
The Ministry of Education and Science of the Russian Federation

Lobachevsky State University of Nizhni Novgorod

Computing Mathematics and Cybernetics faculty

The competitiveness enhancement program

of the Lobachevsky State University of Nizhni Novgorod

among the world's research and education centers

Strategic initiative

Achieving leading positions in the field of supercomputer technology and high-performance

computing

Computational mathematics and cybernetics faculty

APPROVED

 Dean of the Computational mathematics

and cybernetics faculty

________________ V. Gergel

 "_____"__________________2014.

Course program

ITERATIVE METHODS FOR SOLVING SYSTEM OF LINEAR EQUATIONS

Bachelor program "Fundamental Informatics and Information Technologies"

Specialization

General part

Professional block

Elective disciplines

Б3.В.ДВ.9

Degree

Bachelor

Education form

Full-time attendance

Nizhni Novgorod

2014

1. Course objective

This course explains popular iterative algorithms of solving linear systems and deals with

a number of issues related to their parallelization on shared memory systems.

The course is based on materials developed in UNN with the support of Intel from 2011

through 2013 (http://www.hpcc.unn.ru/?doc=491). In 2014, within the competitive growth

program, part of course materials were modified. The modifications mostly consisted in a

detailed independent work planning. The key course elements have been translated into English.

The main course objective is to study basic iterative algorithms of solving linear

systems, gain experience in developing parallel numerical algorithms for efficient use on shared

memory systems.

It involves solving the following problems:

1. Mastering parallel programming on shared memory systems (OpenMP, TBB, Cilk Plus).

2. Studying basic iterative methods of solving linear systems (Jacobi, Seidel, SOR and

direct iteration methods).

3. Studying Krylov subspace iterative methods (conjugate gradient, biconjugate gradient

and generalized minimum residual methods).

4. Studying basic preconditioning algorithms (methods based on incomplete LU-

factorization).

5. Studying general approaches to memory algorithm optimization and load balancing in

case of parallelization.

6. Insight into efficient implementations of studied algorithms (in the course of laboratory

works).

The course is intended for engineers, teaching staff, scientists and both graduate and post-

graduate students.

2. Course position in the bachelor program

The course is developed for the 4-th year students and is given in the 8-th semester. This

course belongs to the elective disciplines of the professional block.

The lecture part of the course is oriented on the students familiar with basics of linear

algebra and numerical methods to the extent of bachelor courses in natural sciences.

http://www.hpcc.unn.ru/?doc=491

The students are supposed to have basic skills of designing C/C++ programs and parallel

programming using OpenMP in order to perform the laboratory works. Competence in TBB and

MKL as well as the other components of the Intel Parallel Studio XE package is encouraged, but

not mandatory for studying the course. All the information about using Intel Parallel Studio XE

is included in the course materials.

3. Learning outcomes and requirements

In the framework of this course, the following competencies are formed:

 Possessing the general culture of thinking, the ability to perceive, compile and analyze

information (General Competency 1 - GC1). Students will be able to:

o construct oral and written arguments in a logical and clear manner.

 The ability of intellectual, cultural, moral, physical, and professional self-development and

self-improvement (GC 2). Students will be able to:

o constantly improve their professional and cultural level.

 The ability to understand and apply in practice the theory of information as a fundamental

scientific basis of information technology (Professional Competency 1 – PC 1). Students

will be able to:

o understand the content side of the information process, know the techniques for

sending, receiving, processing, analyzing and storing data.

 The ability to understand, develop and apply modern information technology (PC 4).

Students will be able to:

o understand the concepts and implement the functionality of the following core

technologies:

 at the level of technological literacy:

 computer systems architecture;

 at the level of in-depth knowledge:

 basic programming;

 parallel and distributed computing.

o develop and use professionally the software for supporting information systems and

processes, to be able to use modern instrumental computing equipment.

 The ability to conduct research (PC 5). Students will be able to:

o develop new algorithmic and methodological and technological solutions;

o collect, process and interpret the data of modern research necessary to develop

approaches, decisions and conclusions on appropriate scientific and professional

issues.

 The ability to conduct analytical activities (PC 8). Students will be able to:

o analyze and select modern technologies and methodologies for implementing an

information system.

