ФОРМАЛЬНАЯ СПЕЦИФИКАЦИЯ АСИНХРОННЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ НАД ОБЩЕЙ ПАМЯТЬЮ

С.В. Панков

Южный федеральный университет, Ростов-на-Дону

Исследуется корректность асинхронных параллельных алгоритмов (всех его возможных вычислений над общей памятью) относительно заданных пред- и постусловий. Такая корректность гарантирует правильность результата для всех успешно завершающихся вычислений, началом которых является один из допустимых наборов входных данных. Демонстрируется подход к спецификации и обоснованию правильности асинхронных параллельных алгоритмов на основе формализма L-программ. Этот формализм включает в себя логико-математическую модель параллельных вычислений — L-программы (впервые описанные в [1]) и методы верификации L-программ [2].

Введение

Проблема обоснования функциональной корректности параллельных вычислительных алгоритмов является актуальной, особенно для систем, использующих асинхронные (неблокирующие) методы синхронизации параллельно исполняемых вычислительных процессов. В том числе это относится к перспективным системам с общей транзакционной памятью [3], в которых обеспечивается непротиворечивость результатов работы параллельных процессов. Семантика L-программ позволяет достаточно адекватно специфицировать вычисления в системах такого рода. Главной особенностью подхода на основе L-программ является его способность специфицировать и анализировать вычисления независимо от размера решаемой задачи [4]. Необходимо отметить, что здесь не затрагиваются такие свойства корректности, как отсутствие тупиков и завершаемость.

1. Основные понятия

Пусть S=(Q,T) — система переходов, где Q — множество состояний, а $T\subseteq Q\times Q$ — отношение перехода на Q. Через post[S](P) обозначим множество состояний непосредственно достижимых из $P\subseteq Q$, т.е. $post[S](P)=\{q\in Q\mid\exists q'\in Q((q',q)\in T\text{ и }q'\in P)\}$.

Множеством состояний, *достижимых из* $P \subseteq Q$ в системе переходов S за конечное число шагов, называется множество $post^*[S](P) = \bigcup_{i \ge 0} post^i[S](P)$, где $post^0[S](P) = P$, $post^{i+1}[S](P) = post[S](post^i[S](P))$.

Множество состояний $P \subseteq Q$ называется *инвариантом* системы переходов S, если для него справедливо $post[S](P) \subseteq P$ (войдя в инвариант, система S уже не сможет его покинуть). В соответствии с определением множества post[S](P) справедливо следующее *условие инвариантности*: $\forall q', q \in Q \ ((q', q) \in T \& q' \in P) \Rightarrow q \in P)$.

Через fin[S] обозначим множество заключительных состояний системы переходов S, из которых нет выхода, т.е. $fin[S] = \{q \in Q \mid \forall q' \in Q((q,q') \notin T)\}$. Пусть отношение $\{I\}S\{E\}$ выражает частичную корректность системы переходов S относительно предусловия $I \subseteq Q$ и постусловия $E \subseteq Q$. Это отношение определяется, как: $\{I\}S\{E\} \Leftrightarrow post^*[S](I) \cap fin[S] \subseteq E$ (т.е. все заключительные состояния, достижимые системой S из предусловия I, принадлежат постусловию E).

2. L-программы, как частный случай систем переходов

Множество L-программ определяется заданием многосортного языка L логики предикатов первого порядка (который также является языком некоторой предметной области). Через Q обозначим класс всех частичных (т.е. с частичными функциями) L-структур. L-программа действует на Q и работает по шагам, преобразуя одну L-структуру в другую. В отличие от обычных логических программ, L-программы могут произвольным образом переопределять значения функций и предикатов. Их работа аналогична прямому выводу в логических программах и допускает одновременное исполнение разных правил и различных конкретизаций одного и того же правила.

Перед правилом или группой правил может стоять выражение вида $\$\bar{z}$, называемое *синхронизатором*, где z – кортеж переменных из числа переменных, входящих в условия этих правил. Группу правил с синхронизатором будем называть *синхрогруппой*.

Пример 1. В качестве примера рассмотрим задачу поиска наибольшего общего делителя произвольного числа m целых положительных чисел (где $m \ge 2$). Определим для этой задачи язык предметной области L и специфицирующую L-программу $HO\mathcal{L}$. (Этот пример также предваряет следующее ниже строгое определение семантики L-программ).

Сорта: Nat — натуральные числа 1,2,...:

Loc – множество ячеек $\{b_1,..,b_m\}$, содержащих обрабатываемые числа.

Функции: $s: Loc \rightarrow Nat$ — тотальная функция, сопоставляющая каждой ячейке из Loc, содержащееся в ней значение:

- : $Nat \times Nat \rightarrow Nat$ – обычный арифметический минус.

