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The One-Dimensional Plan

• Define and Discuss One-Dimensional 
Cellular Automata

• Re-Introduce (Recall) The Infinite 
Unit Axiom and Grossone

• Apply Grossone to Define a new Metric 
on the Space of One-Dimensional 
Cellular Automata

• Apply this new Metric and Grossone to Develop a 
Classification of One-Dimensional Cellular 
Automata



Infinite Unit Axiom

The number of elements in the set 
N, of natural numbers is equal to the 

infinite unit denoted by  

We will give this a name: “Grossone”

1

Introduced in the early part of the 
21st century by Yaroslav Sergeyev 

Enhances the concept of the unit from 
finite to infinite.



The Properties

Divisibility. For any finite natural number  n  sets    
Nk,n =  {k, k+n, k+2n, k+3n, … },   1 ≤ k ≤ n, 
being the n-th parts of the set, N, of natural numbers have 
the same number of elements indicated by the numeral /n.

Infinity: For any finite natural number n it follows  n <  

Identity: The following relations  link  to identity 
elements 0 and 1: 

1.)  0 ·       = 0 =       · 0 

2.)       -       = 0                 4.)       0  = 1 

3.)               = 1                 5.)   1     = 1
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Divisibility

1

2

1 {1,  2,  3,  4,  5,  6,  7, ....}:

: {1,  _ 3,  _ 5,  _  7,  ....}

{ _  2,  _  4,   _  6,  _ ....}
1

2
:

1

3
: { 1, _  _,  4,   _  _,  7, ....}

1

3
:

{ _  2,  _  _,   5,  _ _, ....}
1

3
:

{ _  _  3,  _  _  6, _  ....}

These 
numbers 
are defined 
as the 
number of 
elements in 
the nth part 
of the set N

Note:  The ‘_’ means the 
natural numbers that 
would have occupied these 
places have been excluded 
from the set N of naturals



Some Notes
• The new approach does not contradict Cantor, and it 

can be viewed as an evolution of his ideas regarding 
the existence of different infinite numbers in a more 
applied and precise way.  

• The Infinite Unit Axiom introduces a new infinite 
number, Grossone, and the properties that distinguish 
it from other numbers.  

•      - 3,   2     10,  5    2 (-2)     4.2    -2   are all numbers 
in this new positional infinite base number system. 

• Note that      -2  is an infinitesimal. 

• For example, 2    10 = 2     + 10

1 1 1 1 1

1

1 1



Infinitesimals

• Infinite numbers with parts of the type    -i, 
with i > 0 are called infinitesimals

• Infinitesimals will play an important role in 
defining a metric and analyzing the forward 
evolution of cellular automata.

1



Why Not Use The  
Hyperreals/Infinitesimals? 

• Grossone is defined as a number (an infinite 
number)

• Computation Power

• Grossone, with the defined properties, 
provides computational power (we have 
representations of infinite numbers).



Some Important Sets

For further information, please see:   
http://www.grossone.com/arithmetic.html

1

N, the set of natural numbers, is: 
    {1, 2, 3, 4, ...,    -2,     -1,    }1 1

The set Z, of integers, is:

{-    , -    +1,...,-2, -1, 0 ,1, 2, 3,...,    -2,     -1,    }1 11 1 1

http://www.grossone.com/arithmetic.html


Extended Sets

The set Z of extended integers is constructed from Z
^

This is accomplished the same way as the natural 
numbers but with additive inverse elements.  For 
example, 2    has as its additive inverse -2 11

The set N of extended natural numbers is formed:  ^

{1, 2, ...,    -2,     - 1,    ,    +1,...,    2 - 1,    2,   2 +1, ...}1 1 1 1 1 1 1

By adding the Infinite Unit Axiom to the axioms of 
natural numbers 

1 < 2 < ... <    - 1 <     <     + 1 < ... <      -1, <    2 < ...          1 11

Sure, we have:
1 2 1



Number of elements in Some 
Important Sets

In N, the set of natural numbers, there are      elements 1

In the set E, set of evens, there are       elements  1

2
The same is true for the set of odd numbers.

The set Z, of integers, has 2    + 1 elements1

It can be shown that |Q| = 2   2 + 1     1

For further information, please see:   
http://www.grossone.com/arithmetic.html

The set Z × Z has (2    +1) * (2    +1) = (2    +1)2

elements  or 4   2  + 4    + 1 elements
1 1 1

1 1

http://www.grossone.com/arithmetic.html


Cellular Automata

Discrete Systems


Known for their strong modeling properties


Can exhibit self-organizational behavior


Are capable of universal computation   



Why All the Hype with 
Cellular Automata?

