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An outline of the lecture

An outline of the lecture

This lecture consists of three parts as follows:

1 SECTION 1. What are fractals?

2 SECTION 2. The Sierpinski tetrahedron in higher dimensions.

3 SECTION 3. The Sierpinski curve.
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1. What are fractals? 1.1. A celebrated example of fractal: the Mandelbrot set

A celebrated example of fractal: the Mandelbrot set

Fractals are geometrical objects that display “self similarity” on all
scales (i.e. they exhibit not necessarily exactly the same structure, but
the same “type” of structures on all scales).

Figure: The Mandelbrot set M, which has been labeled “the most complex object in
mathematics”, is a compact set contained in the closed disc D2(0) ⊂ C.
If fc(z) := z2 + c, then M :=

{
c ∈ C

∣∣ the sequence (fc(0), fc(fc(0)), fc(fc(fc(0))), . . .)
does not diverge

}
.
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1. What are fractals? 1.2. Other examples of fractals. The Sierpinski Carpet.

Other examples of fractals. The Sierpinski Carpet.

To obtain the Sierpinski Carpet C, we construct a sequence of polygons
{

Cn
}

n as
follows:

0 We start from the (black) unitary square C0 := [0, 1]× [0, 1].
1 To obtain C1 we take away from C0, the WHITE central square

[1/3, 2/3]× [1/3, 2/3]. So C1 consists of 8 small square of side 1/3.

2 We divide each of the 8 squares that make up C1 into 9 smaller squares and
remove the central one. Thus, C2 will be composed of 64 squares of side 1/9.

3 So on for C3, C4, etc.

Figure: The first four steps in the construction of the Sierpinski Carpet C.
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1. What are fractals? 1.2. Other examples of fractals. The Sierpinski Carpet.

The Sierpinski Carpet.
Now, the Sierpinski Carpet C is defined as the limit

C := lim
n→+∞

Cn,

i.e. there exists a unique compact set C ⊂ R2 which is the limit of the
compact sets Cn. Moreover, note that

C =
⋂
n∈N

Cn.

The area of Cn, for example, is

Area(Cn) =

(
8
9

)n

,

and we can easily deduce that

Area(C) = lim
n→+∞

Area(Cn) = lim
n→+∞

(
8
9

)n

= 0.

This means that C is a boundary set, i.e. it has empty interior.
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1. What are fractals? 1.2. Characteristics and methods of study

Characteristics and methods of study

The word “fractal" contains (one of) the most important characteristic of
fractals. What is it?
It was first used by Benoît Mandelbrot in 1975, and it comes from the
Latin fractus which means “broken" or “fractured" or also “ratio".
Erroneously, many people think that this term is due to the fractured
aspect of fractals, instead Mandelbrot coined it to extend the concept of
theoretical fractional dimensions to geometric patterns in nature.

A fractal dimension is an index associated to a fractal shape that would
measure its complexity by a positive real (usually non integer) number.

Several types of fractal dimension can be measured theoretically and
empirically (more than 20, like box counting dimension, Cech dimension,
Packing dimension, etc.), the most important one is the Hausdorff
dimension. They agree on some classical fractals, but they are not
equivalent.
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1. What are fractals? 1.2. Characteristics and methods of study

Characteristics and methods of study

Mathematicians are in disagreement about how the concept of a fractal
should be formally defined. But there are some required key-features on
which there is a general agreement, the most important of them is an
infinitely self-similarity (distinguished in exact, quasi, statistical,
qualitative self-similarity) of the object (not necessarily geometric).
Mandelbrot himself, by a famous sentence, summarized it as

“beautiful, damn hard, increasingly useful. That’s fractals."

(B. Mandelbrot)

Currently, fractal studies are essentially exclusively computer-based.

Except the fractal dimension, no many other tools, indices or parameters
are used to study fractals. A good tool seems that to apply some
computational system dealing with infinities and infinitesimals, as we will
see soon.

