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Learning from Data and Machine Learning 



Three ways of model building 

Model 

input 

output 

Useful for what-if questions 
predictions 
Input optimization 



1) Explicit and rigid models 

Model 

(Volume, Temperature) 

Pressure = N k T / V 

e.g., Physics: Boyles’s law: 
 
"For a fixed mass of gas, at a constant 
temperature, the product (pressure x 
volume) is a constant.“ 
 
PV = N k T 



2) Parametric, with statistics 

Model 

Input voltage 

Output voltage 

? 

? 

Ronald Fisher in 1913 

e.g., Maximum likelihood estimation 



3) Non-parametric models, neural 
nets, modern ML  (1960++, 1985, 2010) 

Model 

(Movie, Viewer) 

Recommendation 

Eduardo Caianiello, 1961 

Very flexible, no rules elicitation, 

Only need abundant (relevant) data 

Ivakhnenko, Alexey (1965). Cybernetic 
Predicting Devices. Kiev: Naukova Dumka. 



The dream 

"give computers the ability to learn without 
being explicitly programmed" (Arthur Samuel, 
1959). 

 The Tool 

Weights of the flexible model are determined 
via optimization, but aiming at generalization 
(learning is mean not end) 

https://en.wikipedia.org/wiki/Arthur_Samuel


Movies and Viewers 
• Movie1 = (1.2, 3.3, 2.1, …., …., …., …., 7.7) 
• Movie2 = (3.2, 5.6, 1.2, …., …., …., …., 3.4) 

 
• Viewer1 = (6.2, 5.6, 7.2, .… 2.1) 
• … 
 
Map to vectors of the same dimensions  m,  v  
 
Obtain recommandation by simple scalar product  
 

Objective =  Sum_data_i (m_i . v_i  - r_i) 
2  

Minimize to determine vectors! 



Movies and Viewers 



Setup of the Machine Learning problem 



Perceptrons 
(linear 

models) 

MLP with 
many layers 

and 
nonlinearities 

SVM Support 
Vector 

Machines 

Depp Leaning 
(back to MLP) 

? 

1960 

1990 

1985 

2010 



Linear models 
Most right-handed people are linear thinking, think inside the box. 



Linear models 

• Just below the mighty power of optimization lies the 
awesome power of linear algebra. 

Data about price and power of different car models. A linear model (fit) is shown. 



Linear regression 

• A linear dependence of the output from the input 
features  

 f(x) = w1 x1 + w2 x2 + …   + wd xd. 

 

• The model is simple, can be easily trained,  

• The computed weights in the linear summation 
provide a direct explanation of the importance of the 
various attributes 



Best (linear) fit, by Least Squares  
optimization 

• Errors can be present (every physical quantity can be 
measured only with a finite precision) 

 

 

• Determine optimal weight vector w so that: 

approximates as closely as possible the experimental data 

 

• minimizes the sum of the squared errors (least squares 
approximation): 

 



Biological motivations of linear models 

Neurons and synapses in the human brain 



Abstract model: the perceptron 

• Output is a weighted sum of the inputs passed 
through a final threshold function. 



Minimizing the sum of squared errors 

• If zero measurement errors and a perfect linear model: 

 set of linear equations wT xi= yi  one for each example 

 

• in real-world cases, reaching zero for the ModelError is 
impossible, and the number of data points can be much 
larger than the number of parameters d.  

 

• furthermore, the goal of learning is generalization 

(and requiring zero error can cause “overtraining”) 



Minimizing the sum of squared errors 

• Error is quadratic in parameters w 

 

 

• Find minimum:  

– take partial derivatives  

– equate them to 0  

 

• Obtain linear equations, typically more equations 
than examples 



Minimizing the sum of squared errors 

• From inverse to pseudo-inverse, solution is: 

 

 

 

where y = (y1; …; yL) and X is the matrix whose rows 
are the xi vectors. 