Developed by Von Neumann and Ulam to 
model physical and biological systems


Actually they developed the concept for 
parallel computation whereby a system of 
local machines update themselves in 
parallel according to a local rule.


Discrete (dynamical) systems to model 
continuous systems



Some Applications
Universal Computation (Turing Machines)


Parallel Computation


Lattice Gas Theory


Forest Fire Models


Lava Flow Models


Cellular and Bacteria Growth Models


Traffic Flow Models



Definitions and Introduction 
(One-Dimensional)

An alphabet S of size greater than 1


For example, S = {0,1} (the binary alphabet) 


Use the one-dimensional integer lattice   
Z and let X = SZ


The space of all maps x: Z → S


Or the space of all bi-infinite 
sequences of elements of S

The 
setting

(la regolazione)



One-Dimensional Cellular 
Automata Maps

One-dimensional cellular automata are 
induced by arbitrary maps (local rule):               
F: S(2r+1) → S


r ∈ N ∪ {0} is called the range of the map.


The automaton map f induced by F is 
defined by f(x) = y with                       
y(i)=F(x[i-r],...,x[i],...,x[i+r])



One-Dimensional 
Neighborhoods

A neighborhood of

range r = 1

A cell in the 

next generation

A neighborhood of

range r = 2

x(i-2) x(i+2)x(i)x(i)



A Configuration

x(-2) x(2)x(0)

... ...

x(-1) x(1)

......

Defined on the integers, Z: The initial 

configuration

f

The first iteration (application) 

of the automaton local rule F, in parallel

......



An Example

x(-2) x(2)x(0)

... ...

x(-1) x(1)

......

The initial 

configuration

f

The first iteration (application) 

of the automaton function f

......

01 10 1 1 111001 0 1

1000 0 0 0 0 1 1 0 0

F(a,b,c) = { 1  if a=b=c=1
0  otherwise

local rule



Some Interesting Cellular Automata 
Rules and their Forward Evolution

Initial Random Configurations

Forward Iterations (Evolution)



A Dynamical Process

• Cellular Automata produce a dynamic process 
(Discrete) -an evolutionary (iterative) process

• Hence it is interesting to study the long term effects 
of these processes.

• 1980s :  Stephen Wolfram studied the forward 
dynamics of one-dimensional cellular automata

• Noticed that different configurations behave 
differently under different automata rules.

• However, if the configuration is chosen at random, 
the probability is high that the CA will fall into one of 
4 classes



A Dynamical Process 
(formal definition)

The set N of natural numbers = {1, 2, 3,....,     - 1,    }1 1

The set N0 = {0,1, 2, 3,....,     - 1,    }    1 1

The ith iterate of a function (automaton function) is 
the sequence:   
f i(x) = f ∘ f ∘ f ∘ f ∘ f ... ∘ f(x)     where   0 ≤ i ≤   1

Theorem: The number of elements of any infinite 
sequence is less than or equal to     11

1  Sergeyev,  A new Applied Approach for executing computations with 
infinite and infinitesimal quantities, Informatica 19 (4) (2008) 567-596 



Wolfram Classes

• Class 1: Evolution tends to a spatially 
homogeneous state

• Class 2: Evolution yields simple stable or 
periodic structures

• Class 3: Exhibits chaotic aperiodic behavior

• Class 4: Yields complex localized structures, 
some propagating

Partitioned one-dimensional CA into 4 classes 
based on their observed dynamical behavior:



Some Cellular Automata Rules

Wolfram Class I 
Rule 36

Wolfram Class 2
Rule 24



More Cellular Automata Rules

Wolfram Class 3
Rule 12

Wolfram Class 4
Rule 20



A More Rigorous 
Classification Scheme of  
One-Dimensional CA

• Developed in the mid 1980s by Robert Gilman

• Measure theoretic classification based on the 
probability of finding another sequence 
(configuration) that stays arbitrarily close to a 
given initial configuration.

