
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE

“ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

Sysoyev A.V.

Software department

08 Practice

Parallel Algorithms of Graph Processing

With the support of Microsoft

Parallel Programming for Multiprocessor Distributed Memory Systems

Contents

The Shortest Path Problem Statement

Serial Floyd Algorithm Implementation

Parallel Floyd Algorithm

Parallel Floyd Program

Parallel Algorithms of Graph Processing N. Novgorod, 2014 3

Parallel Algorithms of Graph Processing N. Novgorod, 2014 4

THE SHORTEST PATH PROBLEM

STATEMENT

Step 1. Problem Statement…

Let G be a graph

 V – the set of vertices

 R – the set of arcs

Generally, the arcs may be assigned certain numerical

characteristics (weights)

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 5

),,(RVG

niv
i

1,

mjvvr
jj tsj

 1),,(

mjw
j

1,

Step 1. Problem Statement…

Example of the Weighted Oriented Graph

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 6

0

2

1

4

5

3

1
5

2

1
0

4

2

3
7

1

8

Step 1. Problem Statement…

Presenting dense graphs, almost all the nodes of which are linked

by arcs (i.e. m n2), may be efficiently described by means of the

adjacency matrix

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 7

,,1),(njiaA
ij

 ,

,),(

.,

,0

),,(

ji

Rvv

иначе

если

еслиvvw

a

jiji

ij

Step 1. Problem Statement…

The Adjacency Matrix

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 8

0

2

1

4

5

3

1
5

2

1
0

4

2

3
7

1

8

0 3 2 7

0

8 0 1 4

0 1

2 0 5

1 0

Step 1. Problem Statement…

The problem of searching the shortest paths

The initial information for the problem is the weighted graph

Each arc of the graph is assigned non-negative weight

The graph is assumed to be oriented

The problem is to find out the shortest paths among all the pairs of

destination vertices for the given graph G

As a method for solving the problem, we will further use Floyd

algorithm

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 9

Step 1. Problem Statement

Generally, the algorithm may be presented in the following way

The complexity of the Floyd algorithm is of n3 order

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 10

// Serial Floyd algorithm

for (k = 0; k < n; k++)

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 A[i,j] = min(A[i,j],A[i,k]+A[k,j]);

Parallel Algorithms of Graph Processing N. Novgorod, 2014 11

SERIAL FLOYD ALGORITHM

IMPLEMENTATION

Step 2. Serial Implementation…

Task 1 – Open the project SerialFloyd

Task 2 – Input the Number of Vertices

Task 3 – Terminate the Program Execution

Task 4 – Implement the Floyd Algorithm

Task 5 – Carry out the Computational Experiments

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 12

Step 2. Serial Implementation…

Task 1 – Open the project SerialFloyd

Start Microsoft Visual Studio

Open solution ParallelGauss.sln from the folder

с:\ParLabs\SerialFloyd

Open file SerialFloyd.cpp in the window Solution Explorer

(Ctrl+Alt+L)

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 13

Step 2. Serial Implementation…

Task 2 – Input the Number of Vertices

To set the initial data of the serial Floyd algorithm develop the
function ProcessInitialization()

This function is intended for

– the initialization of all the variables used in the program

– the input of the number of the processed vertices (the adjacency

matrix size)

– the allocation of the memory for the adjacency matrix

– filling the memory with the initial values

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 14

// Function for process initialization

void ProcessInitialiazation(int *&pMatrix, int& Size);

Step 2. Serial Implementation…

Task 2 – Input the Number of Vertices

 Implement the functions DummyDataInitialization()

Use the simple method of implementation, containing the set of

data, the correctness of which can be easily checked

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 15

// Function for simple setting the initial data

void DummyDataInitialization(int *pMatrix, int Size);

0113

1012

1101

3210

n

1

4

2

3

0

5

...

1

2

3

4
5

n

Step 2. Serial Implementation…

Task 2 – Input the Number of Vertices

Develop the function ProcessInitialization(),

DummyDataInitialization() and PrintMatrix()

Call the functions ProcessInitialization() and

PrintMatrix() from main function of the application

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 16

Step 2. Serial Implementation…

Task 3 –Terminate the Program Execution

The function for correct program termination
ProcessTermination()

The function ProcessTermination() should be called at the

end of the function main()

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 17

// Function for computational process termination

void ProcessTermination(int *pMatrix);

Step 2. Serial Implementation…

Task 4 – Implement the Floyd Algorithm

To execute the Floyd algorithm develop the function
SerialFloyd()

The value -1 has been chosen to denote the infinitely. Implement
the function Min()

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 18

// Serial Floyd algorithm

void SerialFloyd(int *pMatrix, int Size);

int Min(int A, int B) {

 int Result = (A < B) ? A : B;

 if((A < 0) && (B >= 0)) Result = B;

 if((B < 0) && (A >= 0)) Result = A;

 if((A < 0) && (B < 0)) Result = -1;

 return Result;

}

Step 2. Serial Implementation…

Task 4 – Implement the Floyd Algorithm

 Implement the function SerialFloyd()

