
The Ministry of Education and Science of the Russian Federation 

Lobachevsky State University of Nizhni Novgorod 

Computing Mathematics and Cybernetics faculty 

The competitiveness enhancement program  

of the Lobachevsky State University of Nizhni Novgorod  

among the world's research and education centers 

Strategic initiative 

Achieving leading positions in the field of supercomputer technology and high-performance 

computing 

Computational mathematics and cybernetics faculty 

APPROVED 

                                                                               Dean of the Computational mathematics  

and cybernetics faculty 

________________ V. Gergel 

                                                                                        "_____"__________________2014. 

 

Course program 

Parallel Programming for Shared Memory Systems 

 

Bachelor program "Fundamental Informatics and Information Technologies" 

 

Specialization 

General part 

Professional block 

Elective disciplines 

Б3.В.ОД.8 

 

Degree 

Bachelor 

 

Education form 

Full-time attendance 

 

Nizhni Novgorod 

2014 



 

1. Purposes of mastering the discipline 

The purpose of this course is mastering a set of skills and knowledge required for successful 

start of professional activities in the field of parallel programming on shared memory systems. 

The course incorporates both all theory of parallel computing using Intel Threading Building 

Blocks (TBB), and practical knowledge and skills of TBB-based parallel programming. 

The practice covers all parallel programming stages including sequential implementation for 

comparison purposes, parallel implementation and its analysis. Academic activities are based on 

test problems which do not require any special knowledge in any application except for the 

information represented in the course. 

The main course objective is to study basic notions of TBB library and its use for parallel 

programming on shared memory systems. 

The following tasks can be identified: 

1. Mastering the use of TBB on shared memory systems. 

2. Studying general approaches to implementation of TBB-based algorithms. 

3. Discussion (in the course of practice) of efficient implementation examples of studied 

algorithms. 

The course is intended for engineers, teaching staff, scientist and both graduate and post-

graduate students. 

2. The course in the undergraduate program 

This course is intended for fourth year students and is taught in the 7
th

 semester. This is an 

elective course of the professional block. 

It is intended for students familiar with fundamentals of C++ for program development. 

Experience in the use of OpenMP will be useful for the course purposes but is not mandatory. 

Students must have basic knowledge of mathematics corresponding to that of 2
nd

 and 3
rd

 

academic years. 

3. Requirements to discipline mastery 

Learning involves forming of the following competencies: 

 ability to acquire, generalize and analyze the information (GC1) to the following extent: 

 ability to speak and write in a logical, reasoned and clear way; 

 capacity for intellectual, cultural, moral, physical and professional development and self-

improvement (GC2) to the following extent: 

 ability to persistently pursue objective subject to moral and legal norms and 

obligations; 

 capacity for continuous improvement of their professional and cultural level; 

 ability to understand and put into practice the information theory as the fundamentals of 

information technologies (PC1) 

 ability to understand, develop and use state-of-the-art information technologies (PC4) 

 research and development capabilities (PC5) 

 analytical capabilities (PC8) 

As a result, student should: 



Know the contents and capabilities of the TBB library; methods of parallel program 

development for shared memory systems. 

Be able to correctly use the TBB-based algorithms and classes for parallel programming. 

Possess the skills of parallel program development and debugging using TBB. 

 

4. Discipline structure and contents 

The total discipline complexity is 16 hours which include 12 hours of lectures, 4 hours of 

practice and 16 hours of independent work. Form of testing - credit. 

4.1. Discipline structure 

 

 

Sl

. 

№ 

 

 

Section 

Disciplines 

S
em

es
te

r
 

S
em

es
te

r 
w

e
ek

 

Types of academic 

work including 

students’ 

independent work 

and its intensity (in 

hours) 

Forms of 

progress control 

(per semester 

week) 

Mid-term 

examination (per 

semester) 

L
ec

tu
re

s 

P
ra

ct
ic

al
 

cl
as

se
s 

P
ra

ct
ic

e 

In
d
. 
p
ra

ct
ic

e 

1 Introduction to TBB 6 1-2 2 - - 2 Test 

2 Parallelizing simple loops 3-4 2 - - 2 Test 

3 Parallel matrix-vector 

multiplication 

5-6 - - 2 2 Test 

4 Parallelizing complex loops  7-8 2 - - 2 Test 

5 Task-based programming 9-10 2 - - 2 Test 

6 Parallel computation of the 

fast Fourier transform 

11-12 - - 2 2 Test 

7 TBB synchronization 

primitives 

 13-14 2 - - 2 Test 

8 Flow graph 15-16 2 - - 2 Test 

 TOTAL:   12 - 4 16 Form of testing - 

credit. 