• Use the metric d(x,y) = 2-n, where                      
n = inf{ |i| | x(i) ≠ y(i)}  (Does not allow for 
infinite computations)



Classes of Gilman

• Class I:  f ∈ Class I if f is equicontinuous at 
some x ∈ SZ

• Class II:  f ∈ Class II if f is almost 
equicontinuous at some x ∈ SZ  but f∉ Class I   

• Class III:  f ∈ Class III if f is almost expansive

f is a cellular automaton map



Definitions

• For ε > 0 and x ∈ SZ, define                        
D(x, ε) = {y | d(f i(x), f i(y)) < ε, ∀ i ∈ N0}            
f is equicontinuous at x iff ∀ ε ∃ n ∈ N0 ∋       
Cn(x) (the open ball of radius 2-n) ∈ D(x, ε)  

• f is expansive if ∃ ε > 0 ∋ ∀ x  D(x, ε) = {x}

• Use the infinite product measure μ of the 
space SZ, f is almost expansive if ∃ ε > 0 ∋ ∀ x                
μ(D(x, ε)) = 0

f is a cellular automaton map
N0 = N ∪ {0} 



Definition of Almost 
Equicontinuous

f is almost equicontinuous at x  iff  ∀ ε > 0 

lim  μ(Cn(x) ∩ D(x, ε)) 
μ(Cn(x))

n → ∞ = 1

Gilman goes on to define some properties of these 
classes but does not provide an algorithm for 
membership.
Class III does not distinguish between countable and 
uncountable 

A Few Notes:



A New Classification Based on 
Grossone

• Does not Involve Measure Theory (The 
Lens of Measure Theory is limited in 
distinguishing infinite sets).

• Uses Grossone to count the number of 
elements in the set of elements that 
follows, under forward iteration, that of a 
given initial sequence (stays close to under 
the metric). 



The Domain Space of 
Cellular Automata

Recall S is a finite alphabet, for example S = {0,1}
And SZ is the space of all bi-infinite sequences defined 
on the integers and taking values from S

Theorem: |SZ | = |S|2     + 11

Hence we know the number of bi-infinite sequences 
in the entire space
This is extremely interesting and important since, via 
Cantor, this space is considered uncountable! 

As usual, let |Y| = the number of elements in the set 



The Metric 

x ⋀ y = {
Let  x and y be two bi-infinite sequences in SZ

x

*
x(-n)...x(0)...x(n) if  x(i) = y(i) ∀i ∈ [-n,n] and * 

outside

if x(0) ≠ y(0) or x(0) = *
if x = y

Note, -n can be infinite and equal -    + k  and n can equal
    - k for some finite integer k ≥ 0 
Also note in this case, if k = 0, then x = y.

1

1

Hence we can do computations on infinite words
Note, x ⋀ y is the largest center stretch where x and y agree 

Lower unitinfimum 
operation



Metric Definition Continued
Define λ as a real valued function taking values in the open 
interval (0,1) that is λ: S          (0,1) But, not infinitesimal

F(x ⋀ y) = { 1 if x ⋀ y = *

∏ λi  
n

-n
if x ⋀ y = * * * x(-n)...x(0)...x(n) * * *

Recall S is a finite alphabet and denote λi = λ(x(i))

And we form the metric:

d(x,y) = { 0
F(x ⋀ y)

if x = y 
otherwise



Some Notes

• It is a simple exercise to check this is a metric 
on the space SZ

• This metric satisfies the nonarchimedean or 
ultra metric inequality

• Great advantage using Grossone: we can use 
configurations that agree on infinite intervals, 
and are infinitesimally close to each other.

d(x,y) ≤ max{d(x,z), d(z,y)}



Open Sets
C(-n,n,x[-n,n]) = {x ∈ SZ | x[-n,n] = w}, where |w| = 
(2n+1)}

The disk of radius ε around x is     
C[-n,n](x) = C(-n,n,x[-n,n]) 

Note n is a natural number -n ≤ 0 ≤ n and possibly 
infinite.  

A quantity w = x[-n,n] represents a word in the interval    
[-n,n] and of length 2n+1.

It is allowable for n to be an infinite number, 
for example      - k, where k is some natural number.1

In this case we obtain an open disk of infinitesimal radius



More About Open Sets
• To have an open disk of radius ε, the values of 
λ must first be defined (and assigned).  

