

Introduction to Bilevel Programming

Vilnius University Institute of Mathematics and Informatics

Scientific youth school "High-performance computing, optimization and applications", 7-11 September, 2017, Lobachevsky State University of Nizhni Novgorod, Russia

Outline

Introduction Motivation Applications

Single-level Optimization Example 1

Multi-Objective Optimization (MOO)

Example 2 Problem formulation

Bilevel Optimization (BO)

Example 3 Problem formulation

Goal of this course

To be able to distinguish **bilevel problems** from **other optimization problems** with **multiple decision makers** and/or **multiple decision levels**.

- Standard Mathematical Programming (MP) models are often inadequate in the real-life because more than a single objective and one Decision Maker (DM) are involved.
- Multi-Objective Programming (MOP) deals with the extension of optimization techniques to account several objective functions.
- Game Theory (GT) deals with the mathematical models of conflict and cooperation between intelligent rational decision makers

Goal of this course

To be able to distinguish **bilevel problems** from **other optimization problems** with **multiple decision makers** and/or **multiple decision levels**.

- Standard Mathematical Programming (MP) models are often inadequate in the real-life because more than a single objective and one Decision Maker (DM) are involved.
- Multi-Objective Programming (MOP) deals with the extension of optimization techniques to account several objective functions.
- Game Theory (GT) deals with the mathematical models of conflict and cooperation between intelligent rational decision makers

Goal of this course

To be able to distinguish **bilevel problems** from **other optimization problems** with **multiple decision makers** and/or **multiple decision levels**.

- Standard Mathematical Programming (MP) models are often inadequate in the real-life because more than a single objective and one Decision Maker (DM) are involved.
- Multi-Objective Programming (MOP) deals with the extension of optimization techniques to account several objective functions.
- Game Theory (GT) deals with the mathematical models of conflict and cooperation between intelligent rational decision makers

Goal of this course

To be able to distinguish **bilevel problems** from **other optimization problems** with **multiple decision makers** and/or **multiple decision levels**.

- Standard Mathematical Programming (MP) models are often inadequate in the real-life because more than a single objective and one Decision Maker (DM) are involved.
- Multi-Objective Programming (MOP) deals with the extension of optimization techniques to account several objective functions.
- Game Theory (GT) deals with the mathematical models of conflict and cooperation between intelligent rational decision makers

Bilevel Programming (BP) in a narrow sense is the combination of both.

Bilevel Programming Applications

The world is multilevel!

Applications of Bilevel Programming are diverse and include:

- ▶ Parameter Estimation [Mitsos et al., 2008]
- Management of Multi-Divisional Firms [Ryu et al., 2004]
- Environmental Policies: Biofuel Production [Bard et al., 2000]
- ► Traffic Planning [Migdalas, 1995]
- Chemical Equilibria [Clark, 1990]
- Design of Transportation Networks [LeBlanc and Boyce, 1985]
- Agricultural Planning [Fortuny-Amat and McCarl, 1981]
- Optimisation of Strategic Defence [Bracken and McGill, 1974]
- Resource Allocation [Cassidy et al., 1971]
- Stackelberg Games: Market Economy [Stackelberg, 1934]

Bilevel Programming Applications Seller-Buyer Strategies

Seller-Buyer Strategies

- An owner of a company (leader) dictates the selling price and supply. He wants to maximize his profit.
- The buyers (followers) look at the product quality, pricing and various other options available to maximize their performance.

Bilevel Programming Applications Seller-Buyer Strategies

Seller-Buyer Strategies

- An owner of a company (leader) dictates the selling price and supply. He wants to maximize his profit.
- The buyers (followers) look at the product quality, pricing and various other options available to maximize their performance.

Bilevel Programming Applications Seller-Buyer Strategies

Seller-Buyer Strategies

- An owner of a company (leader) dictates the selling price and supply. He wants to maximize his profit.
- The buyers (followers) look at the product quality, pricing and various other options available to maximize their performance.

