

14

SCENE BOUNDARY DETECTION TECHNIQUE BASED
ON BOTTOM-UP ATTENTION SYSTEM AND OPENCL

PARALLEL IMPLEMENTATION

S. Axyonov, D. Kovalenko, I. Potapyev

National Research Tomsk Polytechnic University
E-mail: axoenowsw@tpu.ru, wf34@sibmail.com, ipotapev@gmail.com

This paper spotlights the maintaining of scene boundary detection system in video and
process of porting it to the OpenCL. The scene boundary detection algorithm proposed by
authors is based on bottom-up focus attention principle. The system builds Gaussian pyra-
mids from input image, calculates map of saliency from the image and then detects the
most salient regions. The scene cut is detected when correlation of previous and next im-
age's histograms of salient areas is lower than threshold. To decrease the algorithm's run-
ning time a parallel architecture was implemented. Several tricks and techniques which
served for reaching better performance are described.

Keywords: scene detection, pyramid of image, video analysis, OpenCL, parallel processing.

Introduction

In order to process video data efficiently, a video segmentation technique through scene
cut detection must be required. This is a fundamental operation used in many digital video
applications such as digital libraries, video on demand (VOD), etc. There is set of approaches
used for solving this task. In [1][2] authors propose system for automatic detection of replay
segment based on image templates. Paper [3] describes algorithm of processing a compressed
digital video MPEG bitstream to detect scene changes. The main feature of chosen algorithm
is ease of paralleling code development to increase the performance. In this paper, we pro-
posed an approach based on using bottom-up attention[4].

The proposed algorithm contains huge amount of consecutive operations, where result of
the previous one doesn’t affect result of the next one. It means that such kind of applications
contain a huge amount of the parallelism. Hence, execute it in a serial manner would be inef-
fective and slow. Our goal was to take advantage of the natural parallelism of the task and
implement the parallel version of the system.

Hence, we had a goal to pick parallel programming technology which is suitable for serv-
ers and desktops. Most of them are highly specialized. For example, MPI oriented for execu-
tion on clusters and OpenMP devoted for creating parallel code for SMP systems. Finally,
OpenCL was chosen. This decision is supported with following reasons:
 General purpose GPU is the approach acceptable for desktops and servers both
 OpenCL is oriented to solving mathematical tasks
 OpenCL technology supported with all vendors (NVIDIA, ATI, Intel , etc.)

Algorithm

The system takes video file as input by using OpenCV functions for consequent access to
the frames. Each frame of video is represented as RGB image. Next, Gaussian pyramids of
the frame are created for construction maps of characteristic features. Gaussian pyramid is a
set of images that are duplicates of each other and where the next image is smaller than the
previous one in 2 times[5]. The number of levels of the pyramid is determined by the mini-

15

mum allowable size of the image within the pyramid. The Gaussian blur is used to avoid the
negative impact of pixelation when building pyramid.

The system builds five pyramids for each frame. The first pyramid characterizes the in-
tensity of the image.The other four pyramids consist respectively of the four images, each of
which represents a specific color channel, red, green, blue, or yellow, negative values are set
to zero [6].

First set of feature maps is related to intensity contrast of image and consist of six maps
I(c,s). Each of them is calculated by formula

)()(),(sIcIscI

Where ܿ ∈ ሼ2,3,4ሽ and ݏ ൌ ܿ ߪ ,ߪ ∈ ሼ3,4ሽ are index levels of pyramid, «-» is center-
surround difference[7].

Next sets of feature maps are connected with color input. Two sets of feature maps are
combined by contrast principle from R, G, B, Y pyramids:

,ሺܿܩܴ ሻݏ 	ൌ 	 |ሺܴሺܿሻ	– –	ሻݏሺܩሺ	Ɵ	ሺܿሻሻܩ	 	ܴሺݏሻሻ|
,ሺܻܿܤ ሻݏ 	ൌ 	 |ሺܤሺܿሻ	– 	ܻሺܿሻሻ	Ɵ	ሺܻሺݏሻ	– |ሻሻݏሺܤ	

Feature maps are combined into three “conspicuity maps”, ܫ௦ for intensity, ܥ௦ for
color at the scale (ߪ ൌ 4). They are calculated by across-scale addition, , which consists of
reduction of each map to scale 4 and point-by-point addition:

௦ܫ ൌ⊕ୀଶ
ସ ⊕௦ୀାଷ

ାସ ,ሺܿܫ ሻݏ
௦ܥ ൌ⊕ୀଶ

ସ ⊕௦ୀାଷ
ାସ ሾܴܩሺܿ, ሻݏ ,ሺܻܿܤ ሻሿݏ

Next, the two conspicuity maps are normalized and summed into the final input S to the
saliency map which is used by focus attention subsystem for the computation of the mask
frame[8]. The motivation for creation of two separate channels, ܫ	̅and ̅ܥ, is the hypothesis that
similar features compete strongly for saliency, while different modalities contribute indepen-
dently to the saliency map. Saliency map is calculated by naïve summation[9].

