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1. Course objective 

This course explains popular iterative algorithms of solving linear systems and deals with 

a number of issues related to their parallelization on shared memory systems. 

The course is based on materials developed in UNN with the support of Intel from 2011 

through 2013 (http://www.hpcc.unn.ru/?doc=491). In 2014, within the competitive growth 

program, part of course materials were modified. The modifications mostly consisted in a 

detailed independent work planning. The key course elements have been translated into English. 

The main course objective is to study basic iterative algorithms of solving linear 

systems, gain experience in developing parallel numerical algorithms for efficient use on shared 

memory systems. 

It involves solving the following problems: 

1. Mastering parallel programming on shared memory systems (OpenMP, TBB, Cilk Plus). 

2. Studying basic iterative methods of solving linear systems (Jacobi, Seidel, SOR and 

direct iteration methods). 

3. Studying Krylov subspace iterative methods (conjugate gradient, biconjugate gradient 

and generalized minimum residual methods). 

4. Studying basic preconditioning algorithms (methods based on incomplete LU-

factorization). 

5. Studying general approaches to memory algorithm optimization and load balancing in 

case of parallelization. 

6. Insight into efficient implementations of studied algorithms (in the course of laboratory 

works). 

The course is intended for engineers, teaching staff, scientists and both graduate and post-

graduate students. 

2. Course position in the bachelor program 

The course is developed for the 4-th year students and is given in the 8-th semester. This 

course belongs to the elective disciplines of the professional block. 

The lecture part of the course is oriented on the students familiar with basics of linear 

algebra and numerical methods to the extent of bachelor courses in natural sciences. 

http://www.hpcc.unn.ru/?doc=491


The students are supposed to have basic skills of designing C/C++ programs and parallel 

programming using OpenMP in order to perform the laboratory works. Competence in TBB and 

MKL as well as the other components of the Intel Parallel Studio XE package is encouraged, but 

not mandatory for studying the course. All the information about using Intel Parallel Studio XE 

is included in the course materials. 

3. Learning outcomes and requirements 

In the framework of this course, the following competencies are formed: 

 Possessing the general culture of thinking, the ability to perceive, compile and analyze 

information (General Competency 1 - GC1). Students will be able to: 

o construct oral and written arguments in a logical and clear manner. 

 The ability of intellectual, cultural, moral, physical, and professional self-development and 

self-improvement (GC 2). Students will be able to: 

o constantly improve their professional and cultural level. 

 The ability to understand and apply in practice the theory of information as a fundamental 

scientific basis of information technology (Professional Competency 1 – PC 1).  Students 

will be able to: 

o understand the content side of the information process, know the techniques for 

sending, receiving, processing, analyzing and storing data. 

 The ability to understand, develop and apply modern information technology (PC 4). 

Students will be able to: 

o understand the concepts and implement the functionality of the following core 

technologies: 

 at the level of technological literacy: 

 computer systems architecture; 

 at the level of in-depth knowledge: 

 basic programming; 

 parallel and distributed computing. 

o develop and use professionally the software for supporting information systems and 

processes, to be able to use modern instrumental computing equipment. 

 The ability to conduct research (PC 5). Students will be able to: 

o develop new algorithmic and methodological and technological solutions; 



o collect, process and interpret the data of modern research necessary to develop 

approaches, decisions and conclusions on appropriate scientific and professional 

issues. 

 The ability to conduct analytical activities (PC 8). Students will be able to: 

o analyze and select modern technologies and methodologies for implementing an 

information system. 

 

As a result of education graduates from the course will know and be able to: 

 use parallel algorithms to solve linear systems with both general and special matrices; 

 analyze and split algorithms into parts allowing for parallel execution; 

 develop parallel programs for shared memory computing systems based on OpenMP, TBB, 

Cilk Plus; 

 perform computational experiments on high performance computing systems; 

 evaluate efficiency of the performed parallel computation. 

 

4. Course outline 

The course consists of 1 credit, 36 hours, including 8 lecture hours and 12 practice hours. 

Practice classes can be held as lab works (students carry out assignments step-by-step under 

supervision) or master class (supervisor demonstrates and explains step-by-step solutions). 16 

hours are allocated for individual work. The authors encourage additional work. 