Bilevel formulation

max profit (selling price, supply, demand, other variables)

s.t. upper level constraints

max performance (selling price, quality, demand)

s.t. lower level constraints

Single-objective optimization problem Single objective function

Objective Function & Constraints

Contour lines of the function $\,f\,$

A **contour line** of a function of two variables is a curve along which the function has a **constant value**

Single-objective optimization problem Gradient -f & Contour lines of the function f

The gradient points in the direction of the greatest rate of increase of the function

Optimal solution: $(x^*, y^*) = (3, 6)$

Optimal solution: $(x^*, y^*) = (3, 6)$ & Optimal function value: $f^* = -21$

Multi-Objective Optimization problem Two objective functions & Constraints

SOOP

Multi-Objective Optimization Problem (MOOP) Single vs Multi

Single-Objective Optimization Problem:

 $\min_{\mathbf{x}\in X} f(\mathbf{x})$

where $X = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{g}(\mathbf{x}) \leq 0, \mathbf{h}(\mathbf{x}) = 0\}$ - constraints

Multiple objectives are typical in real life!

- Normally objectives conflicting with each other:
 - Quality vs Cost
 - Efficiency vs Portability
- ► The scalar concept of "optimality" does not apply directly in MOO.

Multi-Objective Optimization Problem (MOOP) Single vs Multi

Multiple objectives are typical in real life!

- Normally objectives conflicting with each other:
 - Quality vs Cost
 - Efficiency vs Portability
- ► The scalar concept of "optimality" does not apply directly in MOO.

Multi-Objective Optimization Problem (MOOP) Single vs Multi

- Normally objectives conflicting with each other:
 - Quality vs Cost
 - Efficiency vs Portability
- ► The scalar concept of "optimality" does not apply directly in MOO.

Multi-Objective Optimization Problem (MOOP) Single vs Multi

- Normally objectives conflicting with each other:
 - Quality vs Cost
 - Efficiency vs Portability
- ► The scalar concept of "optimality" does not apply directly in MOO.

No traditional "optimality"

No traditional "optimality"

Vector \mathbf{x}^2 is **better** than \mathbf{x}^1 with respect to $f_1 : f_1(\mathbf{x}^2) < f_1(\mathbf{x}^1)$ but worse with respect to $f_2 : f_2(\mathbf{x}^2) > f_2(\mathbf{x}^1)$

Multiobjective Optimization

Two vectors can be related to each other in two ways: either one **dominates** the other or **none of them is dominated** by the other.

Multiobjective Optimization

Two vectors can be related to each other in two ways: either one **dominates** the other or **none of them is dominated** by the other.

Multiobjective Optimization Pareto optimality

A decision vector $\mathbf{x}^* \in X$ which is **nondominated** by any other vector is called **Pareto optimal** and a set of those vectors is called **Pareto set**.

The set of corresponding objective vectors is called **Pareto front**.

This definition says that $\mathbf{x}^* \in X$ is **Pareto optimal** if there exists **no feasible vector** which would **decrease** some criterion without causing a simultaneous **increase** in at least one other criterion.

The determination of these sets is the main goal of MO!

Multiobjective Optimization Pareto optimality

A decision vector $\mathbf{x}^* \in X$ which is **nondominated** by any other vector is called **Pareto optimal** and a set of those vectors is called **Pareto set**.

The set of corresponding objective vectors is called **Pareto front**.

This definition says that $\mathbf{x}^* \in X$ is **Pareto optimal** if there exists **no feasible vector** which would **decrease** some criterion without causing a simultaneous **increase** in at least one other criterion.

The determination of these sets is the main goal of MO!

Pareto set and Pareto front

(Multi-Objective Optimization (MOO))

Multi-objective optimization problem

Pareto set and Pareto front

Objective space

Remigijus Paulavičius v@RemisPau Introduction to Bilevel Programming (Multi-Objective Optimization (MOO))

Multi-objective optimization problem

Pareto set and Pareto front

Remigijus Paulavičius v@RemisPau Introduction to Bilevel Programming (Multi-Objective Optimization (MOO))

Multi-objective optimization problem Pareto set and Pareto front

Better Pareto front approximation!

