
LOBACHEVSKY STATE UNIVERSITY OF NIZHNI NOVGOROD

COMPUTING MATHEMATICS AND CYBERNETICS FACULTY

THE COMPETITIVENESS ENHANCEMENT PROGRAM

AMONG THE WORLD'S RESEARCH AND EDUCATION CENTERS

STRATEGIC INITIATIVE

“ACHIEVING LEADING POSITIONS IN THE FIELD

OF SUPERCOMPUTER TECHNOLOGY AND HIGH-PERFORMANCE COMPUTING”

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

Sysoyev A.V.

Software department

01 Lecture

The Fundamentals of MPI

With the support of Microsoft

Parallel Programming for Multiprocessor Distributed Memory Systems

Contents

 Introduction

MPI: Basic Concepts and Definitions

The Fundamentals of MPI

– MPI Program Initialization and Termination

– Determining the Number and the Rank of the Processes

– Message Send/Receive Operations

– Evaluating of MPI Program Execution Time

The First MPI Parallel Program

 Introduction into Collective Data Communication

The Fundamentals of MPI N. Novgorod, 2014 3

INTRODUCTION

The Fundamentals of MPI N. Novgorod, 2014 4

Introduction…

The processors in the computer

systems with distributed memory

operate independently

 It is necessary to have a possibility:

– to distribute the computational load

– to organize the information communication (data transmission) among

the processors

The solution of the above mentioned problems is provided by the

MPI (message passing interface)

The Fundamentals of MPI N. Novgorod, 2014 5

Data
Transmission

Network

RAM

Processor

Processor

RAM

Introduction…

MPI uses the simple approach: a program is developed for solving

the stated problem and this single program is copied on all the

available processors

 In order to obtain the different computations on different

processors:

– It is possible to substitute different data for executing the program on

different processors

– It is possible to vary computations using the processor identifier, on

which the program is executed

This method of implementation of parallel computations is referred

to as the model single program multiple processes or SPMP

The Fundamentals of MPI N. Novgorod, 2014 6

Introduction…

There are many data transmission functions in MPI:

– They provide various techniques of data passing

– They implement practically all the communication operations

These possibilities are the main advantages of MPI (in particular, the

very name of MPI testifies to it)

The Fundamentals of MPI N. Novgorod, 2014 7

Introduction…
Understanding of MPI

MPI is a standard for organizing the message passing

MPI is the software, which should provide the possibility of

message passing and correspond to all the requirements of MPI

standard:

– This software should be arranged as program module libraries (MPI

libraries)

– This software should be comprehensible for the most widely used

algorithmic languages C and Fortran

The Fundamentals of MPI N. Novgorod, 2014 8

Introduction…
The advantages of MPI

MPI makes possible to a considerable extent to decrease the

complexity of the parallel program portability among different

computer systems

MPI contributes to the increase of parallel computation efficiency,

as there are MPI library implementations for practically every type

of computational system nowadays

MPI decreases the complexity of parallel program development:

– The greater part of the basic data communication operations are

provided by MPI standard

– There are many parallel numerical libraries available nowadays

developed with the use of MPI

The Fundamentals of MPI N. Novgorod, 2014 9

Introduction

MPI History (developing the MPI standard is provided by the

international consortium MPI Forum)

1992. The start of investigations on the message passing interface

library (Oak Ridge National Laboratory, Rice University)

November, 1992. The publication of the working variant of the

standard MPI-1

November, 1993. The discussion of the standard during

conference Supercomputing'93

May 5, 1994. The final version of MPI-1.0 standard

June 12, 1995. New version of standard – MPI-1.1

July 18, 1997. Standard MPI-2 was published

September 21, 2012. Standard MPI-3 was published

The Fundamentals of MPI N. Novgorod, 2014 10

MPI: BASIC CONCEPTS AND

DEFINITIONS

The Fundamentals of MPI N. Novgorod, 2014 11

MPI: Basic Concepts and Definitions…
The Concept of Parallel Program

Within the framework of MPI a parallel program means a number

of simultaneously executed processes:

– The processes can be executed on different processors, several

processes may be located on a processor

– Each parallel process is generated on the basis of the copy of the

same program code (SPMP model)

The source code is developed in the algorithmic languages C or

Fortran with the use of a MPI library implementation

The number of processes are determined at the moment when the

parallel program start by the means of MPI program execution

environment.