• least-square and pseudo-inverse are among the 
most popular tools in Science and Engineering 

• alternative is gradient descent 

 



An analogy in Physics 

Spring analogy for least squares fits.  

Springs connect a rigid bar to the experimental points. 

The best fit is the line that minimizes the overall potential energy of the 
system (proportional to the sum of the squares of the spring length). 



Neural networks with multiple layers 

 Quegli che pigliavano per altore altro che la natura, maestra de' maestri, 
s'affaticavano invano. 

(Leonardo Da Vinci) 



Counter-example: XOR function 
Cannot separate points with a line in two dim. 

 

 

 

 

 

 

 

But points can be separated by a plane after 
mapping them into 3D 



The biological metaphor 

• Our neural system is composed of 100 billion 
computing units (neurons) and 1015 

connections (synapses).  

• How can a system composed of many simple 
interconnected units give rise to highly 
complex activities? 

• Emergence: complex systems arise out of a 
multiplicity of relatively simple interacting 
units. 



Drawings of cortical lamination by Santiago Ramon y Cajal, each showing a vertical 
cross-section, with the surface of the cortex at the top. The different stains show the 
cell bodies of neurons and the dendrites and axons of a random subset of neurons. 



Symbolic vs. sub-symbolic paradigm 

• ”Standard” sequential computers operate in 
cycles, fetching items from memory, applying 
mathematical operations and writing results back 
to memory.  

• The intelligence of biological brains is different, it 
lies in the interconnection strengths, learning 
occurs by modifying connections (dynamical 
systems)  

• Neural networks do not separate memory and 
processing but operate via the flow of signals 
through the network connections. 



Artificial Neural Networks 

• A neuron is modeled as a simple computing unit, 
a scalar product w x (“pattern matching”) 
followed by a sigmoidal (“logistic”) function.  

• The complexity comes from having more 
interconnected layers of neurons involved in a 
complex action  (if linear layers are cascaded, the 
system remains linear) 

• The ”squashing” functions is essential to 
introduce nonlinearities in the system 

 



Multilayer Perceptrons (MLP) 
• By applying a sigmoidal transfer function to 

the unlimited output of a linear model, one 
obtains an output in [0,1] which can be 
interpreted as a probability 

• For classification, hyperplane boundaries 
become “fuzzy” 

 



Multilayer Perceptrons (MLP)(2) 

• Composing linear transformations  still 
linear functions. 

• Composing linear functions with nonlinear 
sigmoids one can approximate all smooth 
functions. One hidden layer is sufficient. 

• The first linear transformation provides a first 
”hidden layer” of outputs, the second 
transformation produces the visible outputs 
from the hidden layer. 



MLP architecture 
• MLPs are composed of a large number of 

interconnected units working in parallel and 
organized in layers with a feedforward 
information flow. 

 



MLP architecture (2) 
• The signals flow sequentially from the input to the 

output layer. 

• For each layer, each unit does the following: 

 

1. scalar product between a vector of weights and the 
vector of outputs of the previous layer;  

2. nonlinear function to each result to produce the 
input for the next layer 

 

• A popular transfer function is the   

     sigmoidal (or “logistic”) function 



MLPs are universal approximators 

• What is the flexibility of the MLP architecture to 
represent input-output mappings? 

 
• An MLP with one hidden layer and a sufficient 

number of hidden nodes can approximate any 
smooth function to any desired accuracy. 

 
• MLPs are very flexible (“non-parametric”) 

models: they can approximate any smooth input-
output transformation. 



Analyzing a neural network output with LIONoso Sweeper. The output 
value, the energy consumed to heat a house in winter, is shown as a function of 
input parameters. Color coded output (left), surface plot (right). Nonlinearities are 
visible. 



Error Backpropagation 

• How do we learn optimal MLPs from examples? 