As a result of education graduates from the course will know and be able to:

 use parallel algorithms to solve linear systems with both general and special matrices;

 analyze and split algorithms into parts allowing for parallel execution;

 develop parallel programs for shared memory computing systems based on OpenMP, TBB,

Cilk Plus;

 perform computational experiments on high performance computing systems;

 evaluate efficiency of the performed parallel computation.

4. Course outline

The course consists of 1 credit, 36 hours, including 8 lecture hours and 12 practice hours.

Practice classes can be held as lab works (students carry out assignments step-by-step under

supervision) or master class (supervisor demonstrates and explains step-by-step solutions). 16

hours are allocated for individual work. The authors encourage additional work.

4.1. Course outline

Course outline is as follows:

Module

S
em

es
te

r

W
ee

k

Module type

Assessment

L
ec

tu
re

S
em

in
ar

L
ab

In
d
iv

id
u
al

 w
o
rk

1 Introduction. Basic iterative

methods.

6 1 2 – – 1 Test

2 Solving sparse linear system

by iterative methods:

problem of heat diffusion in

a plate

2 – – 2 1 Test

3 Solving symmetric sparse

linear systems using SOR

3-4 – – 2 2 Test

method with Chebyshev’s

acceleration

4 Preconditioning methods 4-5 2 – – 1 Test

5 Preconditioning using

incomplete LU-factorization

 6-7 – – 2 2 Test

6 Krylov subspace iterative

methods

 7-10 4 – – 4 Test

7 Solving sparse linear systems

using the preconditioned

conjugate gradient method

 11-12 – – 2 2 Test

8 Solving sparse linear systems

using the preconditioned

generalized minimum

residual method

 13-14 – – 2 2 Test

9 Solving sparse linear systems

using the preconditioned

biconjugate gradient method

 14-16 – – 2 1 Test

 TOTAL: 8 – 12 16 Final assessment

form – exam

4.2. Course description

Course content is as follows:

1. Introduction. Basic iterative methods.

The objective of this lecture is to review general concepts of solving linear systems using

basic iterative methods (Jacobi, Seidel and Successive Over Relaxation (SOR) methods)

2. Solving sparse linear system by iterative methods: problem of heat diffusion in a

plate

The purpose of this laboratory work is to see how linear systems with sparse matrices are

solved using iterative methods via example of a stationary problem of heat diffusion in a

rectangular plate at given temperature conditions at the plate edges.

3. Solving symmetric sparse linear systems using SOR method with Chebyshev’s

acceleration

The purpose of this laboratory work is to implement the SOR method for solution of

sparse linear systems and study ways to accelerate iterative methods by the example of

the symmetric successive over relaxation.

4. Preconditioning methods

The objective of this lecture is to review approaches to reduce the condition number of a

matrix based on preconditioning. Preconditioning is important for iterative methods as it

improves their convergence rate.

5. Preconditioning using incomplete LU-factorization

The purpose of this laboratory work is implementation of preconditioner construction

methods based on incomplete LU-factorization.

6. Krylov subspace iterative methods

The objective of this lecture is to review a general approach to construction of Krylov

subspace iterative methods. The generalized minimum residual method, conjugate

gradient method and biconjugate gradient method are used as examples. The lecture also

reviews preconditioning for the above algorithms.

7. Solving sparse linear systems using the preconditioned conjugate gradient method

The purpose of this work is to demonstrate practical implementation of the conjugate

gradient method for symmetric sparse matrices using preconditioning and study influence

of the computation error on the solution accuracy.

8. Solving sparse linear systems using the preconditioned generalized minimum

residual method

The purpose of this laboratory work is to demonstrate practical implementation of the

generalized minimum residual method and study influence of ILU(0)-preconditioning on

the method convergence rate.

9. Solving sparse linear systems using the preconditioned biconjugate gradient method

The purpose of this laboratory work is to demonstrate practical implementation of the

biconjugate gradient method and study influence of preconditioning on the method

convergence rate.

5. Learning technologies

During course we use the following learning technologies: lectures, lab works, individual

work, assessment techniques. PowerPoint presentations for all lectures and practical lessons are

used.

6. Individual work and assessment techniques

Individual work consists of mastering theoretical and practical material according to the

given references, solving practical problems, and answering on the given questions. Individual

work can be done in both classes and at home. Control of individual work is performed by

electronic tests. In the end of the program there is a final test.