All the program processes are sequentially enumerated. The

process number is referred to as the process rank

The Fundamentals of MPI N. Novgorod, 2014 12

MPI: Basic Concepts and Definitions…

There are four main concepts at the core of MPI:

– The type of data passing operations

– The type of data, which are transmitted

– The concept of communicator

– The concept of virtual topology

The Fundamentals of MPI N. Novgorod, 2014 13

MPI: Basic Concepts and Definitions…
Data Communication Operations

Data communication operations form the core of MPI

The functions provided within MPI usually differentiate between:

– point-to-point operations, i.e. operations between two processors,

– collective operations, i.e. communication procedures for the

simultaneous interaction of several processes

The Fundamentals of MPI N. Novgorod, 2014 14

MPI: Basic Concepts and Definitions…
Communicators

The communicator in MPI is a specially designed control object,

which unites within itself a group of processes and a number of

complementary parameters (context):

– Point-to-point data transmission operations are carried out for the

processes, which belong to the same communicator,

– Collective operations are applied simultaneously to all the processes

of the communicator

 It is necessary to point to the communicator being used for data

communication operations in MPI

The Fundamentals of MPI N. Novgorod, 2014 15

MPI: Basic Concepts and Definitions…
Communicators

During the computations new communicators can be created and

the already existing communicators can be deleted

The same process can belong to different communicators

All the processes available in a parallel program belong to the

communicator with the identifier MPI_COMM_WORLD, which is

created on default

 If it is necessary to transmit the data among the processors, which

belong to different groups, an intercommunicator should be

created. The interaction of the processes, which belong to different

groups, appears to be necessary only in comparatively rare

situations. Such interaction is not discussed here

The Fundamentals of MPI N. Novgorod, 2014 16

MPI: Basic Concepts and Definitions…
Data Types

 It is necessary to point to the type of the transmitted data in MPI

data passing functions

MPI contains a wide set of the basic data types. These data types

largely coincide with the data types of the algorithmic languages C

and Fortran

MPI has possibilities for creating new derived data types for more

accurate and precise description of the transmitted message

content

The Fundamentals of MPI N. Novgorod, 2014 17

MPI: Basic Concepts and Definitions
Virtual Topologies

The logical topology of the communication links among the

processes is a complete graph (regardless of the availability of real

physical communication channels among the processors)

MPI provides an opportunity to present a number of processes as

a grid of arbitrary dimension. The boundary processes of the grids

can be referred to as neighboring, and thus, the structures of torus

type can be defined on the basis of the grids

MPI provides for the possibility to form logical (virtual) topologies of

any desirable type

The Fundamentals of MPI N. Novgorod, 2014 18

THE FUNDAMENTALS OF MPI

The Fundamentals of MPI N. Novgorod, 2014 19

MPI Program Initialization and Termination

Determining the Number and the Rank of the Processes

Message Send/Receive Operations

Evaluating of MPI Program Execution Time

The Fundamentals of MPI…
MPI Program Initialization and Termination

The first MPI function, which is called, must be the following

(it is called to initialize MPI program execution environment; the

parameters of the function are the number of arguments in the command

line and the command line text)

The last MPI function to be called must be the following one

The Fundamentals of MPI N. Novgorod, 2014 20

int MPI_Init(int *agrc, char ***argv);

int MPI_Finalize(void);

The Fundamentals of MPI…
MPI Program Initialization and Termination

The structure of the MPI-based parallel program should look as

follows

The Fundamentals of MPI N. Novgorod, 2014 21

#include "mpi.h"

int main(int argc, char *argv[])

{

 <program code without the use of MPI functions>

 MPI_Init(&agrc, &argv);

 <program code with the use of MPI functions>

 MPI_Finalize();

 <program code without the use of MPI functions>

 return 0;

}

The Fundamentals of MPI…
Determining the Number and Ranks of the Processes

The number of the processes in the parallel program being

executed can be obtained by means of the following function

The following function is used to determine the process rank

The Fundamentals of MPI N. Novgorod, 2014 22

int MPI_Comm_size(MPI_Comm comm, int *size);

int MPI_Comm_rank(MPI_Commcomm, int *rank);

The Fundamentals of MPI…
Determining the Number and Ranks of the Processes

As a rule, the functions MPI_Comm_size() and

MPI_Comm_rank() are called right after MPI_Init()

The Fundamentals of MPI N. Novgorod, 2014 23

#include "mpi.h"

int main(int argc, char *argv[])

{

 int ProcNum, ProcRank;

 <program code without the use of MPI functions>

 MPI_Init(&agrc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 <program code with the use of MPI functions>

 MPI_Finalize();

 <program code without the use of MPI functions>

 return 0;