Fabio Caldarola (UNICAL) Fractals via supercomputing September 9, 2017 7 / 39



1. What are fractals? 1.2. Characteristics and methods of study

Characteristics and methods of study

Mathematicians are in disagreement about how the concept of a fractal
should be formally defined. But there are some required key-features on
which there is a general agreement, the most important of them is an
infinitely self-similarity (distinguished in exact, quasi, statistical,
qualitative self-similarity) of the object (not necessarily geometric).
Mandelbrot himself, by a famous sentence, summarized it as

“beautiful, damn hard, increasingly useful. That’s fractals."

(B. Mandelbrot)

Currently, fractal studies are essentially exclusively computer-based.

Except the fractal dimension, no many other tools, indices or parameters
are used to study fractals. A good tool seems that to apply some
computational system dealing with infinities and infinitesimals, as we will
see soon.

Fabio Caldarola (UNICAL) Fractals via supercomputing September 9, 2017 7 / 39



1. What are fractals? 1.3. Fractals in nature, techonology and applications

Fractals in nature, techonology and applications

Fractal features are found in many natural phenomena like
snowflakes, crystals, ocean waves, lightning bolts, trees, algae;
vegetables as broccoli, pineapple, or animal coloration patterns;
coastlines, mountain range, fault lines, river networks;
proteins, DNA, blood and pulmonary vessels, and many others.

Fractal are also extensively applied/studied
chaos theory (the graphs of most chaotic processes are fractal);
in technology (fractal antennas, transistors, digital imaging,
computer graphics, etc.);
in statistics and in social sciences;
in economy and, in particular, in the analysis of financial markets1;
medicine, neuroscience, psychology;
in seismology, search and rescue;
music and music generation, study of languages and many others.

1For example, some old models based on the Gaussian normal distribution were
recently put into question and contested in favor of new fractal ones; famous and
clamorous disputed cases are related to the theories of Nassim N. Taleb.
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1. What are fractals? 1.4. Some references on fractals

Some classical references on fractals

EDGAR G. Measure, Topology, and Fractal Geometry. Second Edition.
New York: Springer; 2008.

FALCONER K. Fractal Geometry. Mathematical Foundations and
Applications. Third Edition. Chichester (UK): John Wiley & Sons; 2014.

FALCONER K. The geometry of fractal sets. Cambridge University Press,
Cambridge Tracts in Mathematics, 1985.

FALCONER K. Techniques in Fractal Geometry. Chichester (UK): John
Wiley & Sons; 1997.

KIGAMI J. Analysis on Fractals. Cambridge University Press, Cambridge
Tracts in Mathematics, 2001.

MANDELBROT B.B. The Fractal Geometry of Nature. W. H. Freeman and
Company, 1982.
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1. What are fractals? 1.5. Possible applications of Sergeyev’s system.

Possible applications of Sergeyev’s system

Some possible new applications of the Grossone system:
Fractal geometries.
On the topic there more than 15 papers by Y.D. Sergeyev himself
and other authors.
Among them the following, on which will be based Section 2 of
this lecture.

C. F. Evaluating the exact measures of the Sierpinski d-dimensional
tetrahedron. Submitted.

Space-filling curves.
The following is the basis for Section 3 of the lecture.

C. F. The Sierpinski curve viewed by numerical computations with
infinities and infinitesimals. Applied Mathematics and Computation
(2017) (in press).
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2. The Sierpinski tetrahedron in higher dimension

SECTION 2.
The Sierpinski tetrahedron in higher dimension

Sierpinski Tetrahedron metal sculpture
Breckenridge, Minnesota (USA)
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2. The Sierpinski tetrahedron in higher dimension 2.1. The Sierpinski gasket

The Sierpinski gasket

The Sierpinski gasket is defined as the limit of the sequence of
polygons

{
∆2

n
}

n∈N, whose first steps are the following

It has been constructed as a curve by W. Sierpinski one hundred
years ago, but it appeared as a decorative pattern many centuries
before, for example in Italian medieval art (e.g. the Cosmati
mosaics), and in several Roman churches and Basiliche from the
11th century.
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2. The Sierpinski tetrahedron in higher dimension 2.1. The Sierpinski gasket

Sierpinski in medieval Roman basiliche: some examples
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

The Sierpinski d-dimensional tetraedron

The d-dimensional generalization of the Sierpinski gasket starts from
∆d

0 , the unitary d-simplex or unitary d-tetrahedron.
The standard d-simplex Sd , widespread in many areas of mathematics
like singular homology, which is the convex hull of the standard basis
(1,0, . . . ,0), . . . , (0, . . . ,0,1) of Rd+1, i.e.