4.2. Contents of discipline sections 

The course has the following contents: 

1. Introduction to TBB 



This lecture describes the fundamentals of the TBB library, its contents and specifics of 

TBB-based programming. It describes the ways to initialize and terminate the library and to 

operate TBB together with OpenMP. The lecture also reviews the mechanisms of time 

measurement and dynamic memory allocation. 

2. Parallelizing simple loops 

The lecture describes the tbb::parallel_for template function that enables implementation of 

parallelized simple loops as illustrated by the matrix-vector multiplication problem. It reviews 

possible function variants and its parameters. 

3. Parallel matrix-vector multiplication 

This practice formulates the matrix-vector multiplication problem. It features a sequential 

algorithm implementation. The practice also reviews variations of parallel algorithm 

implementation and offers a parallel_for-based algorithm implementation. 

4. Parallelizing complex loops 

The lecture describes the tbb::parallel_reduce template function that enables implementation 

of parallelized simple loops as illustrated by the scalar product problem. It also describes 

structures that enable implementation of parallel programs involving loops where the number of 

iterations is not known in advance, sorting and pipelined computing. 

5. Task-based programming 

The lecture describes the task mechanism which is the most flexible one for parallel 

programming purposes. It reviews the methods for scheduling and synchronization of task 

execution. The queens problem illustrates a parallel implementation of recursive algorithms 

based on tasks. 

6. Parallel computation of the fast Fourier transform 

The practice formulates the problem of the fast Fourier transform computation. It features a 

sequential algorithm implementation. It describes parallel algorithm implementation versions 

and implements the iterative algorithm version based on parallel_for and the recursive version 

based on tasks. 

7. TBB synchronization primitives 

This lecture deals with TBB synchronization primitives. It describes various 

implementations of mutexes and readers/writers mutexes. It describes the atomic template class 

whose methods are atomic. The lecture also deals with threadsafe containers that may be useful 

for implementing a wide range of parallel algorithms. 



8. Flow graph 

This lecture describes parallel application development based on representing an algorithm 

as a flow graph. It contains visible examples demonstrating the reviewed approach. Main types 

of graph nodes are reviewed in detail. 

5. Educational technology 

The educative process is based on lectures, practices and extramural independent work. 

Lectures and practices are MS PowerPoint-aided. 

6. Teaching and learning support of students’ independent work. Grading tools for routine 

progress control and mid-term proficiency examinations. 

Independent work consists in familiarization with theory based on textbooks and 

monographs indicated in the references list, solving practical problems and answering self-test 

questions. Independent work may take place both in class and at home. 

Practice is assessed on the basis of e-tests. At the end of the course, students take a 

pass/fail test  

6.1 Progress control 

Formative assessment involves periodic tests. Test questions are taken from the self-test 

question list (see below). 

Final assessment is based on the final test results. This test includes questions from all 

course sections. 

6.2 Self test 

Section 1 

1. On which operation systems does the TBB run? 

2. Which factors affect the application runtime? 

3. How does one initialize the TBB library? 

4. How does one complete TBB operation? 

5. How to initialize TBB for a certain number of threads in the TBB program? 

6. Can TBB be used together with OpenMP? 

7. What should be done to change the number of threads in a TBB program? 

Section 2 

8. How is for loop parallelized in the TBB library? 

9. What is a Functor? 

10. What is an Range? 

11. What is the essence of grainsize? 

12. How does parallel_for of the TBB library work? 

13. What functor methods have to be implemented when parallel_for is used? 

14. How is the grainsize value selected? 

15. How is computation scheduling effected in parallel_for? 

16. What are the scheduling strategies and in what ways are they different? 

Section 3 



17. How to assemble a TBB-based application? 

18. What is the computational complexity of a matrix-vector multiplication algorithm (n is 

the matrix size)? 