Bilevel optimization problem

The feasible region is implicitly determined by an inner optimization problem

Bard, Jonathan F. (1998). Practical Bilevel Optimization, Springer US

Origins of Bilevel Programming Mathematical programming generalization

Consider traditional mathematical programming problem

- Suppose y to be an optimal solution of nested optimization problem
- This yields the Bilevel Programming Problem (BPP)[Bracken, 1973]:

$$\begin{split} \min_{\mathbf{x}, \mathbf{y}} \, F(\mathbf{x}, \mathbf{y}) \\ \text{s.t.} \, \, \mathbf{G}(\mathbf{x}, \mathbf{y}) &\leq 0 \\ \mathbf{x} \in X \subset \mathbb{R}^n, \mathbf{y} \in Y \subset \mathbb{R}^m \end{split}$$

Mathematical programming generalization

- Consider traditional mathematical programming problem
- Suppose y to be an optimal solution of nested optimization problem
- ► This yields the Bilevel Programming Problem (**BPP**)[Bracken, 1973]:

Mathematical programming generalization

- Consider traditional mathematical programming problem
- Suppose y to be an optimal solution of nested optimization problem
- ► This yields the Bilevel Programming Problem (BPP)[Bracken, 1973]:

Bracken J, McGill J (1973) Mathematical programs with optimization problems in the constraints. Operations Research 21: 37-44.

Stackelberg game generalization

 BPP can be viewed as a static version of (non-cooperative), two-person Stackelberg game [Stackelberg, H., 1934].

- In game theory terminology, bilevel programs consist of the following rules:
 - 1. The leader (the player that moves first) is minimizing his objective function F under his resource **G**. This sub-problem is called the leader's (outer or upperlevel) problem.
 - 2. The **follower** (the **player** that moves **second**) is **minimizing** his own objective function *f* under his resource constraints **g**. This **sub-problem** is called the **follower's** (**inner** or **lower-level**) **problem**.
 - 3. The leader's decision variables are x while the follower's are y.

Stackelberg game generalization

- BPP can be viewed as a static version of (non-cooperative), two-person Stackelberg game [Stackelberg, H., 1934].
- In game theory terminology, bilevel programs consist of the following rules:

- 1. The leader (the player that moves first) is minimizing his objective function F under his resource **G**. This sub-problem is called the leader's (outer or upper-level) problem.
- 2. The **follower** (the **player** that moves **second**) is **minimizing** his own objective function *f* under his resource constraints **g**. This **sub-problem** is called the **follower's** (**inner** or **lower-level**) **problem**.
- 3. The leader's decision variables are \mathbf{x} while the follower's are \mathbf{y} .

Stackelberg game generalization

- BPP can be viewed as a static version of (non-cooperative), two-person Stackelberg game [Stackelberg, H., 1934].
- In game theory terminology, bilevel programs consist of the following rules:

- 1. The leader (the player that moves first) is minimizing his objective function F under his resource **G**. This sub-problem is called the leader's (outer or upperlevel) problem.
- 2. The **follower** (the **player** that moves **second**) is **minimizing** his own objective function *f* under his resource constraints **g**. This **sub-problem** is called the **follower's** (**inner** or **lower-level**) **problem**.
- 3. The leader's decision variables are x while the follower's are y.

Stackelberg game generalization

- BPP can be viewed as a static version of (non-cooperative), two-person Stackelberg game [Stackelberg, H., 1934].
- In game theory terminology, bilevel programs consist of the following rules:

- 1. The leader (the player that moves first) is minimizing his objective function F under his resource **G**. This sub-problem is called the leader's (outer or upperlevel) problem.
- 2. The **follower** (the **player** that moves **second**) is **minimizing** his own objective function *f* under his resource constraints **g**. This **sub-problem** is called the **follower's** (inner or lower-level) problem.
- 3. The leader's decision variables are \mathbf{x} while the follower's are \mathbf{y} .

4. The **game** between the leader and the follower consists of these steps:

4.1 The leader chooses a value of $\hat{\mathbf{x}} \in X$.

- 4.2 The follower formulates a best response based on $\hat{\mathbf{x}}$ and generates the set $\mathcal{Y}(\hat{\mathbf{x}})$ (each $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$ is an **optimal** response for the follower of given $\hat{\mathbf{x}}$ from the leader).
- 4.3 The leader evaluates his objective function and constraints given $\hat{\mathbf{x}}$ and the set $\mathcal{Y}(\hat{\mathbf{x}})$ and chooses a pair $(\hat{\mathbf{x}}, \mathbf{y})$, $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$, that results in an optimal strategy for him.
- 4.4 The leader repeats steps (4.1)-(4.3) until his objective function is minimized across all values of $x \in X$ in his search space.
- 5. The game ends when the leader has created a strategy (value of $\mathbf{x} \in X$) that minimizes his best response across different values of $\mathbf{x} \in X$ (his decision variable).