Sd :=

{
(x0, . . . , xd ) ∈ Rd+1

∣∣∣∣∣
d∑

i=0

xi = 1 and xi > 0 for all i = 0, . . . ,d

}
,

differs from ∆d
0 because its edges has length

√
2.

We recall that

the d-volume of a regular d-simplex of edge length l is
√

d+1
d!
√

2d
· l d ;

the number of the k -faces (0 6 k 6 d) of a d-simplex is given by

the binomial coefficient
(d+1

k+1

)
.
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

The Sierpinski d-dimensional tetrahedron

The sequence
{

∆d
n
}

n in defined in a similar way as for d = 2:

∆d
1 is the union of d + 1 regular tetrahedra of side 1/2, each one

built in a corner of ∆d
0 ;

then we repeat a copy of ∆d
1 , scaled by ln−1 = (1/2)n−1, in each

small tetrahedron of side ln−1 := (1/2)n−1 constituting ∆d
n−1,

or, equivalently, we replicate a copy of ∆d
n−1, scaled by l1 = 1/2, in

each of the d + 1 tetrahedrons of side l1 = 1/2 composing ∆d
1 .

The first three steps, in the case d = 3, are, for example, the following
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

The Sierpinski d-dimensional tetrahedron

Definition 2.1

For all integers d > 2 and n > 0, let vd,d
n be the d-volume of ∆d

n . Moreover, if
0 6 k < d , let vd,k

n be the k -volume of the k-dimensional elements lying on
the (d − 1)-dimensional boundary surface of ∆d

n .

Proposition 2.2

For all n > 0 and d > 2, we have

vd, k
n =


√

k + 1
k !
√

2k
·
(

d + 1
k + 1

)
·
(

d + 1
2k

)n

if 1 6 k 6 d ,

(d + 1)n+1 + d + 1
2

if k = 0.

(1)
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

The Sierpinski d-dimensional tetrahedron

If we denote by dim(∆d ) the fractal dimension of ∆d , d > 2, it is simple
to prove the following

Theorem (J. Kim and H. Kim, 2001)
For every d > 2

dim(∆d ) =
ln(d + 1)

ln 2
= log2(d + 1).

Definition
For every d > 2 and 0 6 k 6 d , we pose

vd ,k
∞ := lim

n→+∞
vd ,k

n . (2)
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

The Sierpinski d-dimensional tetrahedron

Observations:

(1) The limit (2) is zero, or a finite real number > 0, or +∞.

(2) vd,k
∞ is a nonzero finite number ⇔ k > 2 and d = 2k − 1 ⇔
⇔ dim(∆d ) is an integer (i.e. in very few special cases).

(3) Almost all vd,k
∞ are zero or +∞. We can not distinguish

zeros from zeros, and +∞ from +∞,

although they arise and have completely different meanings one
from another.

(4) More precisely, if we fix d ≥ 2, the number of occurrences of +∞ [of
zero] in the set

{
vd,k
∞ |0 6 k 6 d

}
is equal to dlog2(1 + d)e

[1− blog2(1 + d)c, respectively].

It is visually convenient to collect the explicit values of vd,k
∞ in the following
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2. The Sierpinski tetrahedron in higher dimension 2.2. The Sierpinski d-dimensional tetraedron

Table 1: Some of the values of the limit (2) in dependence from d and k , until
the dimension d = 8 and for d = 15,32,63,127. In the missing lines the
values of vd,k

∞ are obvious.

d dim
(

∆d) vd,0
∞ vd,1

∞ vd,2
∞ vd,3

∞ vd,4
∞ vd,5

∞ vd,6
∞ vd,7

∞ vd,8
∞ . . .