Add debugging print to the function main()

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 19

Step 2. Serial Implementation

Task 5 – Carry out the Computational Experiments

Develop the function RandomDataInitialization() for setting

the data with random values (initialize the random generator by the

current time value)

Call this function instead of the function
DummyDataInitialization()

Add time measurement and printing

Carry out the computational experiments with large objects

Fill the table with results of experiments

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 20

// Function for random generating the initial data

void RandomDataInitialization(int *pMatrix, int Size);

Parallel Algorithms of Graph Processing N. Novgorod, 2014 21

PARALLEL FLOYD ALGORITHM

Step 3. Parallel Algorithm…

Subtask definition

The effective way of parallel scheme of the Floyd algorithm is to

update the values of matrix A simultaneously

Analysis of Information Dependencies

Computations in the subtasks become possible only if each

subtask (i, j) contains the elements Aij, Aik, Akj
 of the matrix A

Each element Akj
 of the row k of the matrix A must be transmitted

to all the subtasks (k, j), 1≤ j ≤ n, and each element Aik
 of the

column k of the matrix A must be transmitted to all the subtasks

(i, k), 1 ≤ i ≤ n

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 22

Step 3. Parallel Algorithm…

Analysis of Information Dependencies

The Information Dependencies of the Basic Computational

Subtasks (the arrows show the direction of exchanging values at

iteration k)

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 23

 k

k

Step 3. Parallel Algorithm…

Scaling and Distributing the Subtask among the Processors

A possible way to aggregate the computations is to use of block-

striped scheme of the matrix A partitioning

This approach corresponds to uniting in one basic subtask the

computations connected with updating the elements of one or

several rows (horizontal partitioning) or columns (vertical

partitioning) of matrix A

We will further analyze only partitioning the matrix A into

horizontal stripes

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 24

Parallel Algorithms of Graph Processing N. Novgorod, 2014 25

PARALLEL FLOYD PROGRAM

Step 4. Parallel Program…

Task 1 – Open the Project ParallelFloyd

Task 2 – Initialize and Finalize the Parallel Program

Task 3 – Input the Initial Data

Task 4 – Terminate the Calculations

Task 5 – Distribute the Data among the Processes

Task 6 – Implement the Parallel Floyd Algorithm

Task 7 – Implement the Floyd Algorithm Iterations

Task 8 – Collect the Result Matrix

Task 9 – Test the Parallel Program Correctness

Task 10 – Carry out the Computational Experiments

Parallel Algorithms of Graph Processing N. Novgorod, 2014 26

Step 4. Parallel Program…

Task 1 – Open the Project ParallelFloyd

Start Microsoft Visual Studio

Open solution ParallelFloyd.sln from the folder

с:\ParLabs\ParallelFloyd

Open file ParallelFloyd.cpp in the window Solution Explorer

(Ctrl+Alt+L)

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 27

Step 4. Parallel Program…

Task 2 – Initialize and Finalize the Parallel Program

 Initialize the environment of the MPI program execution in the main

function

Determine the number of processes available for MPI program

Determine the process rank in communicator MPI_COMM_WORLD

Set global variables for storing these values (ProcNum and

ProcRank correspondingly)

Compile and run the parallel application

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 28

Step 4. Parallel Program…

Task 3 – Input the Initial Data

To initialize the computations develop the function

ProcessInitialization

– input the amount of the number of vertices in the graph

– broadcast the number of vertices to the other processes

– allocate memory for the adjacency matrix and the stripes assigned to

the processes

 Implement the function ProcessInitialization()

Call the function from the main function of application

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 29

// Function for process initialization

void ProcessInitialiazation(int *&pMatrix,int *&pProcRows,

 int& Size, int& RowNum);

Step 4. Parallel Program…

Task 4 –Terminate the Calculations

Develop the function for correct program termination
ProcessTermination()

Deallocate the memory for storing the adjacency matrix pMatrix

(on the root process), and the memory for storing the matrix stripes
pProcRows

Call the function from the main function of application

Compile and run the application

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 30

// Function for computational process termination

void ProcessTermination(int *pMatrix, int *pProcRows) {

 if(ProcRank == 0)

 delete [] pMatrix;

 delete [] pProcRows;

}

Step 4. Parallel Program…

Task 5 – Distribute the Data among the Processes

 In accordance with the parallel computation scheme the adjacency

matrix must be distributed among the processes in equal stripes

To distribute the matrix pMatrix use the function
MPI_Scatterv()

 Implement the function DataDistribution()

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 31

// Data distribution among the processes

void DataDistribution(int *pMatrix, int *pProcRows,

 int Size, int RowNum);

Step 4. Parallel Program…

Task 5 – Distribute the Data among the Processes

Call the function DataDistribution() from the main program

To test the correctness of the data distribution among the

processes implement the “debugging print” function
TestDistribution()

– Print the adjacency matrix pMatrix on the root process

– Print the matrix stripes, which are distributed on each of the processes

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 32

// Data distribution among the processes

void TestDistribution(int *pMatrix, int *pProcRows,

 int Size, int RowNum);