4.1. Course outline 

Course outline is as follows: 
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1 Introduction. Basic iterative 

methods. 

6 1 2 – – 1 Test 

2 Solving sparse linear system 

by iterative methods: 

problem of heat diffusion in 

a plate 

2 – – 2 1 Test 

3 Solving symmetric sparse 

linear systems using SOR 

3-4 – – 2 2 Test 



method with Chebyshev’s 

acceleration 

4 Preconditioning methods 4-5 2 – – 1 Test 

5 Preconditioning using 

incomplete LU-factorization 

 6-7 – – 2 2 Test 

6 Krylov subspace iterative 

methods 

 7-10 4 – – 4 Test 

7 Solving sparse linear systems 

using the preconditioned 

conjugate gradient method 

 11-12 – – 2 2 Test 

8 Solving sparse linear systems 

using the preconditioned 

generalized minimum 

residual method 

 13-14 – – 2 2 Test 

9 Solving sparse linear systems 

using the preconditioned 

biconjugate gradient method 

 14-16 – – 2 1 Test 

 TOTAL:   8 – 12 16 Final assessment 

form – exam 

 

4.2. Course description 

Course content is as follows: 

1. Introduction. Basic iterative methods. 

The objective of this lecture is to review general concepts of solving linear systems using 

basic iterative methods (Jacobi, Seidel and Successive Over Relaxation (SOR) methods) 

2. Solving sparse linear system by iterative methods: problem of heat diffusion in a 

plate 

The purpose of this laboratory work is to see how linear systems with sparse matrices are 

solved using iterative methods via example of a stationary problem of heat diffusion in a 

rectangular plate at given temperature conditions at the plate edges. 

3. Solving symmetric sparse linear systems using SOR method with Chebyshev’s 

acceleration 

The purpose of this laboratory work is to implement the SOR method for solution of 

sparse linear systems and study ways to accelerate iterative methods by the example of 

the symmetric successive over relaxation. 

4. Preconditioning methods 

The objective of this lecture is to review approaches to reduce the condition number of a 

matrix based on preconditioning. Preconditioning is important for iterative methods as it 

improves their convergence rate. 



5. Preconditioning using incomplete LU-factorization 

The purpose of this laboratory work is implementation of preconditioner construction 

methods based on incomplete LU-factorization. 

6. Krylov subspace iterative methods 

The objective of this lecture is to review a general approach to construction of Krylov 

subspace iterative methods. The generalized minimum residual method, conjugate 

gradient method and biconjugate gradient method are used as examples. The lecture also 

reviews preconditioning for the above algorithms. 

7. Solving sparse linear systems using the preconditioned conjugate gradient method 

The purpose of this work is to demonstrate practical implementation of the conjugate 

gradient method for symmetric sparse matrices using preconditioning and study influence 

of the computation error on the solution accuracy. 

8. Solving sparse linear systems using the preconditioned generalized minimum 

residual method 

The purpose of this laboratory work is to demonstrate practical implementation of the 

generalized minimum residual method and study influence of ILU(0)-preconditioning on 

the method convergence rate. 

9. Solving sparse linear systems using the preconditioned biconjugate gradient method 

The purpose of this laboratory work is to demonstrate practical implementation of the 

biconjugate gradient method and study influence of preconditioning on the method 

convergence rate. 

5. Learning technologies 

During course we use the following learning technologies: lectures, lab works, individual 

work, assessment techniques. PowerPoint presentations for all lectures and practical lessons are 

used. 

6. Individual work and assessment techniques 

Individual work consists of mastering theoretical and practical material according to the 

given references, solving practical problems, and answering on the given questions. Individual 

work can be done in both classes and at home. Control of individual work is performed by 

electronic tests. In the end of the program there is a final test.  

6.1  Assessment forms 

Monitoring of progress in studies is performed by tests in class that consist of assignments 

from the list of questions and practical problems (given below). 



The final attestation is done based on the results of the final test. This test includes 

questions from all sections of the course. 