}

The Fundamentals of MPI…
Determining the Number and Ranks of the Processes

Communicator MPI_COMM_WORLD, as it has been previously

mentioned, is created on default and presents all the processes

carried out by a parallel program

The rank obtained by means of the function MPI_Comm_rank()

is the rank of the process, which has called this function, i.e. the
variable ProcRank will accept different values in different

processes

The Fundamentals of MPI N. Novgorod, 2014 24

The Fundamentals of MPI…
Message Passing

 In order to transmit data, the sending process should carry out the

following function

The Fundamentals of MPI N. Novgorod, 2014 25

int MPI_Send(void *buf, int count, MPI_Datatype type,

 int dest, int tag, MPI_Comm comm);

- buf – the address of the memory buffer, which contains the data of the

 message to be transmitted

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- dest - the rank of the process, which is to receive the message

- tag - tag-value, which is used to identify the message

- comm - the communicator, within of which the data is transmitted

The Fundamentals of MPI…
Message Passing

The predefined MPI data types for the algorithmic language C

The Fundamentals of MPI N. Novgorod, 2014 26

MPI_Datatype C Datatype

MPI_BYTE

MPI_CHAR signed char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_PACKED

MPI_SHORT short

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_UNSIGNED_SHORT unsigned short

The Fundamentals of MPI…
Message Passing

The message to be sent is determined by pointing to the memory

block (buffer), which contains the message

 The triad, which is used to point to the buffer (buf, count,

type), is included into the parameters of practically all data

passing functions

The processes, among which data is passed, should belong to the
communicator, specified in the function MPI_Send()

The parameter tag may be used when it is necessary to

differentiate among the messages being passed. Otherwise, an

arbitrary integer number can be used as the parameter value

The Fundamentals of MPI N. Novgorod, 2014 27

The Fundamentals of MPI…
Message Receiving

 In order to receive message, the receiving process should carry

out the following function

The Fundamentals of MPI N. Novgorod, 2014 28

int MPI_Recv(void *buf, int count, MPI_Datatype type,

 int dest, int tag, MPI_Comm comm, MPI_Status *status);

- buf – the address of the memory buffer, which contains the data of the

 message to be transmitted

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- dest - the rank of the process, which is to receive the message

- tag - tag-value, which is used to identify the message

- comm - the communicator, within of which the data is transmitted

- status – the pointer of the data structure, which contains the information

 of the results of carrying out the data passing operation

The Fundamentals of MPI…
Message Receiving

Memory buffer should be sufficient for data reception and the

element types of the sent and the received messages must

coincide.

In case of memory shortage a part of the message will be lost and

in the code of the function termination there will be an overflow

error registered

The value MPI_ANY_SOURCE may be given for the parameter

source, if there is a need to receive a message from any sending

process

 If there is a need to receive a message with any tag, then the value
MPI_ANY_TAG may be given for the parameter tag

The Fundamentals of MPI N. Novgorod, 2014 29

The Fundamentals of MPI…
Message Receiving

The parameter status makes possible to define a number of

characteristics of the received message

The function

 returns in the variable count the number of type elements in the

received message

The Fundamentals of MPI N. Novgorod, 2014 30

- status.MPI_SOURCE - the rank of the process, which has sent

 the received message

- status.MPI_TAG - tag of the received message

int MPI_Get_count(MPI_Status *status, MPI_Datatype type,

 int *count);

The Fundamentals of MPI…
Message Receiving

The function MPI_Recv() is a blocking one for the receiving

process

Carrying out of the process is suspended till the function

terminates its operation

 If due to any reason the expected message is missing, then the

parallel program execution will be blocked forever

The Fundamentals of MPI N. Novgorod, 2014 31

The Fundamentals of MPI
Evaluating of MPI Program Execution Time

The execution time needs to know for estimating the obtained

speedup of parallel computation

Obtaining the time of the current moment of the program execution

is provided by means of the following function

The accuracy of time measurement can depend on the

environment of the parallel program execution. The following

function can be used in order to determine the current value of

time measurement accuracy

The Fundamentals of MPI N. Novgorod, 2014 32

double MPI_Wtime(void);

double MPI_Wtick(void);

THE FIRST MPI PARALLEL

PROGRAM

The Fundamentals of MPI N. Novgorod, 2014 33

The First MPI Parallel Program…

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 if (ProcRank == 0)

 {

 printf("Hello from %d!\n", ProcRank);

 for (int i = 1; i < ProcNum; i++)

 {

 MPI_Recv(&ProcRank, 1, MPI_INT, i, 0, MPI_COMM_WORLD,

 &status);

 printf("Hello from %d!\n", ProcRank);

