

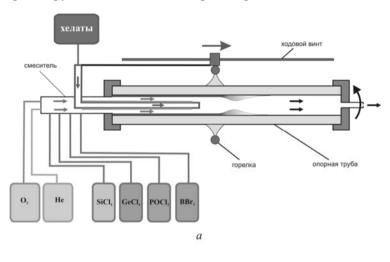
Рис. 5. Зависимость расходов пассивных сред от давления $P_{\text{вых}}$

На основании результатов численного моделирования выполнена оптимизация параметров проточного тракта гидроструйной установки, проведена оценка эффективности ее работы в различных условиях. Определены диапазон и алгоритм автоматического регулирования площади проходного сечения активного кольцевого сопла, обеспечивающие работу УГС в области максимальных КПД шурфового насоса.

К.С. Галягин, М.А. Ошивалов, Ю.А. Селянинов, Е.И. Вахрамеев

Пермский государственный технический университет

МОДЕЛИРОВАНИЕ ПРОЦЕССА ПАРОФАЗНОГО ОСАЖДЕНИЯ


Процесс парофазного осаждения примесей по технологии MCVD является одним из ключевых звеньев в технологической цепи производства высококачественных кварцевых световодов. На этапе подготовки преформ для вытяжки световолокна на внутренней поверхности опорной кварцевой трубки создаются условия для осаждения оксидов кремния и легирующих элементов (Ge, P), доставляемых в зону реакции в виде летучих хлоридных соединений.

При производстве активных световодов, способных усиливать проходящие по ним сигналы, поверхность преформы подвергается дополнительному легированию редкоземельными металлами (Yb, Er и т.д.). Соединения редкоземельных металлов не обладают летучестью, поэтому для транспортировки их в зону поверхностного осаждения используют органометаллические соединения – хелаты, содержащие ионы соответствующих легирующих компонентов. Пары хелатов имеют достаточно узкий температурный диапазон «живучести»: при низких температурах они конденсируются, при высоких – распадаются. Поэтому их подача должна производиться в строго регламентированном диапазоне температур, несовместимом с условиями транспорта легирующих хлоридов.

Процесс поверхностного осаждения представляет собой весьма ответственный этап производства световода, так как толщина и компонентный состав осажденного на преформе слоя практически полностью определяют параметры светопроводящей жилы будущего световолокна. Это в полной мере обуславливает актуальность численного анализа процесса осаждения, который в рамках данной работы реализован средствами инженерного приложения ССМ+ программного продукта STAR-CD компании CD-ADAPCO (лицензия № 4901-10).

На рис. 1 приведены принципиальная схема технологического процесса хлоридно-хелатного легирования (a) и принятая для численного моделирования схема расчетной области (δ). Опорная кварцевая труба наружным радиусом R_0 и внутренним R_1 вращается вокруг оси с постоянной угловой скоростью Ω . Кольцевой подвод теплоты по наружной поверхности трубы моделирует ее локальный нагрев водородной горелкой, перемещающейся вдоль оси со скоростью $W_{\rm rop}$. В левой части трубы расположен коаксиальный канал транспорта хелатов, перемещение которого синхронизировано с горелкой, т.е. расстояние z_x остается постоянным в ходе всего процесса. Канал (питатель) представляет собой термостатированную тонкостенную стеклянную трубку с внутренним радиусом R_2 и толщиной δ . Подача 146

исходных газообразных хлоридов в зону реакции производится по кольцевому зазору, образованному внутренней поверхностью опорной трубы и питателем для транспорта хелатов.

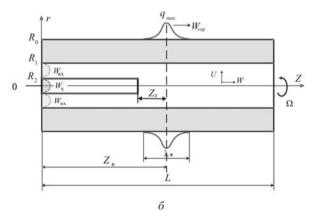


Рис. 1. Схема технологического процесса (a) и расчетная схема задачи тепломассообмена (δ)

Суть процесса осаждения легированного слоя кварца на внутренней поверхности преформы заключается в следующем.