19. What are the main ways to allocate effort to threads for solving the problem of matrix-

vector multiplication? 

20. What is the total number of scalar operations in the problem of matrix-vector 

multiplication? 

21. What TBB algorithm and class are the best for implementation of the parallel matrix-

vector multiplication algorithm? 

Section 4 

22. What will you used to parallelize the for loop with the fixed number of iterations and 

reduction? 

23. How is computation scheduling effected in parallel_reduce? 

24. What is the difference between parallel_for and parallel_reduce? 

25. What problems are parallel_for and parallel_reduce intended for? 

26. What algorithms are best implemented using the tbb::pipeline class? 

27. What algorithms are best implemented using the tbb::do function? 

Section 5 

28. What is a TBB logical task? 

29. What are the special aspects of parallel algorithm development using logical tasks? 

30. What structure will you use to parallelize the recursive function? 

31. What memory type should be allocated to the logic task and why? 

Section 6 

32. What is the computational complexity of the DFT algorithm? 

33. What is the computational complexity of the FFT algorithm? 

34. What is the difference between DFT and FFT? 

35. What is the essence of bit reversal? 

36. Is the bit reversal stage indispensable? 

37. What TBB algorithm and class are the best for implementation of the FFT algorithm? 

Section 7 

38. What is the mutual exclusion problem? 

39. What is data race? 

40. What synchronization primitives are implemented in TBB? 

41. In what way do TBB threadsafe differ from STL containers? 

42. Why the size method return a signed integer in the tbb::concurrent_queue class? 

Section 8 

43. What is a TBB flow graph? 

44. What are TBB flow graph node? 

45. What are TBB flow graph edges? 

46. What node types exist in TBB? In what ways do they differ? 

6.4 Grading criteria 

Perfect more than 95% test questions answered correctly 



Excellent 80-95% test questions answered correctly 

Very good 70-79% test questions answered correctly 

Good 60-69% test questions answered correctly 

Satisfactory 50-59% test questions answered correctly 

Unsatisfactory 25-49% test questions answered correctly 

Poor less than 25% test questions answered correctly 

7. Teaching, learning and information support  

a) Basic references 

1. Intel® Threading Building Blocks Home Page: 

https://www.threadingbuildingblocks.org/  

2. Intel® Threading Building Blocks Reference Manual: https://software.intel.com/en-

us/node/506130 

3. Intel® Threading Building Blocks User Guide: https://software.intel.com/en-

us/node/506045  

4.  

b) Additional references:  

5. Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed 

Programming. – Reading, MA: Addison-Wesley. 

6. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. – New York, 

NY: McGraw-Hill. 

7. Gonzalez R. C., Woods R. E. (2007). Digital Image Processing. - Prentice-Hall. 

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein C. (2009). Introduction to 

Algorithms, 3rd Edition. – The MIT Press. 

9. Kumar V., Grama, A., Gupta, A., Karypis, G. (1994). Introduction to Parallel 

Computing. - The Benjamin/Cummings Publishing Company, Inc. (2nd edn., 2003) 

1. Inventory 

To conduct classes in this discipline, the following software and hardware is required. 

Hardware 

Multicore computers 

Software 

MicrosoftWindowsXP/7,Linux or Mac OS X 

Code editor — Notepad++, SublimeText, Eclipse or Emacs 

TBB library 

9. Authors 

The course has been developed under the supervision of Aleksey A. Sidnev, master of IT, 

teaching assistant at the Software Department (Faculty of Computing Mathematics and 

Cybernetics, UNN) 

 

Author: A. A. Sidnev___________________________________________Assistant 



The syllabus has been reviewed in the meeting of the Software Department of the Computing 

Mathematics and Cybernetics Faculty   

 ______ ________________ 2014; record No. _______ 

R. G. Strongin _____________________   Professor, Doctor of Physics and Mathematics 

The syllabus has been approved in the meeting of the Computing Mathematics and Cybernetics 

Faculty Methodological Committee.  

 ______ ________________ 2014; record No. _______ 

The head of the commission _______________________________  Natalia Shestakova 

 