6.2 Individual work: Questions and Practical problems 

Module 1 

1. Implement the fixed point iteration method to solve a linear system with a SPD matrix 

(both its sequential and parallel versions). Estimate how the method parameter influences 

the convergence rate. Study the parallel algorithm scalability. 

2. Implement the Jacobi and Seidel methods to solve a system of linear equations with a 

SPD matrix. Compare the respective convergence rates. Propose parallel implementations 

of the above algorithms. 

3. Implement the SOR method to solve a system of linear equations with a SPD matrix. See 

how the method parameter influences the convergence rate. Propose a parallel 

implementation and study its scalability. 

Module 2 

1. Implement the Jacobi method as applied to a block five-diagonal matrix mentioned in this 

laboratory work. Think about a possible parallelization scheme. 

2. Implement the Seidel method as applied to a block five-diagonal matrix mentioned in this 

laboratory work. Think about a possible parallelization scheme. 

3. Conduct a computational experiment having found the best pipelined scheme parameter 

values using Intel® TBB for test grid dimensions.  

Module 3 

1. Study the SOR method convergence rate depending on the method parameter. 

2. Implement the Conjugate Gradient (CG) method and apply it to the test problem. 

Compare the number of iterations for the CG and SOR methods. 

3. Apply Chebyshev’s acceleration procedure to the conjugate gradient method. Compare 

the number of iterations for the initial and accelerated method. 

Module 4 

1. Construct the symmetric Gauss-Seidel preconditioner. Estimate the matrix A condition 

number reduction using this preconditioner. 

2. Construct the ILU(p)-preconditioner. Estimate the matrix A condition number reduction 

using this preconditioner with various degrees of p filling. 

3. Implement a parallel version of the ILU(p)-preconditioner. Check your program 

scalability. 



Module 5 

1. Implement a parallel ILU(p) algorithm version and analyze its scalability. 

2. Implement a block modification of the ILU(p) algorithm to increase the algorithm 

effectiveness for large matrices. 

Module 6 

1. Implement the GMRes(m) method (generalized minimal residual method with restart). 

Compare the number of method iterations for various restart parameter m values. 

2. Implement the BiCG-Stab method (stabilized biconjugate gradient method) using the 

pseudocode indicated in [1]. Compare convergence rates of the initial and stabilized 

methods. 

3. Use the ILU(0)-preconditioner for the methods from previous tasks. Compare the number 

of iterations for the initial and preconditioned methods. 

Module 7 

1. Apply the preconditioner ILU(p) to the conjugate gradient method. How will it influence 

the convergence rate? 

2. Modify your program to implement the biconjugate gradient method. Compare 

convergence rates of the conjugate and biconjugate gradient methods. 

Module 8 

1. Use the ILU(p)-preconditioner for the GMRes method. Analyze the convergence, 

compare the number of iterations and method convergence for the ILU(0) and ILU(p) 

preconditioners. 

2. Implement the GMRes(m) method (generalized minimum residual method with restart). 

Compare the number of method iterations for various restart parameter m values. 

Module 9 

1. Analyze the BiCG method convergence rate depending on precision of the floating point 

arithmetic. Use the float, double and long double data types and the mpfr library of real 

numbers. 

2. Implement the BiCG-Stab method or stabilized biconjugate gradient method using the 

pseudocode indicated in [1]. Compare convergence rates of the initial and stabilized 

methods. 

6.4 Assessment criteria 

Perfect Correct answers on >95% of the number of test questions 



Excellent Correct answers on 80-95% of the number of test questions 

Very good Correct answers on 70-79% of the number of test questions 

Good Correct answers on 60-69% of the number of test questions 

Satisfactory Correct answers on 50-59% of the number of test questions 

Unsatisfactory Correct answers on 25-49% of the number of test questions 

Bad Correct answers on <25% of the number of test questions 
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8 Course support 

The following software and hardware are used during course study: 

Hardware 

“Lobachevsky” supercomputer with the Intel Xeon Phi coprocessors is used. 

Software 

https://software.intel.com/en-us/intel-mkl/


Intel Parallel Studio XE (C/C++ Compiler for Intel Xeon Phi, Intel Amplifier, Intel MKL) 

is used. 
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