2 log2 3 +∞ +∞ 0 − − − − − − . . .
3 2 +∞ +∞

√
3 0 − − − − − . . .

4 log2 5 +∞ +∞ +∞ 0 0 − − − − . . .
5 log2 6 +∞ +∞ +∞ 0 0 0 − − − . . .
6 log2 7 +∞ +∞ +∞ 0 0 0 0 − − . . .
7 3 +∞ +∞ +∞ 35

3
√

2
0 0 0 0 − . . .

8 log2 9 +∞ +∞ +∞ +∞ 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 4 +∞ +∞ +∞ +∞ 91
√

5
2 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31 5 +∞ +∞ +∞ +∞ +∞ 18879
√

3
10 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63 6 +∞ +∞ +∞ +∞ +∞ +∞ 3235501
√

7
30 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127 7 +∞ +∞ +∞ +∞ +∞ +∞ +∞ 5957094385

84
0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2. The Sierpinski tetrahedron in higher dimension 2.3. A provocative example from Pirahã culture

A provocative example from Pirahã culture.
The Pirahã are an indigenous people of the Amazon Rainforest in Brazil. They number 200 or
300 individuals, and their language and culture are very interesting for researchers in linguistics,
psychology, etc., because have a number of unusual features.
For example, it is easy to read titles about them like “The language without numbers”; but
actually, they have (only) the concepts of “one”, “two”, and “many” for each quantity > 2 (and
“nothing”).

A (provocative) question: Assume that a Pirahã men understood what I said so far; How would
he write the entries in the Table 1? Like the ones below?

d vd,0
∞ vd,1

∞ vd,2
∞ vd,3

∞ vd,4
∞ vd,5

∞ vd,6
∞ vd,7

∞ vd,8
∞ . . .

6 m m m 0 0 0 0 − − . . .
7 m m m m 0 0 0 0 − . . .
8 m m m m 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 m m m m m 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 m m m m m m 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63 m m m m m m m 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Actually, the red m are not so “many” as the blue m !!!
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2. The Sierpinski tetrahedron in higher dimension 2.4. The sequences vd,k
n adopting the new numerical system

The sequences
{

vd ,k
n
}

n adopting the new numerical system

Now it is obvious that, choosing any numerical system with infinities
and infinitesimals, we get a richer table than Table 1 (and Table 2!!).
Adopting Sergeyev’s system, and executing©1 steps in the
construction of ∆d , we obtain the following values for the related
k -volumes

vd ,k
©1 =

√
k + 1

k !
√

2k

(
d + 1
k + 1

)
·
(

d + 1
2k

)©1
(3)

in the case 1 6 k 6 d , and

vd ,0
©1 =

d + 1
2
· (d + 1)©1 +

d + 1
2

(4)

for k = 0 (they come from Proposition 3.2).

In this way we obtain a table rich in details as the following
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2. The Sierpinski tetrahedron in higher dimension 2.4. The sequences vd,k
n adopting the new numerical system

Table 3: The first explicit values of vd,k
©1 , until the dim. d = 7 and for k 6 4.

d vd,0
©1 vd,1

©1 vd,2
©1 vd,3

©1 vd,4
©1 . . .

2
3

2
· 3©1 +

3

2
3

(
3

2

)©1 √
3

4

(
3

4

)©1
− − . . .

3 2 · 4©1 + 2 6 · 2©1
√

3
1

6
√

2

(
1

2

)©1
− . . .

4
5

2
· 5©1 +

5

2
10

(
5

2

)©1 5
√

3

2

(
5

4

)©1 5

6
√

2

(
5

8

)©1 √
5

96

(
5

16

)©1
. . .

5 3 · 6©1 + 3 15 · 3©1 5
√

3

(
3

2

)©1 √
5

2
√

2

(
3

4

)©1 √
5

16

(
3

8

)©1
. . .