Предикаты: _<_: *Nat*×*Nat*. – обычное арифметическое отношение меньше.

Переменные: u,v: Loc, h:: Nat.

L-программа HOД: $s(u) < s(v) \land h = s(v) - s(u) \Rightarrow s(v) = h$.

В соответствии с определяемой ниже семантикой L-программ, на каждом шаге работы $HO\mathcal{I}$ правило исполняется для некоторых пар ячеек u и v, для которых справедливо условие s(u) < s(v). При этом, содержимое ячейки v (большее значение) заменяется на s(v)-s(u) (разность большего и меньшего значений). Пары ячеек, с которыми это происходит одновременно, выбираются недетерминированно, но с таким условием, чтобы не делалось попытки записать в одну ячейку разные значения (чтобы не выполнялись противоречивые действия).

Синхронизатор уменьшает степень недетерминизма L-программы. Так, например, в L-программе HOД недетерминизм можно ограничить следующим образом: \$v,h $s(u) < s(v) \land h = s(v) - s(u) \Rightarrow s(v) = h$. Благодаря синхронизатору \$v,h, если на некотором шаге работы этой L-программы правило исполняется для пары ячеек $u = b_i$ и $v = b_j$ (где $1 \le i \le m$), то на этом же шаге оно исполнится и для всех пар ячеек $u = b_i$ и $v = b_k$ (где $1 \le k \le m$), для которых справедливо $s(b_i) < s(b_k)$. Одна ячейка с меньшим значением и все ячейки с большими (чем в первой) значениями, составляют группу пар ячеек, для которых одновременно исполняется правило. Недетерминированность остаётся на уровне

выбора ячейки с меньшим значением. Одновременное исполнение правила для нескольких таких групп пар ячеек невозможно, когда содержимое ячеек с меньшими значениями для этих групп не совпадает (из-за наличия в этом случае противоречивых действий).

Операционная семантика *L*-программ. Определим операционную семантику *L*-программ, но сначала введем некоторые понятия и обозначения. Пусть q-L-структуры из Q, C_q — множество констант для обозначения объектов L-структуры q. Пусть $r(\bar{x})$ обозначает правило L-программы $cond(\bar{x}) \Rightarrow act(\bar{x})$. Ансамблем на q, порождаемым правилом $r(\bar{x})$, назовём произвольную конкретизацию этого правила на q, т.е. запись вида $r(\bar{c})$, где $\bar{c} = < c_1,...,c_n > (c_i \in C_q$ для всех $1 \le i \le n$). Ансамбль $r(\bar{c})$ называется активным на q, если на q истинна формула $cond(\bar{c})$.

Пусть правило $r(\bar{z},\bar{v})$ входит в группу с синхронизатором \$ \bar{z} и на q активен ансамбль $r(\bar{a},\bar{c})$, где \bar{a} и \bar{c} — конкретизация соответствующих наборов переменных \bar{z} и \bar{v} . Синхрорасширением активного ансамбля $r(\bar{a},\bar{c})$ назовём множество ансамблей $\{r(\bar{a}',\bar{c}) \mid r(\bar{a}',\bar{c}) \mid a$ активен на $q\}$, где \bar{a}' — произвольная конкретизация набора переменных \bar{z} .

Атомарными действиями назовём конъюнктивные члены формулы $act(\bar{c})$, т.е. формулы вида $p(\bar{c}_p)$, $p(\bar{c}_p)$, или $f(\bar{c}_f) = b$ (здесь \bar{c}_p , \bar{c}_f , и b — конкретизация набора переменных \bar{x}_p , \bar{x}_f , и y соответственно). Активность ансамбля $cond(\bar{c}) \Rightarrow act(\bar{c})$ может привести к одновременному выполнению всех его атомарных действий. При выполнении на q атомарное действие $p(\bar{c}_p)$ устанавливает истинным p на q, $p(\bar{c}_p)$ устанавливает ложным p на q, $af(\bar{c}_f) = b$ устанавливает значение f на \bar{c}_f равным b.

Коалицией на q будем называть произвольное непустое множество активных ансамблей M, удовлетворяющее следующим трём условиям:

Условие непротиворечивости: объединение всех атомарных действий коалиции образует непротиворечивую совокупность формул.

Первое условие синхронизации: если в M входит ансамбль, порожденный некоторым правилом синхрогруппы, то и для любого другого правила этой синхрогруппы в M должен входить, хотя бы один, порожденный этим правилом, активный ансамбль (если такой существует).

 $Bторое\ условие\ синхронизации:\ если\ в\ M$ входит ансамбль, порожденный правилом синхрогруппы, то в M также должно входить всё его синхрорасширение.