 

1. take a ”guiding” function to be optimized (e.g., sum-
of-squared errors on the training examples) 

 

1. Use gradient descent with respect to the weights to 
find the better and better weights 

 

1. Stop the descent when results on a validation set are 
best (if over-learning, generalization can worsen). 
Learning is not an end, but a means for generalizing. 



Backpropagation(2) 
• One needs derivatives, a simple analysis exercise. 
 
• MLP is a composition of squash functions and scalar 

products. 
• Derivatives can be calculated by using the chain rule 

for derivatives of composite functions.  
• Complexity is O(number of weights). 
• Formulas are similar to those used for the forward 

pass, but going in contrary direction, hence the term 
error backpropagation. 

• After the network is trained, calculating the output 
from the inputs requires a number of simple 
operations proportional to the number of weights. 



Batch backpropagation 
• Given an MLP, define its sum-of-squared-

differences energy as: 

 

 

1. Let the initial weights be randomly 
distributed 

2. Calculate the gradient  

3. The weights at the next iteration k + 1 are 
updated as follows 

Partial derivatives 



Bold-Driver Backpropagation 
• How do we select the learning rate ε ? If small, 

the learning time increases, if big, the energy 
oscillates wildly. 

1. If successive steps reduce E(w), ε increases 
exponentially 

2. If E(w) increases, ε decreases rapidly 
 

 
 
  
ρ is close to one (1.1) in order to avoid frequent ”accidents” σ is 
chosen to provide a rapid reduction( 0.5), and l is the minimum integer 
such that the reduced rate  succeeds in diminishing the energy 



On-line or stochastic backpropagation 

• E is a sum of many terms, one for each pattern p 

• The gradient is a sum of the corresponding partial 
gradients  

 

• In “batch” gradient descent, first the contributions             
are summed, then the small step is taken 

 

• Stochastic BP: randomly choose a pattern p and take 
a small step along a single negative             
immediately after calculating it. 



On-line or stochastic backpropagation (2) 

• Stochastic on-line backpropagation update: 

 

• where the pattern p is chosen randomly from 
the training set at each iteration and ε is the 
learning rate 

• Pros: using partial gradients is faster 

• Cons: less guarantee of convergence 



Advanced optimization for MLP training 

• Higher-order derivatives can be used to 
enhance the search. 

• Conjugate gradient and secant methods 
update an approximation of the Hessian by 
using only gradient information. 

• They are useful for problems with few weights 
(approx < 100) and requiring high precision in 
the output value. 



Statistical Learning Theory 
and Support Vector Machines 

(SVM) 

prof. Vapnik 



Linear Models: safe separation with 
margin maximization 



SVN for Linearly Separable Problems 

• Margin maximization: 

 

 

 

• After introducing Langrange multipliers for the 
constraints: Quadratic Programming 



SVM Intuition 



Nonlinear Problems: Linear 
Combination of Kernel functions 

No need to compute 



Linear Combination of Kernel 
functions 

Easily solved with Quadratic Programming 
 
But need to determine proper Kernel  (by hand !) 



SVM 

• A long period of success 

• Statistical Learning Theory (conditions for 
learning) 

• But practical difficulties to determine the 
Kernel (a lot of work is done by expert 
people, the dream of learning machines 
is not fully realized). 



Deep neural networks 

• Some classes of input-output mappings are 
easier to build if more hidden layers are 
considered. 

• The dream: feed examples to an MLP with 
many hidden layers and have the MLP 
automatically develop internal 
representations (encoded in the activation 
patterns of the hidden-layers). 



Deep Learning 

• Bengio, Yoshua (2009). "Learning Deep Architectures for AI" 
(PDF). Foundations and Trends in Machine Learning. 2 (1): 1–
127.  

• Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; 
Salakhutdinov, R.R. (2012). "Improving neural networks by 
preventing co-adaptation of feature detectors« 

• Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep 
Learning". Nature. 521: 436–444.  