6
7

2
· 7©1 +

7

2
2570

(
7

2

)©1
420
√

3

(
7

4

)©1 35

3
√

2

(
7

8

)©1 7
√

5

32

(
7

16

)©1
. . .

7 4 · 8©1 + 4 28 · 4©1 14
√

3 · 2©1
35

3
√

2

7
√

5

12

(
1

2

)©1
. . .

. . . . . . . . . . . . . . . . . . . . .
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2. The Sierpinski tetrahedron in higher dimension 2.4. The sequences vd,k
n adopting the new numerical system

The sequences
{

vd ,k
n
}

n adopting the new numerical system

We have already seen that many values of vd ,k
∞ (i.e. entries of Table 1)

coincide among them, being equal to zero or to +∞.
So, the following problem arises spontaneously:

Problem 2.3

The numbers vd ,k
©1 expressed in new system, are all distinct?

In other words, are coincident entries in Table 3?

The elements vd , k
©1 , which carry with them rich information about their

original generating sequence, seem, at first sight, quite different from
each other.

To prove that they are all effectively distinct, is not a trivial issue; for
instance, when k ,h > 1, it is equivalent to the following problem
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2. The Sierpinski tetrahedron in higher dimension 2.4. The sequences vd,k
n adopting the new numerical system

The sequences
{

vd ,k
n
}

n adopting the new numerical system

Problem 2.4
Find all integer solutions t ,d ,h, k ∈ N of the following system

√
k + 1

k !
√

2k
·
(

d + 1
k + 1

)
=

√
h + 1

h!
√

2h
·
(

t + 1
h + 1

)
d + 1

2k =
t + 1

2h

(5)

with t > d > 2, 1 6 h 6 t and 1 6 k 6 d .

To prove the nonexistence of such solutions of a Diophantine system as (5),
is a non trivial problem; for example, by using the most powerful scientific
computational software available today, like Mathematica

r

11.0 by Wolfram
Research Inc., or many others, it is not possible to obtain any answer except
for very small values of t cause the complexity of (5).
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2. The Sierpinski tetrahedron in higher dimension 2.5. Two equivalence definitions in the new system

Two equivalence definitions in the new system

Hence we try to solve Problem 2.3 theoretically, and for this purpose
we pose the following

Definition

Let α and β be any positive quantities expressed in the new
computational system.

(i) α and β are said of the same order (in symbols ord(α) = ord(β), or
α ∼ord β) if their quotient is finite but not infinitesimal.
In case α, β are both infinite or infinitesimal quantities, they are
also called infinities of the same order or infinitesimals of the
same order, respectively.

(ii) α and β are said equivalent (in symbols α ∼eq β, or simply α ∼ β)
if their quotient is 1 up to infinitesimals. As before, in case α, β are
infinite or infinitesimal quantities, they are also called equivalent
infinities or equivalent infinitesimals, respectively.
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2. The Sierpinski tetrahedron in higher dimension 2.5. Two equivalence definitions in the new system

Two equivalence definitions in the new system: some examples

Example

(1) Assume that αi has the form ai,ni ©1
ni+ai,ni−1©1 ni−1+ . . .+ ai,li ©1

li for i = 1, 2,
where ai,ji ∈ R, ni , li ∈ Z, lji 6 ji 6 nji for all i = 1, 2, and assume that the leading
coefficients a1,n1 and a2,n2 are different from zero.
Then ord(α1) = ord(α2) if and only if n1 = n2 and in particular they are infinities of the
same order if n1 = n2 > 0 or infinitesimals of the same order if n1 = n2 < 0. Moreover,
α1 and α2 are equivalent if and only if n1 = n2 and a1,n1 = a2,n2 .

(2) Assume now that βi = ri · bi
©1 , where ri , bi are nonzero real number, i = 1, 2.

Then ord(β1) = ord(α2) if and only if b1 = b2 and they are infinities or infinitesimal
depending on whether the absolute value of b1 and b2 is greater or less than one.
Note moreover that β1 ∼eq β2 if and only if b1 = b2 and r1 = r2.