Исполнение коалиции состоит в выполнении всех её атомарных действий. Шаг работы L-программы на заданной L-структуре состоит в исполнении на ней некоторой коалиции. При этом, коалиция выбирается недетерминировано. Если на q нет ни одной коалиции, L-программа завершает свою работу в q. Таким образом, L-программа задаёт систему переходов S=(Q,T), где Q — произвольное множество L-структур, замкнутое относительно шага работы L-программы, а отношение перехода T= $\{(q,q') \mid q,q' \in Q \text{ и } q' \text{ получается из } q \text{ исполнением некоторой коалиции}\}.$

3. Анализ функциональной корректности L-программ

Частичная корректность системы переходов S относительно предусловия $I \subseteq Q$ и постусловия $E \subseteq Q$ характеризует правильность системы с точки зрения вычисляемой ею функции. Допустимые входные данные функции описываются предусловием I, а соответствующий этим данным результат вычисления функции должен удовлетворять требованиям постусловия E. Установить $\{I\}S\{E\}$ можно путём проверки выполнения следующих условий корректности [2]: Существует такое множество состояний $W \subseteq Q$, что справедливо:

- 1. І⊆W (условие инициализации);
- 2. $\forall q', q \in Q ((q',q) \in T \& q' \in W) \Rightarrow q \in W)$ (условие инвариантности W);

3. W∩fin[S] <u>С</u>Е (условие завершения).

Алгоритмы из [2] позволяют получить логические формулы, выражающие в языке L отношение перехода T, множества post[S](P) и fin[S] для L-программ. Если множества I, W и E также выражаются L-формулами, то анализ функциональной корректности сводится к доказательству истинности формул логики предикатов первого порядка.

Пример 2. Обоснуем правильность HOД относительно заданных пред- и постусловий. Пусть определённый в примере 1 язык L также содержит: все обычные арифметические функции и отношения; предикат $_denum$: $Nat \times Nat$ — выражающий тот факт, что первый аргумент является делителем второго; функция s': $Loc \rightarrow Nat$ — имеет тот же смысл, что и функция s, только представляет содержимое ячеек из Loc в L-структуре q'; переменная d сорта Nat. Знаками \land , \lor , \neg , \rightarrow , \forall и \exists будем обозначать обычные логические связки и кванторы.

Пусть $W(\mathbf{D})$ обозначает формулу, выражающую тот факт, что константа \mathbf{D} (сорта Nat) является наибольшим общим делителем (н.о.д.) чисел $s(b_1),...,s(b_m)$

$$W(\mathbf{D})$$
: $\forall u(\mathbf{D} \text{ делит } s(u)) \land \forall d(\forall u(d \text{ делит } s(u)) \rightarrow d \leq \mathbf{D}).$

Эта формула утверждает, что **D** является делителем чисел $s(b_1),...,s(b_m)$ и для любого другого делителя d этих чисел справедливо $d \le D$. Формулу W(D) будем рассматривать как кандидат в инварианты, а также примем её в качестве предусловия I. В качестве постусловия E выберем формулу $\forall u(s(u)=D)$, требующую, чтобы содержимое каждой ячейки совпадало с н.о.д.

Формула FIN, выражающая множество заключительных состояний fin[S], утверждает, что условие правила L-программы $HO\mathcal{L}$ должно быть ложно для любой конкретизации её свободных переменных, и в соответствии с алгоритмом из [2], строится, как: $\forall u,v,h \neg (s(u) < s(v) \land h = s(v) - s(u))$. С учётом тотальности s на Q эта формула эквивалентна следующей формуле:

FIN:
$$\forall u, v(s(u)=s(v))$$
,

которая говорит о том, что содержимое всех ячеек должно совпадать. Формула T(s',s), описывающая связь L-структур q' и q таких, что $(q',q) \in T$ (выражающая отношение перехода), в соответствии с алгоритмом из [2], имеет следующий вид:

$$T(s',s): \forall v(s(v)=s'(v) \vee \exists u(s'(u) \leq s'(v) \wedge s(v)=s'(v)-s'(u)).$$

Эта формула утверждает, что при переходе из q' в q содержимое ячейки, либо не изменилось, либо уменьшилось на значение некоторой другой ячейки, содержимое которой меньше значения текущей ячейки. Помимо приведённых формул, будем использовать следующее ниже свойство рассматриваемой предметной области:

$$\forall d, e, e_1, \dots, e_k \in Nat(e = e_1 \pm \dots \pm e_k \land d \ \partial e \pi u m \ e_i, \ 1 \le i \le k \Rightarrow d \ \partial e \pi u m \ e.$$
 (1)

Доказательство. Пусть $W < s' > (\mathbf{D})$ — это формула $W(\mathbf{D})$, в которой вхождения функции s заменены на s'. В соответствии с приведёнными выше теоретикомножественными условиями корректности, для обоснования $\{I\}HO\mathcal{I}\{E\}$ достаточно доказать истинность следующих L-формул:

- 1. $I \rightarrow W(\mathbf{D})$ (условие инициализации $HO\mathcal{I}$);
- 2. $T(s',s) \land W \lt s' \gt (\mathbf{D}) \rightarrow W(\mathbf{D})$ (условие инвариантности $W(\mathbf{D})$ для $HO \beth$);
- 3. W(**D**)∧FIN→E (условие завершения HOД).