G. Hinton Y LeCun GY. Bengio 

http://sanghv.com/download/soft/machine learning, artificial intelligence, mathematics ebooks/ML/learning deep architectures for AI (2009).pdf


Practical obstacles to deep MLPs 

• Partial derivatives w.r.t. the weights of the first 
layers tend to be very small, leading to numerical 
estimation problems. 

• As a result, it can happen that the internal 
representations developed by the first layers will 
not differ too much from being randomly 
generated, and leaving only the topmost levels to 
do some ”useful” work. 

• A very large number of parameters (such as in 
deep MLP) can lead to overtraining 



Deep learning 

Lately, deep learning has lead to superior classification 
results in challenging areas 

The main scheme is as follows: 

1. use unsupervised learning from many unlabeled 
examples to prepare the deep network in an initial 
state; 

2. use back propagation only for the final tuning with 
the set of labeled examples 

+ use tricks like convolutional networks (sharing of 
parameters) and proper architecture to encourage 
invariance 



Deep Learning 

Feature detectors in a frog retina (Bufo Bufo) are hard-wired 

and specialized to detect a fly at the distance that the frog could 
strike. 



Convolutional Neural Networks 



Convolutional Neural Networks 



Auto-encoders 

• Auto-encoders build internal representations in 
an unsupervised manner 

•  One builds a network with a hidden layer and 
demands that the output simply reproduces the 
input 

• Squeezing: in the hidden layer the input is 
compressed into an encoding c(x) with less 
variables than the original one 

• c(x) will be forced to discover regularities in the 
input patterns   



Auto-encoders (2) 



Auto-encoders (2.1) 

The codes produced by a 2000- 500-250-125-2 autoencoder on news stories 
by Reuters. Clusters corresponding to different topics, with different colors, 
are clearly visible (details in [187]). 



Auto-encoders (3) 

• The auto-encoder can be trained by 
backpropagation 

• Classification labels are not necessary 

• After the auto-encoder is built,  the hidden 
layer (weights and hidden units) is 
transplanted to a second network with an 
additional layer, intended for classification 

• This new network will be trained on the 
labelled examples to realize a classifier. 

 



Auto-encoders (4) 



Auto-encoders (5) 
• A chain of subsequent hidden layers by iterating 

and composing subsequent encodings c’(c(x)) 

 

 

 

 

 

 

• Appropriate numbers for the number of layers 
and the optimal number of units can be obtained 
pragmatically by cross-validation. 

• At each iteration, the 
auto-encoder derives 
a more compressed 
internal 
representation 



Advanced training methods 

Denoising auto-encoders 

• Add to each pattern x a random noise and ask 
the auto-encoding network to reconstruct the 
original noise-free pattern x. 

• This encourages the system to extract even 
stronger and more significant regularities from 
the input patterns 

 



Advanced training methods(2) 

Random dropout 

• In stochastic backpropagation training, each 
hidden unit is randomly omitted from the 
network with probability 0.5. 

• Each unit cannot rely on the presence of the 
other hidden units and is encouraged to 
identify useful information, independently of 
the other units. 

 



Advanced training methods(3) 

Curriculum learning 

 

Training examples are presented to the network 
by starting from the easiest cases and then 
gradually proceeding to the more complex ones. 

 



Gist 

• Multi-layer perceptron neural networks (MLPs) 
are a flexible (non-parametric) modeling 
architecture composed of layers of sigmoidal 
units interconnected in a feedforward manner 
only between adjacent layers. 

• Training from labeled examples can occur via 
variations of gradient descent (error 
backpropagation). 

• Although gradient descent is a weak optimization 
method, it yields successful practical results. 



Gist(2) 

• Deep neural networks composed of many 
layers are becoming effective 

• Learning schemes for deep MLP consist of: 

1. an unsupervised preparatory phase  

2. a final tuning phase using the scarce labeled 
examples. 



Gist(3) 

 

• To improve generalization, the use of 
controlled amounts of noise during training is 
effective 

 

• Increasing the effort during training pays 
dividends in terms of improved generalization 
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