• Hence, for example, if  λ = 1/2  ∀ s ∊ S, then 
C[-n,n](x) is the disk of radius

• If n is infinite, then ε is infinitesimal

• Since this metric is nonarchimedean, given 
any two disks, either one contains the 
other or they intersect trivially

ε = (1/2)(2n+1)



And Still More

Theorem: |SZ | = |S|2     + 11

Recall:

Corollary: The open disk C[-n,n](x) around x contains

|S|2(    - n)1
Elements

Proof: Follows directly from the Theorem

n = 2
2-2 0

1 -21 -2

* *** ** * * *... ...*
|S|(    - 2)1 |S|(    - 2)1

-1 1

|S|2(    - n)1 choiceschoices



Classes of One-Dimensional CA

• Necessary to Study the Forward Iterates of 
the CA function.

• Will allow us to compute how many (now 
possible with Grossone) configurations 
equal or match that of a given initial 
configuration. 

Understanding the Dynamics



Let’s Do it!
Define:  
Bm,n(x) = {y | f i(y)[m,n] = f i(x)[m,n] ∀i ∈ N0, m≤0≤n}

Recall: f i(y)[m,n] represents the ith iteration of a 
word, around (not necessarily centered) the 0 
position.  That is, a center window.  
Note that the CA function f is first applied to the 
entire configuration x (or y) and then restricted to 
the interval [m,n]
Also Note that, due to the Infinite Unit Axiom, m can 
equal -   +k and, similarly, n can equal    -k for some 
finite integer k ≥0  (not necessarily the same value k).

1 1



Hence
• The Dynamical Analysis of Cellular 

Automata presented herein is based on 
using the Infinite Unit Axiom to count the 
number of elements in the Bm,n classes.

• This gives us the precise number of 
configurations that will equal an initial 
configuration upon forward evolution 
(iteration) of the CA function.



Defining the Classes

1. f ∈ A  if there is a Bm,n(x) that contains at 
least              elements for some finite 
integer k ≥ 0

2. f ∈ B  if there is a Bm,n(x) that contains at 
least              elements for some finite 
integer k ≥ 0, 0 < α < 2 and α not an 
infinitesimal  but f ∉ class A.

3. f ∈ C  otherwise.

|S|2    - k1

|S|α    - k1



Two Resulting Theorems

Theorem A: If there exists a Bm,n(x), for cellular 
automaton f, that contains a disk of non-infinitesimal 
radius, then f ∈ A

Theorem B: If f ∈ A  then there exists a Bm,n(x) 
class that contains a disk (of non-infinitesimal 
radius).



Examples

F(a,b,c) = { 1  if a=b=c=1
0  otherwise

Here, all 
configurations go 
to 0 except the 
configuration of 
all 1’s

By Theorem A, this cellular automaton 
belongs to class A



The Famous Shift Map
The left shift is a cellular automaton of range 1 and 
defined by σ(xi) = xi+1

This is the  automaton that shifts all configurations 
one unit to the left: 

01 10 1 1 111001 0 1
x(0)

σ(x)= 00 11 1 1 011100 1

x =

...

...

...

...

Obviously, all configurations y ∈ Bm,n(x) would have to
agree with x to the right and out to     and at the 0th

place
1



The Shift Map Continued

Hence, there are at most 
elements, for some k ≥ 0 in any Bm,n(x) 
and σ must be in Class B. 

Since all configurations y ∈ Bm,n(x) would have to
agree with x to the right and out to    and at the 
0th place:

1

|S|     - k1



Modulo Sum Rules
Modulo sum (Additive Cellular Automata)

F(a,b,c) = (b+c) mod 2

Some examples for the binary 

alphabet S = {0,1}:

F(a,b,c) = (a+c) mod 2

a cb

a b c

Range = 1

Again, Range = 1



Modulo CA Maps
F(a,b,c) = (a+c) mod 2

01 10 1 1 111001 0 1
x(0)

f (x)= 11 11 0 0 10111 0

x =

...

...

...

...

01 10 1 1 0010f 2(x)= ... ...

The way the CA is defined shows that the 
automaton generated, by F does not contain an 
open ball and hence does not belong to class A 
Therefore it must belong to class  B U C .



And .... Future Work

• Construct an example(s) of a Class 3 cellular 
automata.  Possibly show that the modulo 2 
rule does not belong to class B.  Another 
possible example would be a cellular automata 
that exhibits universal computation, such as 
Wolfram rule 1501 

• Develop a finer distinction of classes using 
Grossone

• Develop an algorithm for membership in each 
of these classes.

1 See Wolfram, S., A New Kind of Science