According to figure 1, the location of the areas with the greatest intensity on feature map
significantly correlated with the location of the main objects on the frame. Thus, finding the
local maximum on the map and use of adaptive threshold cutting off the area around the local
maximum allow to apply these areas on the mask for obtaining frame information which is
important for the efficient detection of scene boundaries.

Obtained salient areas define the regions on the image where histogram correlation would
be computed for previous and next frames

Figure 1. Salient regions on an image

The correlation function is described by the formula:

16

21 1 2
1 2

2 2
21 1 2

(())(())
(,) ,

(()) (())

I

I I

H I H H I H
d H H

H I H H I H

where 1H – histogram of the previous frame, 2H – histogram of the current frame

J
kk JH

N
H)(

1
, N – number of histogram bins.

Thus, when passing of frames is done, the frame correlation vector for all frames is built.
Frames where correlation is close to 1.0 are frames of one scene. The low values of the corre-
lation with a high probability indicate a scene cut between these frames. Filtering of the vec-
tor on the threshold gives a number of pairs of frames located on the boundaries of scenes.
Filtration is performed by using of adaptive threshold:

2

0

n

ki i
i

T C

 ,

2 2() / 21
() .

2
c cc M

c

C e

Where T – threshold value, i – weighting factor, n – number of neighbors of the ana-

lyzed element, cM – mean value, 2
c – variance,

3

),(),(),(111 NNNNNN
n

BBdGGdRRd
C

 – elements of the analyzed vector,),(yxd –

correlation function, iii BGR ,, – vectors obtained from RGB histogram of the current frame.

Obtained vector contains binary values, where 1 indicates a cut between scenes.

Architecture of parallel solution

Architecture of the system was slightly reconsidered and rewritten with the purpose to
develop clear and supportable parallel code. Writing of parallel code with use of any technol-
ogy has lots of pitfalls and dramatically slower than writing serial code. So, rewriting of the
architecture allowed to deliver several important features.

First feature is that OpenCL and C++ versions are interchangeable. They represented as
classes PyraProbe and OCLPyraProbe on figure 2. These classes encapsulate all business-
logic related to pyramidal analysis of the frame (all computationally expensive work). Figure
3 shows that at the highest level of application call stack code operates with IBasicPyraProbe
objects without even knowing which implementation it is.

Also, both versions are kept in the same project in purpose of easier building and execu-
tion in both ways. The library is being built with or without OpenCL support based on prepro-
cessor definitions, and being executed serial or parallel way based on given settings.

Another architecture feature is namespaces Processors and OCLProcessors which shown
on figure 3. Both of them contain image processing functions which are exploited by Pyra-
Probe and OCLPyraProbe respectively. Some examples of these functions are listed for better
insight of the idea:
 generation of the 2D Gaussian distribution,
 2D convolution,
 normalizing color image,
 creating image pyramid.

17

Figure 2. Architecture of the developed system

This design allowed to develop parallel version iteratively and enabled unit-testing of
these functions. Class Validator serves for this functionality. So developers were able to prove
that some function ported successfully by comparison of the results of C++ and OpenCL ver-
sion of the function.

OCLManager serves for handling all SDK-related calls. It builds and stores kernels,
keeps OpenCL context and other SDK objects required for execution.

Other aspects of the architecture:
 Minimized interaction between RAM and videomemory. Copying of image occurs only

twice: delivering source image to OCLPyraProbe and then acquiring result back to RAM.
All computation in between is being performed on GPU.

 Modularity of the system enables easy code adaptation for execution on the GPU farm.
When development of the system with architecture described above was finished, per-

formance tests have been performed.
These tests revealed slight improvement at the high-resolution video, but parallel version

didn’t outperform serial one on the low-resolution videos.
Most of the application running time was taken by convolution calculation. Filtering is so

such computationally expensive because model uses big kernels (25x25, 21x21). So, filter2D
is the most promising target for optimizations. One of the properties of the efficient GPGPU
code is low divergence. This means that all threads of kernel have approximately same execu-
tion time. If control flow of the kernel has a lot of conditional statements, most likely that
code will be slow [10].