(3) If d is any integer > 2, then (d + 1)©1 +5 has the same order of
vd, 0
©1 = d+1

2 · (d + 1)©1 + d+1
2 , but they are not equivalent;

instead (1/2) · (d + 1)©1 +1 is an infinity equivalent to vd, 0
©1 , but they are not equal

numbers because they differ by a finite quantity.
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2. The Sierpinski tetrahedron in higher dimension 2.5. Two equivalence definitions in the new system

Two equivalence definitions in the new system

The introduced relations are equivalence relations; we want to
study their equivalence classes under ∼ord or ∼eq.

We define, for all d > 2,

V d :=
{

vd, k
©1

∣∣∣ 0 6 k 6 d
}

,

W d :=
d⋃

i=2

V i , and

W :=
⋃
d>2

V d .

We denote the equivalence class of vd , k
©1 in W , with respect the

relation ∼ord or ∼eq, by[
vd , k
©1

]
ord

and
[
vd , k
©1

]
eq
,

respectively.
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2. The Sierpinski tetrahedron in higher dimension 2.6. The main theorem on equivalence classes

The main theorem on equivalence classes

As regards the two equivalence relations ∼ord, ∼eq and the
previous defined sets V d , W d ,W , we can ask

How many classes [ · ]ord and [ · ]eq are in V d , W d ,W?

Have these classes an infinite or a finite number of elements?

There is a particularly convenient choice of representatives?

Etc.

We now have all the necessary definitions to state in the nest
frame the main theorem of the section.
After some preliminary results, we obtained in fact a theorem,
which gives a complete description of all equivalence classes for
both relations (and answers to questions like the previous ones).
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which gives a complete description of all equivalence classes for
both relations (and answers to questions like the previous ones).
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2. The Sierpinski tetrahedron in higher dimension 2.6. The main theorem on equivalence classes

Theorem

(i) Let d > 2 and denote by νd the number of equivalence classes in the set W d with respect
the equivalence relation ∼ord . Then

νd =


3 if d = 2,

3d2 + 9d + 6
8

+
(−1)d

4
·
⌈

d + 1
2

⌉
if d > 3.

Moreover, a system of minimal representatives of the classes in W is

RW :=
⋃{

V d ∣∣ d even > 2 or d = 3
}

∪
{

v t, h
©1

∣∣∣∣ t odd > 5 and h = 0 or
t + 3

2
6 h 6 t

}
,

and for every v t, h
©1 ∈ RW , its equivalence class is[

v t, h
©1

]
ord

=

{
v 2j−h(t+1)−1, j
©1

∣∣∣∣ j ∈ N0, j > h
}
.

(ii) Each equivalence class in W under the relation ∼eq consists of a single element.
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2. The Sierpinski tetrahedron in higher dimension 2.7. Some consequences of the main theorem

Some consequences of the main theorem

A trivial consequence of part (ii) of the preceding theorem, is the
following

Corollary 2.5

The elements vd , k
©1 are all distinct for every d > 2 and 0 6 k 6 d.

However, the main theorem tells us much more information than
Corollary 2.5; for example

W is clearly a totally ordered set, but the explicit relation is
not obvious at first sight.
Another consequence of the theorem is an explicit formula for
the order relation.
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2. The Sierpinski tetrahedron in higher dimension 2.8. Examples of new researches and further investigations

Hints and examples of new researches and further
investigations

Using Sergeyev’s system, there are (important) differences in
dependence of the starting point of sequence.

this means that for each d > 2, there is not only a unique
d-dimensional Sierpinski tetrahedron, but we can observe a family
of infinitely many d-dimensional Sierpinski tetrahedra.

We denote by ∆d
r ,n, r ,n ∈ N0, d > 2, the d-dimensional polytope

resulting from n iterations starting from ∆d
r .