 }

 }

 else

 MPI_Send(&ProcRank, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

 MPI_Finalize();

The First MPI Parallel Program…

Each process find out its rank, after that all the operations in the

program are separated (different processes execute different

code)

All the processes, except the process with the rank 0, send the

value of its rank to the process 0

The process 0 first prints the value of its rank and then receives

the messages from the other processes and prints their ranks

sequentially

A possible variant of the program results

The Fundamentals of MPI N. Novgorod, 2014 35

Hello from process 0

Hello from process 2

Hello from process 1

Hello from process 3

The First MPI Parallel Program…

 It should be noted that the order of message receiving is not

predetermined. It depends on the execution conditions for parallel

program (moreover, the order can change from execution to

execution).

 If it does not lead to efficiency losses, it is necessary to provide the

unambiguity of computations in case of parallel computations:

 Setting the rank of the sending process regulates the order of

message reception

The Fundamentals of MPI N. Novgorod, 2014 36

MPI_Recv(&ProcRank, 1, MPI_INT, i, MPI_ANY_TAG,

 MPI_COMM_WORLD, &status);

The First MPI Parallel Program

All the MPI functions return the termination code

 If the function is completed successfully the return code is

MPI_SUCCESS

The other values of the termination code testifies to the fact that

some errors have been discovered in the course of function

execution

To find out the type of the discovered error predetermined named

constants are used. Among these constants there are the following

ones

The Fundamentals of MPI N. Novgorod, 2014 37

- MPI_ERR_BUFFER - incorrect buffer pointer

- MPI_ERR_COMM - incorrect communicator

- MPI_ERR_RANK - incorrect process rank

INTRODUCTION INTO COLLECTIVE

DATA COMMUNICATION

The Fundamentals of MPI N. Novgorod, 2014 38

Introduction into Collective Data Communication…
Summation Problem

Let’s discuss the following problem of summation

To develop the parallel implementation it is necessary to

– divide the data into “equal” blocks

– transmit these blocks to the processes

– carry out the summation of the obtained data in the processes

– collect the values of the computed partial sums on one of the

processes and

– add the values of partial sums to obtain the general result of the

problem

The Fundamentals of MPI N. Novgorod, 2014 39

n

i

ixS

1

Introduction into Collective Data Communication…
Data Broadcasting

Suppose that we have p processes and n % p = 0

 In this case the size of each block will be n / p

Suppose that only process with rank 0 knows the size n and the

vector x

Before distribute vector x between processes we should broadcast

the size n to all processes except 0

We may use the following code

These version is very inefficient! The repetition of the data

transmissions leads to summing up the latencies of the

communication operations!

 The Fundamentals of MPI N. Novgorod, 2014 40

MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

for (i = 1; i < ProcNum; i++)

 MPI_Send(&n, 1, MPI_INT, i, 0, MPI_COMM_WORLD);

Introduction into Collective Data Communication…
Data Broadcasting

To achieve efficient broadcasting the following MPI function can be

used

The Fundamentals of MPI N. Novgorod, 2014 41

int MPI_Bcast(void *buf, int count, MPI_Datatype type,

 int root, MPI_Comm comm);

- buf – the address of the memory buffer, which contains the data of the

 message to be transmitted

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- root - the rank of the process, which carries out data broadcasting

- comm - the communicator, within of which the data is transmitted

Introduction into Collective Data Communication…
Data Broadcasting

The function MPI_Bcast() carries out transmitting the data from

the buffer buf, which contains count type elements, from the

processor with the rank root to the processes within the

communicator comm

The Fundamentals of MPI N. Novgorod, 2014 42

root

1

0

p-1

Processes

a) Before the operation

root

1

0

p-1

Processes

б) After the operation

*

*

*

*

*

Introduction into Collective Data Communication…
Data Broadcasting

The function MPI_Bcast() is the collective operation, and thus,

the call of this function is to be executed by all the processes of the
communicator comm

The memory buffer pointed in the function MPI_Bcast() has

different designations in different processes:

– For the root process, from which data broadcasting is performed, this

buffer should contain the transmitted message,

– For the rest of the processes the buffer is intended for data receiving

So we may change the code like this

The Fundamentals of MPI N. Novgorod, 2014 43

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Introduction into Collective Data Communication…
Distribution of Data and Computations

To distribute the vector x among processes we may use the
following code

This code may be implemented more efficiently (see Lecture 02)

Now we may carry out the summation in each process using next

simple code

The Fundamentals of MPI N. Novgorod, 2014 44

sum = 0.0;

for (i = 0; i < n/ProcNum; i++)

 sum += x[i];

MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

for (i = 1; i < ProcNum; i++)

 MPI_Send(&x[n/ProcNum*i], n/ProcNum, MPI_DOUBLE, i, 0,

 MPI_COMM_WORLD);

Introduction into Collective Data Communication…
Data Reduction

The last stage is to collect the values of the computed partial sums

and to add the values of partial sums to obtain the general result

Such procedure of collecting and further data summation is an

example of the widely used operation of reducing data from all the

processes to chosen process

The Fundamentals of MPI N. Novgorod, 2014 45

njxу ij

n

i
j

0,
1

0

root y0 y1 y2

yn-1

1

0

p-1

Processes

а) After the operation

i

1

0

p-1

Processes

b) Before the operation

x00 x01

x0,n-1 x02

x10 x11

x1,n-1 x12

xi0 xi1

xi,n-1 xi2

xn-1,0 xn-1,1

xn-1,n-1

Introduction into Collective Data Communication…
Data Reduction

To “reduce” some data from all processes to chosen the following

MPI function can be used

The Fundamentals of MPI N. Novgorod, 2014 46

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm);

- sendbuf – memory buffer with the transmitted message

- recvbuf – memory buffer with the resulting message (only for the root process)

- count – the number of the data elements in the message

- type - the type of the data elements in the message

- op - the operation, which should be carried out over the data

- root - the rank of the process, on which the result must be obtained

- comm - the communicator, within of which the operation is executed

Introduction into Collective Data Communication…
Data Reduction

The Basic MPI Operation Types for Data Reduction

The Fundamentals of MPI N. Novgorod, 2014 47

Operation Description

MPI_MAX The maximum value calculation

MPI_MIN The minimum value calculation

MPI_SUM The calculation of the sum of the values

MPI_PROD The calculation of the product of the values

MPI_LAND The execution of the logical operation “AND” over the message values

MPI_BAND The execution of the bit operation “AND” over the message values

MPI_LOR The execution of the logical operation “OR” over the message values

MPI_BOR The execution of the bit operation “OR” over the message values

MPI_LXOR The execution of the excluding logical operation “OR” over the message values

MPI_BXOR The execution of the excluding bit operation “OR”over the message values

MPI_MAXLOC The calculation of the maximum values and their indices

MPI_MINLOC The calculation of the minimum values and their indices

Introduction into Collective Data Communication…
Data Reduction

The function MPI_Reduce() is the collective operation, and thus,

the function call should be carried out by all the processes of the
communicator comm.

All the calls should contain the same values of the parameters
count, type, op, root, comm

The data transmission should be carried out by all the processes.

The operation result will be obtained only by root process,

The execution of the reduction operation is carried out over

separate elements of the transmitted messages

The Fundamentals of MPI N. Novgorod, 2014 48

Introduction into Collective Data Communication
Data Reduction

Example for calculating the sum of the values

The Fundamentals of MPI N. Novgorod, 2014 49

root

1

0

Processes

а) After the operation

2

1

0

Processes

b) Before the operation

-1 3 2 -2

 2 -1 3 1

 4 -2 1 -1 5 0 6 -2

Summary

 It is discussed a number of concepts and definitions, which are the

basic ones for the standard MPI(parallel program,message

passing operations, data types, communicators, virtual topologies)

A brief and simple introduction into the development of MPI based

parallel programs is given

Examples of the MPI based parallel programs are presented

N. Novgorod, 2014 The Fundamentals of MPI 50

Exercises

Develop a program for finding the minimum (maximum) value of

the vector elements

Develop a program for computing the inner product of two vectors

N. Novgorod, 2014 The Fundamentals of MPI 51

References

1. The internet resource, which describes the standard MPI:

http://www.mpiforum.org

2. One of the most widely used MPI realizations, the library MPICH, is presented

on http://www.mpich.org

3. Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. – New

York, NY: McGraw-Hill.

4. Pacheco, P. (1996). Parallel Programming with MPI. - Morgan Kaufmann.

5. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. (1996). MPI:

The Complete Reference. – MIT Press, Boston, 1996.

6. Group, W., Lusk, E., Skjellum, A. (1999). Using MPI – 2nd Edition: Portable

Parallel Programming with the Message Passing Interface (Scientific and

Engineering Computation). – MIT Press.

7. Group, W., Lusk, E., Thakur, R. (1999). Using MPI-2: Advanced Features of the

Message Passing Interface (Scientific and Engineering Computation). – MIT

Press.

The Fundamentals of MPI N. Novgorod, 2014 52

http://www.mpiforum.org/
http://www.mpich.org/