При движении газового потока, содержащего парообразные хлориды Si, Ge, P, его температура повышается, достигая максимального значения в зоне горелки, где происходит реакция окисления с образованием оксидов соответствующих элементов. При попадании хелатов в высокотемпературную зону органика выгорает с образованием оксидов редкоземельных металлов. Далее происходит коагуляция образовавшихся оксидов и осаждение их на холодной поверхности опорной трубки перед горелкой под действием сил термофореза.

Численное моделирование процесса поверхностного легирования преформы путем парофазного осаждения осуществляется в два этапа: на первом этапе для сечения опорной трубы и потока газовой среды внутри неё определяются поля температур и скоростей движения газового потока, на втором – исследуется процесс осаждения путем регистрации траекторий частиц заданного размера, инжектированных в высокотемпературной зоне газового потока в поле действия термофоретических сил. Вопросы протекания химических преобразований при окислении хлоридов, выгорания хелатов и коагуляция легирующих частиц в рамках данной работы не рассматривались.

При решении задачи тепломассопереноса в расчетной области ставятся граничные условия, адекватно описывающие натурный объект моделирования с учетом зависимости теплофизических характеристик от температуры. На входе газовых потоков задаются профили скоростей. Тепловое воздействие газовой горелки моделируется движущимся кольцевым поверхностно распределенным источником тепла. Учитываются как диффузионный, так и радиационно-конвективный механизмы переноса теплоты.

Детальное описание изучаемых явлений приводит к сложной и громоздкой схеме дискретизации расчетной области (сетка порядка $3\cdot 10^6$ ячеек), что в рамках решения связанной нестационарной задачи тепломассообмена требует значительных вычислительных ресурсов ЭВМ. В частности, моделирование на

двухпроцессорной системе одного прохода горелки в пределах расчетной области занимает порядка двухсот часов машинного времени. Поэтому была проведена серия исследований с целью оптимизации ресурсных затрат.

Исходная объемная постановка задачи с вращением сведена к плоской осесимметричной схеме с равномерно распределенным по окружности потоком тепла от горелки.

Были проведены предварительные калибровочные расчеты для выбора рациональных параметров пространственной и временной дискретизации. В результате число ячеек сетки удалось снизить до 20000, а шаг по времени увеличить до 0,05 с. Размер ячейки принятой базовой сетки составляет 0,3×1,8 мм. Кроме этого, для повышения точности численных решений выбраны адаптивные сетки со сгущением в явно выделенном приграничном призматическом слое, позволяющие получать достоверные решения в области максимального значения градиентов искомых функций.

Для дискретизации применялась итерационная неявная схема второго порядка точности с нижней релаксацией по схеме Гаусса-Зейделя. Коэффициенты релаксации составляют: 0,7 для скорости, 0,3 для давления и 0,9 для энергии. При таких параметрах время счета одного прохода составляет 12 часов на однопроцессорной вычислительной системе. Таким образом, удалось достигнуть вполне разумного компромисса между точностью решения и потребляемыми вычислительными ресурсами.

Ниже приведены некоторые основные результаты расчетного анализа. К сожалению, формат черно-белого представления не позволяет наглядно проиллюстрировать тепловое и аэродинамическое состояние расчетной области в виде полевых изокартин, поэтому ограничимся графиками распределения температур граничных поверхностей по длине опорной трубки, приведенными на рис. 2.

Видно, что наибольший разогрев опорной трубки наблюдается в зоне непосредственного действия газовой горелки (на графике она показана вертикальным пунктиром в центральной части). Учитывая, что скорость движения газового потока много больше скорости перемещения газовой горелки, отметим принципиальное изменение направления температурных градиентов в газовом потоке, определяющих силы термофореза. Если после горелки (левая часть графика) частицы, двигающиеся в потоке газа отталкиваются более горячей поверхностью трубки к оси потока и испытывают торможение в осевом направлении, то перед горелкой (правая часть области) создаются условия для их осаждения на более холодной поверхности кварцевой трубки и ускорения движения вдоль канала.