Step 4. Parallel Program…

Task 5 – Distribute the Data among the Processes

Make sure that the data is distributed correctly

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 33

Step 4. Parallel Program…

Task 6 – Implement the Parallel Floyd Algorithm

 In accordance with the general scheme of the parallel Floyd
algorithm it is necessary to carry out Size times the operation,

which updates the adjacency matrix

– All the processes need the matrix row, the number of which coincides

with the iteration number

– It is necessary to broadcast this row among the processes

– Implement the function RowDistribution()

– It must use the row number k in order to find the process, to which the

k-th adjacency matrix row belongs, and broadcast the row to the other

processes

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 34

// Function for row broadcasting

void RowDistribution(int *pProcRows, int Size, int RowNum,

 int k, int *pRow);

Step 4. Parallel Program…

Task 6 – Implement the Parallel Floyd Algorithm

The code for the parallel Floyd algorithm will look the following way

at the first stage

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 35

// Function for the parallel Floyd algorithm

void ParallelFloyd(int *pProcRows, int Size, int RowNum) {

 int *pRow = new int[Size];

 for (int k = 0; k < Size; k++) {

 // Distribute row among all processes

 RowDistribution(pProcRows, Size, RowNum, k, pRow);

 }

 delete [] pRow;

}

Step 4. Parallel Program…

Task 6 – Implement the Parallel Floyd Algorithm

 Implement the function RowDistribution()

Call the function ParallelFloyd() from the main function of the

application

Compile and run the application

Make sure that the data rows are distributed correctly

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 36

Step 4. Parallel Program…

Task 7 – Implement the Floyd Algorithm Iterations

 It is necessary to execute the adjacency matrix update after

broadcasting the next adjacency matrix row among the processes

Add to the function ParallelFloyd() the following code on

each iteration

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 37

 // Update adjacency matrix elements

 for (int i = 0; i < RowNum; i++)

 for (int j = 0; j < Size; j++)

 if ((pProcRows[i * Size + k] != -1) &&

 (pRow [j] != -1)) {

 t1 = pProcRows[i * Size + j];

 t2 = pProcRows[i * Size + k] + pRow[j];

 pProcRows[i * Size + j] = Min(t1, t2);

 }

Step 4. Parallel Program…

Task 7 – Implement the Floyd Algorithm Iterations

Compile and run the application

Check the correctness of the obtained partial results setting

different number of processes and different number of the test

graph vertices

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 38

Step 4. Parallel Program…

Task 8 – Collect the Result Matrix

To collect the obtained matrix on the root process implement the
function ResultCollection()

Call the function from main function of the application

Add print of the obtained matrix by means of the function
PrintMatrix() on the process with rank 0

Compile and run the application

Check the correctness of the program execution

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 39

// Function for process result collection

void ResultCollection(int *pMatrix, int *pProcRows,

 int Size, int RowNum);

Step 4. Parallel Program…

Task 9 – Test the Parallel Program Correctness

To test the correctness of the program develop the function
TestResult()

The function should compare the results of the serial program to

the results of the parallel one

To execute the serial algorithm use the function SeriaFloyd()

To make the serial algorithm SerialFloyd() operate the same

data as the developed parallel algorithm ParallelFloyd(),

produce a copy of the data

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 40

// Testing the result of parallel Floyd algorithm

void TestResult(int *pMatrix, int *pSerialMatrix, int Size);

Step 4. Parallel Program…

Task 9 – Test the Parallel Program Correctness

 Implement the function TestResult()

Call the function from main function of the application

 Instead of the function DummyDataInitialization(), call the

function RandomDataInitialization()

Compile and run the application

Set various amounts of the initial data

Make sure that the application is functioning properly

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 41

Step 4. Parallel Program

Task 10 – Carry out the Computational Experiments

Determine the parallel algorithm execution time

Carry out the computational experiments with large objects

Determine the given speedup

Fill the table with results of experiments

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 42

Summary

Method of solving the shortest path problem (Floyd algorithm) is

considered

Serial and parallel versions of Floyd algorithm are implemented

Computational experiments are performed, comparison of serial

and parallel algorithms is made

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 43

Exercises

Study other parallel algorithms of graph processing:

– the Prim algorithm for finding the minimum spanning tree

– the Dejkstra method for solving the problem of finding the shortest

path from one of the graph vertices to the other

Develop the programs, which implement these algorithms

N. Novgorod, 2014 Parallel Algorithms of Graph Processing 44

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein C. (2009). Introduction to

Algorithms, 3rd Edition. – The MIT Press.

2. Schloegel, K., Karypis, G., Kumar, V. (2000). Graph Partitioning for High

Performance Scientific Simulations.

3. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New

York, NY: McGraw-Hill.

4. Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel

Computing. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn.,

2003)

5. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

6. Foster, I. (1995). Designing and Building Parallel Programs: Concepts and

Tools for Software Engineering. Reading, MA: Addison-Wesley.

Parallel Algorithms of Graph Processing N. Novgorod, 2014 45