Removing of the conditionals gave significant speed gain for our case.
OpenCL global memory has huge capacity but the slowest access speed. So, the only way

to implement something efficient is to put an effort on extracting advantage of the local and
constant memory zones.

There is possibility to define memory buffers as constant if buffers are read only. Also
size of the constant buffer is bounded by value which depends on computing device. So, first
thing to do was to move all filter buffers from global memory to constant.

18

Figure 3. Time comparison of processing one frame

Another way to speed up convolution operation is to avoid reading neighbor pixel values
from the global memory [11]. So, filter2D kernel execution model was changed to use
workgroups of size 16x16. Items of the same workgroup load part of the image to the local
memory and then use this data for convolution calculation.

It is good practices to keep amount of kernel arguments as small as possible. As it ob-
vious from table 2, filter2D was separated to two kernels. This action enables us to not pass
size of kernel (and some other variables like that) as argument, but define it as a constant.
These values are used in the loop code; consequently, compiler will be able to implicitly un-
roll loops [12].

Our optimization work is not finished yet, but even now it is obvious that GPGPU solu-
tion achieved performance on this problem of image analysis which is way more effective
than serial CPU solution. Tests which are represented in figure 3 ran at desktop with Intel i5-
430m processor and AMD Radeon HD 5850M.

So, plans for future development are:
 Continuation of the OpenCL code optimization
 Work on the computational model for increasing precision and decreasing computational

complexity.

This research was partially supported by the “Nauka” program of Ministry of Education

of Russian Federation, contract number 8.8113.2013 and a grant from Russian Foundation for
Basic Research RFFI 13-07-00397A.

References

1. Pan, Hao, Baoxin Li, Sezan, M.I. Automatic detection of replay segments in broadcast
sports programs by detection of logos in scene transitions // Acoustics, Speech, and Signal
Processing (ICASSP). 2002.

2. Papageorgiou C.P., Oren M., Poggio T. A General Framework for Object Detection //
Proceedings of the Sixth International Conference on Computer Vision. 1998.

3. Jianhao Meng, Yujen Juan, Shih-Fu Chang. Scene change detection in an MPEG-
compressed video sequence // Proc. SPIE 2419, Digital Video Compression: Algorithms and
Technologies 1995. 14.

4. Kovalenko D., Potapyev I. Scene boundary localization based on contrast region anal-
ysis // Tomsk Polytechnic University, MSIT №10. 2012. – P. 60–62.

19

5. Burt P.J., Adelson E.H. The Laplacian Pyramid as a Compact Image Code // J. IEEE
Transactions on Communications Communications. Volume 31, Issue 4. 1983. 532–540.

6. Ware C. Color sequences for univariate maps: theory, experiments and principles //
Computer Graphics and Applications, IEEE. Volume 8. Issue 5. 1988. 41–49.

7. Sun-Gu Sun, Dong-Min Kwak, Won Bum Jang, Do-Jong Kim. Small target detection
using center-surround difference with locally adaptive threshold // Image and Signal
Processing and Analysis. Proceedings of the 4th International Symposium on. 2005. 402–407.

8. Zhaoping Li. A saliency map in primary visual cortex // Trends in Cognitive Science.
Volume 6. Issue 1. 2002. 9–16.

9. Xiaodi Hou, Liqing Zhang. Saliency Detection: A Spectral Residual Approach //
Computer Vision and Pattern Recognition, IEEE Conference on. 2007. 1–8.

10. In Kyu Park, Singhal N., Man Hee Lee, Sungdae Cho. Design and Performance
Evaluation of Image Processing Algorithms on GPUs // Parallel and Distributed Systems,
IEEE Transactions on. 2011. Volume 22. Issue 1. 91–104.

11. Goorts Patrik, Rogmans Sammy, Vanden Eynde Steven, Bekaert P. Practical exam-
ples of GPU computing optimization principles // Signal Processing and Multimedia Applica-
tions (SIGMAP), Proceedings of the 2010 International Conference on. 2010. 46–49.

12. Han Dong, Ghosh, D., Zafar, F., Shujia Zhou. Cross-Platform OpenCL Code and
Performance Portability Investigated with a Climate and Weather Physics Model // Parallel
Processing Workshops (ICPPW), 2012 41st International Conference on. 2012. 126 – 134.