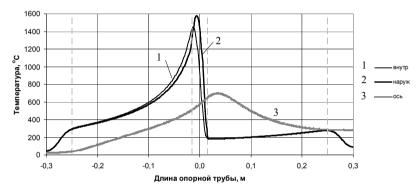


Рис. 2. Профили температурного состояния системы

Более детально картины распределения компонентов вектора градиента температуры газового потока в зоне горелки иллюстрирует рис. 3.

Неоднородность распределения температурных градиентов порождает специфику поля термофоретических сил, которые кроме величины вектора градиента температуры определяются еще и размерами самих частиц. В качестве первого приближения величину силы термофореза можно оценить на основании термодинамических представлений с использованием уравнения состояния идеального газа в следующем виде:

$$F_T = \Delta P \cdot \delta^2 = -\rho R \, \delta^3 \cdot grad \, T \,,$$

где R — газовая постоянная, ρ — плотность газа, δ — размер частиц, T — поле температур газового потока.

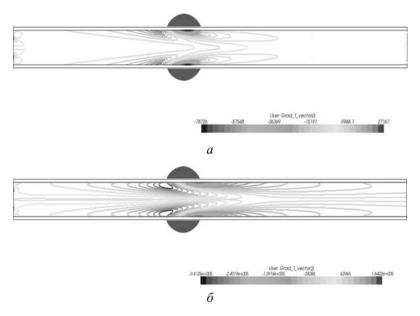


Рис. 3. Поля осевых (a) и радиальных (δ) градиентов температуры

Для анализа условий осаждения легирующих примесей был применен прием инжектирования частиц, позволяющий визуализировать процесс осаждения. В интересующей области газового потока размещается регулярная система точечно-кольцевых инжекторов, впрыскивающих частицы одинакового фиксированного размера, траектории которых регистрируются в агранжевых координатах вплоть до осаждения на поверхности трубки (рис. 4). Часть частиц при этом, избежав осаждения, покидают технологическую зону вместе с потоком газа.

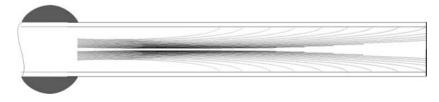


Рис. 4. Треки осаждаемых частиц

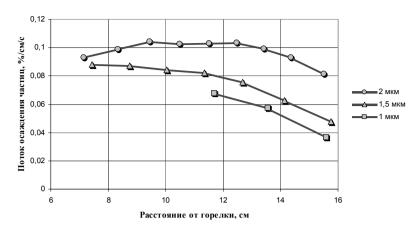


Рис. 5. Распределение частиц по длине зоны осаждения

В результате применения специально разработанной процедуры обработки картины траекторий осаждающихся частиц различных размеров определяются расходные характеристики процесса в виде погонной плотности массового потока осаждения в долях от концентрации частиц в зоне размещения инжекторов (рис. 5).

Применение этой процедуры для частиц каждого оксида, участвующего в легировании, в сочетании с интегрированием по спектру размеров частиц позволяет оценить общую толщину и покомпонентный состав осажденного на поверхности опорной трубки слоя.

А.В. Гергель

Нижегородский государственный университет им Н.И. Лобачевского

ПАРАЛЛЕЛЬНЫЕ МЕТОДЫ МНОГОЭКСТРЕМАЛЬНОЙ ОПТИМИЗАЦИИ С АДАПТИВНЫМИ РЕШАЮЩИМИ ПРАВИЛАМИ

Многоэкстремальные задачи, методы решения которых рассматриваются в данной статье, широко встречаются в приложениях. Усложнение математических моделей для более адекватного описания изучаемых объектов, явлений и систем приводит 152