The definition of vd , k
r ,n and vd , k

r ,©1 are clearly the same as those of

vd , k
n and vd , k

©1 , but starting from ∆d
r rather than ∆d

0 .
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2. The Sierpinski tetrahedron in higher dimension 2.8. Examples of new researches and further investigations

Hints and examples of new researches and further
investigations

Hence we can write the generalizations of (1) and (4) for all r ∈ N0
as follows

vd , k
r ,©1 =

√
k + 1

k !
√

2k

(
d + 1
k + 1

)(
d + 1

2k

)r

·
(

d + 1
2k

)©1
in the case 1 6 k 6 d , and

vd , 0
r ,©1 =

(d + 1)r+1

2
· (d + 1)©1 +

d + 1
2

if k = 0.
In such a case we have to replace two-dimensional with
three-dimensional tables, and to consider slightly more
complicated problems in 6 rather than in 4 variables.
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3. The Sierpinski space-filling curve 3.1. Introduction

The Sierpinski space-filling curve (only a sketch)

The Sierpinski curve is one of the most known space-filling curves
and one with the highest number of applications.

There are several different constructions for the Sierpinski curve.

Our first construction is the one obtained by dividing repeatedly a
square (with side of length a > 0).
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3. The Sierpinski space-filling curve 3.1. Introduction

The Sierpinski space-filling curve

Another construction comes from the plane tassellation with
regular octagons and squares

This slightly kind of Sierpinski curve, which we call second
construction, has many applications in electronic, signal theory,
computer science, because of its high symmetry.
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3. The Sierpinski space-filling curve 3.2. Some (precise) measures in the new system

Some (precise) measures, relative to the fractal
curves, expressed in the new system

For the first construction of the curve:

lk ,©1 =
2k · 4a

3

(
1 +
√

2
)
· 2©1 − a

6 · 2k

(
2−
√

2
)
· 2−©1 ,

Ak ,©1 =
5

12
a2 − 7a2

96 · 4k · 4
−©1 .

For the second construction:

l ′k ,©1 = 2k+3a
(√

2− 1
)
· 2©1 ,

A′k ,©1 =
a2

3

(
7− 4

√
2
)
− a2

6 · 4k

(√
2− 1

)
· 4−©1 .
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3. The Sierpinski space-filling curve 3.3. Power series in the new system

Some power series in the new system arising from
comparisons of the curves

Making comparisons inside the same construction of the curve, or
between the two different ways to build them, we obtain some
interesting power series expansions expressed in the new system.
These expansions represent highly precise results and carry
much information about the original objects.
An example from the first curve:

lk ,©1
lh,©1

= 2k−h +
(

2k−2h − 2−k
)

·
∑
n>1

2−(2n−1)h

 2−
√

2

8
(

1 +
√

2
)
n

·
(

4−©1
)n
.
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3. The Sierpinski space-filling curve 3.3. Power series in the new system

Some power series in the new system arising from
comparisons of the curves
Other examples:

Ak,©1

Ah,©1
= 1 +

(
1
4h −

1
4k

) ∑
n>1

(
7
40

)n 1
4(n−1)h ·

(
4−©1

)n
.

Ak,©1

A′k,©1
=

35 + 20
√

2
68

+
24
√

2− 213
682 ·

∑
t>1

2−(1+2k)t

(
1 + 3

√
2

17

)t−1

·
(

4−©1
)t
.

Observations:

Our series are completely different from standard power series and from the
series of classical analysis in general, because, even if the word “infinitesimal” is
ubiquitous, it has a different meaning.

For example, a convergent series
∑

an is, of course, necessarily originated by
an infinitesimal sequence

{
an
}

n, but its elements are usual real or complex
numbers and not infinitesimal objects properly said.
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3. The Sierpinski space-filling curve 3.3. Power series in the new system

Hints for further investigations

The apparition of grossone-based series gives rise to many
questions about their behavior, their properties and
consequences, their use and their applications, etc.

For instance:

When does such a series converge, diverge, is irregular?

And if it “converges”, what converges?

When is its sum a real number, an infinitesimal number, a “mixed”
expression, etc.?

The same methodology adopted here for Sierpinski curve, can be
used for a large variety of different geometrical objects (and in
several other contests).
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