wesley.

Parallel Algorithms of Solving the Linear Equation Systems N. Novgorod, 2014 70