- 4. The game between the leader and the follower consists of these steps:
 - 4.1 The leader chooses a value of $\hat{\mathbf{x}} \in X$.
 - 4.2 The follower formulates a best response based on $\hat{\mathbf{x}}$ and generates the set $\mathcal{Y}(\hat{\mathbf{x}})$ (each $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$ is an optimal response for the follower of given $\hat{\mathbf{x}}$ from the leader).
 - 4.3 The leader evaluates his objective function and constraints given $\hat{\mathbf{x}}$ and the set $\mathcal{Y}(\hat{\mathbf{x}})$ and chooses a pair $(\hat{\mathbf{x}}, \mathbf{y})$, $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$, that results in an **optimal strategy** for him.
 - 4.4 The leader repeats steps (4.1)-(4.3) until his objective function is minimized across all values of $x \in X$ in his search space.
 - 5. The game ends when the leader has created a strategy (value of $\mathbf{x} \in X$) that minimizes his best response across different values of $\mathbf{x} \in X$ (his decision variable).

4. The **game** between the leader and the follower consists of these steps:

- 4.1 The leader chooses a value of $\hat{\mathbf{x}} \in X$.
- 4.2 The follower formulates a best response based on $\hat{\mathbf{x}}$ and generates the set $\mathcal{Y}(\hat{\mathbf{x}})$ (each $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$ is an optimal response for the follower of given $\hat{\mathbf{x}}$ from the leader).
- 4.3 The leader evaluates his objective function and constraints given $\hat{\mathbf{x}}$ and the set $\mathcal{Y}(\hat{\mathbf{x}})$ and chooses a pair $(\hat{\mathbf{x}}, \mathbf{y})$, $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$, that results in an optimal strategy for him.
- 4.4 The leader repeats steps (4.1)-(4.3) until his objective function is minimized across all values of $x \in X$ in his search space.
- 5. The game ends when the leader has created a strategy (value of $\mathbf{x} \in X$) that minimizes his best response across different values of $\mathbf{x} \in X$ (his decision variable).

4. The game between the leader and the follower consists of these steps:

- 4.1 The leader chooses a value of $\hat{\mathbf{x}} \in X$.
- 4.2 The follower formulates a best response based on $\hat{\mathbf{x}}$ and generates the set $\mathcal{Y}(\hat{\mathbf{x}})$ (each $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$ is an optimal response for the follower of given $\hat{\mathbf{x}}$ from the leader).
- 4.3 The leader evaluates his objective function and constraints given $\hat{\mathbf{x}}$ and the set $\mathcal{Y}(\hat{\mathbf{x}})$ and chooses a pair $(\hat{\mathbf{x}}, \mathbf{y})$, $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$, that results in an **optimal strategy** for him.
- 4.4 The leader repeats steps (4.1)-(4.3) until his objective function is minimized across all values of $x \in X$ in his search space.
 - 5. The game ends when the leader has created a strategy (value of $\mathbf{x} \in X$) that minimizes his best response across different values of $\mathbf{x} \in X$ (his decision variable).

4. The **game** between the leader and the follower consists of these steps:

- 4.1 The leader chooses a value of $\hat{\mathbf{x}} \in X$.
- 4.2 The follower formulates a best response based on $\hat{\mathbf{x}}$ and generates the set $\mathcal{Y}(\hat{\mathbf{x}})$ (each $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$ is an optimal response for the follower of given $\hat{\mathbf{x}}$ from the leader).
- 4.3 The leader evaluates his objective function and constraints given $\hat{\mathbf{x}}$ and the set $\mathcal{Y}(\hat{\mathbf{x}})$ and chooses a pair $(\hat{\mathbf{x}}, \mathbf{y})$, $\mathbf{y} \in \mathcal{Y}(\hat{\mathbf{x}})$, that results in an optimal strategy for him.
- 4.4 The leader repeats steps (4.1)-(4.3) until his objective function is minimized across all values of $x \in X$ in his search space.
- 5. The game ends when the leader has created a strategy (value of $\mathbf{x} \in X$) that minimizes his best response across different values of $\mathbf{x} \in X$ (his decision variable).