Условие инициализации истинно, т.к. I совпадает с $W(\mathbf{D})$. Условие инвариантности утверждает следующее: если функции s' и s связаны так, как это описывается формулой T(s',s), и \mathbf{D} – н.о.д. чисел $s'(b_1),...,s'(b_m)$, то \mathbf{D} – н.о.д. чисел $s(b_1),...,s(b_m)$. Доказательство истинности условия инвариантности разобьём на две части.

1. Сначала докажем истинность формулы $T(s',s) \land W < s' > (\mathbf{D}) \to \forall u(\mathbf{D} \text{ делит } s(u))$. Из T(s',s) следует, что для произвольного $b_i \in Loc$ либо $s(b_i) = s'(b_i)$, либо $s(b_i) = s'(b_i) - s'(b_j)$ для некоторого $b_i \in Loc$. Из $W < s' > (\mathbf{D})$ следует $\forall u(\mathbf{D} \text{ делит } s'(u))$, тогда по свойству

- (1) справедливо *D* делит $s(b_i)$. В силу произвольности b_i , истинна формула $\forall u(\textbf{\textit{D}}\ \text{делит}\ s(u))$.
- 2. Докажем истинность формулы $T(s',s) \land W \lessdot s' \gt (\mathbf{D}) \to \forall d(\forall u(d \ \partial e num \ s(u)) \to d \succeq \mathbf{D})$. Она эквивалентна формуле $\exists d(\forall u(d \ \partial e num \ s(u)) \land d \gt \mathbf{D}) \land T(s',s) \to \neg W \lessdot s' \gt (\mathbf{D})$. Из T(s',s) следует, что для произвольного $b_{i0} \in Loc$ либо $s'(b_{i0}) = s(b_{i0})$, либо $s'(b_{i0}) = s(b_{i0}) + s'(b_{i1})$ для некоторого $b_{i1} \in Loc$ такого, что $s'(b_{i1}) \lessdot s'(b_{i0})$. Во втором варианте $s'(b_{i1})$ выражается по формуле T(s',s) через функцию s аналогично $s'(b_{i0})$ и т.д., а в силу конечности Loc существует n такое, что $s'(b_{i0}) = s(b_{i0}) + s(b_{i1}) + ... + s(b_{in})$. Тогда в силу свойства (1) и произвольности b_{i0} из формулы $\exists d(\forall u(d \ \partial e num \ s(u)) \land d \gt \mathbf{D})$ следует истинность формулы $\exists d(\forall u(d \ \partial e num \ s'(u)) \land d \gt \mathbf{D})$. Тогда истинна формула $W \lessdot s' \gt (\mathbf{D})$, т.к она эквивалентна формуле $\exists u \ (\mathbf{D} \ \partial e num \ s'(u)) \lor \exists d(\forall u(d \ \partial e num \ s''(u)) \land d \gt \mathbf{D})$. Таким образом, истинность условия инвариантности доказана.

Истинность условия завершения $W(\mathbf{D}) \wedge \forall u, v(s(u) = s(v)) \rightarrow \forall u(s(u) = \mathbf{D})$ по свойству н.о.д. очевидна. Тем самым доказана частичная корректность L-программы $HO\mathcal{A}$.

Литература

- 1. Крицкий С.П. Модель асинхронных вычислений в структурах и языки программирования // Методы трансляции. Ростов-на-Дону, 1981. С. 92-100.
- 2. Крицкий С.П., Панков С.В. О верификации асинхронных программ продукционного типа // Программирование. № 5, 1994, С. 40-52.
- 3. Grahn H. Transactional Memory // J. Parallel Distrib. Comput. 2010. Vol. 70 (10). P. 993-1008.
- 4. Панков С.В. Логический подход к спецификации и анализу поведения клеточ-ных автоматов // Труды Всероссийской научной конференции «Научный сервис в сети Интернет: многоядерный компьютерный мир. 15 лет РФФИ», Новороссийск, 19-24 сентября 2007 г. Изд-во Московского университета. С. 85–88.