Bilevel optimization problem

Nested optimization problem within the constraints of another optimization problem

Ŀ,

Bilevel optimization problem Constraint region

$$S = \{ (\mathbf{x}, \mathbf{y}) : \mathbf{x} \in X, \mathbf{y} \in Y, \mathbf{G}(\mathbf{x}, \mathbf{y}) \le 0, \mathbf{g}(\mathbf{x}, \mathbf{y}) \le 0 \}.$$

Bilevel optimization problem Projection of S onto the leader's decision space

$$S(X) = \{ \mathbf{x} \in X : \exists \mathbf{y} \in Y, \mathbf{G}(\mathbf{x}, \mathbf{y}) \le 0, \mathbf{g}(\mathbf{x}, \mathbf{y}) \le 0 \}.$$

Bilevel optimization problem Follower's feasible set for each fixed $\hat{x} \in S(X)$

$$S(\mathbf{\hat{x}}) = \{ \mathbf{y} \in Y : \mathbf{g}(\mathbf{\hat{x}}, \mathbf{y}) \le 0 \}.$$

Bilevel optimization problem Follower's rational reaction set for each \hat{x}

$$\mathcal{Y}(\hat{\mathbf{x}}) = \left\{ \mathbf{y} \in Y : \min \left\{ f(\hat{\mathbf{x}}, \mathbf{y}) : \mathbf{y} \in S(\hat{\mathbf{x}}) \right\} \right\}.$$

Defines the follower's response

Bilevel optimization problem

The feasible set of bilevel problem (Inducible region)

$$S^{I} = \{ (\mathbf{x}, \mathbf{y}) : (\mathbf{x}, \mathbf{y}) \in S, \mathbf{y} \in \mathcal{Y}(\mathbf{x}) \}.$$

The **induced region** is usually **nonconvex** and, in the presence of **upper level constraints**, can be **disconnected** or even **empty**.

Bilevel optimization problem

Compact BPP formulation

Given these definitions the BPP can be reformulated as:

 $\min \{F(\mathbf{x}, \mathbf{y}) : (\mathbf{x}, \mathbf{y}) \in S^{I}\}.$

Bilevel optimization problem Gradient $(-\nabla F) \uparrow \&$ Contour lines: F = -2; F = -7; F = -12; F = -21

Bilevel optimization problem Optimal solution: $(x^*, y^*) = (4, 4)$

(Bilevel Optimization (BO))

Bilevel optimization problem

Optimal solution: $(x^{\ast},y^{\ast})=(4,4)$ & Optimal function values: $F^{\ast}=-12$ and $f^{\ast}=4$

0

-10

-20

Summary: Single level vs Multi-objective vs Bilevel Optimization

 Single-level problems usually have a single optimal solution.

- Bilevel problems usually also have a single optimal solution.
- A bilevel solution is not necessarily a Pareto-optimal solution.
- It is not possible to directly use algorithms for multi-objective optimization for bilevel problems.

Summary: Single level vs Multi-objective vs Bilevel Optimization

 Single-level problems usually have a single optimal solution.

 Multi-objective problems usually have multiple optimal solutions.

- Bilevel problems usually also have a single optimal solution.
- A bilevel solution is not necessarily a Pareto-optimal solution.
- It is not possible to directly use algorithms for multi-objective optimization for bilevel problems.

Summary: Single level vs Multi-objective vs Bilevel Optimization

 Single-level problems usually have a single optimal solution.

 Multi-objective problems usually have multiple optimal solutions.

- Bilevel problems usually also have a single optimal solution.
- > A bilevel solution is not necessarily a Pareto-optimal solution.
- It is not possible to directly use algorithms for multi-objective optimization for bilevel problems.

Thank You For Your Attention!

Questions ?

remigijus.paulavicius@mii.vu.lt