6.1 Assessment forms

Monitoring of progress in studies is performed by tests in class that consist of assignments

from the list of questions and practical problems (given below).

The final attestation is done based on the results of the final test. This test includes

questions from all sections of the course.

6.2 Individual work: Questions and Practical problems

Module 1

1. Implement the fixed point iteration method to solve a linear system with a SPD matrix

(both its sequential and parallel versions). Estimate how the method parameter influences

the convergence rate. Study the parallel algorithm scalability.

2. Implement the Jacobi and Seidel methods to solve a system of linear equations with a

SPD matrix. Compare the respective convergence rates. Propose parallel implementations

of the above algorithms.

3. Implement the SOR method to solve a system of linear equations with a SPD matrix. See

how the method parameter influences the convergence rate. Propose a parallel

implementation and study its scalability.

Module 2

1. Implement the Jacobi method as applied to a block five-diagonal matrix mentioned in this

laboratory work. Think about a possible parallelization scheme.

2. Implement the Seidel method as applied to a block five-diagonal matrix mentioned in this

laboratory work. Think about a possible parallelization scheme.

3. Conduct a computational experiment having found the best pipelined scheme parameter

values using Intel® TBB for test grid dimensions.

Module 3

1. Study the SOR method convergence rate depending on the method parameter.

2. Implement the Conjugate Gradient (CG) method and apply it to the test problem.

Compare the number of iterations for the CG and SOR methods.

3. Apply Chebyshev’s acceleration procedure to the conjugate gradient method. Compare

the number of iterations for the initial and accelerated method.

Module 4

1. Construct the symmetric Gauss-Seidel preconditioner. Estimate the matrix A condition

number reduction using this preconditioner.

2. Construct the ILU(p)-preconditioner. Estimate the matrix A condition number reduction

using this preconditioner with various degrees of p filling.

3. Implement a parallel version of the ILU(p)-preconditioner. Check your program

scalability.

Module 5

1. Implement a parallel ILU(p) algorithm version and analyze its scalability.

2. Implement a block modification of the ILU(p) algorithm to increase the algorithm

effectiveness for large matrices.

Module 6

1. Implement the GMRes(m) method (generalized minimal residual method with restart).

Compare the number of method iterations for various restart parameter m values.

2. Implement the BiCG-Stab method (stabilized biconjugate gradient method) using the

pseudocode indicated in [1]. Compare convergence rates of the initial and stabilized

methods.

3. Use the ILU(0)-preconditioner for the methods from previous tasks. Compare the number

of iterations for the initial and preconditioned methods.

Module 7

1. Apply the preconditioner ILU(p) to the conjugate gradient method. How will it influence

the convergence rate?

2. Modify your program to implement the biconjugate gradient method. Compare

convergence rates of the conjugate and biconjugate gradient methods.

Module 8

1. Use the ILU(p)-preconditioner for the GMRes method. Analyze the convergence,

compare the number of iterations and method convergence for the ILU(0) and ILU(p)

preconditioners.

2. Implement the GMRes(m) method (generalized minimum residual method with restart).

Compare the number of method iterations for various restart parameter m values.

Module 9

1. Analyze the BiCG method convergence rate depending on precision of the floating point

arithmetic. Use the float, double and long double data types and the mpfr library of real

numbers.

2. Implement the BiCG-Stab method or stabilized biconjugate gradient method using the

pseudocode indicated in [1]. Compare convergence rates of the initial and stabilized

methods.

6.4 Assessment criteria

Perfect Correct answers on >95% of the number of test questions

Excellent Correct answers on 80-95% of the number of test questions

Very good Correct answers on 70-79% of the number of test questions

Good Correct answers on 60-69% of the number of test questions

Satisfactory Correct answers on 50-59% of the number of test questions

Unsatisfactory Correct answers on 25-49% of the number of test questions

Bad Correct answers on <25% of the number of test questions

7. References

1. David R. Kincaid and E. Ward Cheney. Numerical analysis : mathematics of scientific

computing. Brooks/Cole Publishing Company, 1991.

2. Golub, G.H., Ortega, J.M. Scientific Computing. An Introduction with Parallel Computing.

Academic Press, Inc., 1993.

3. J. Dongarra et al. Templates for the solution of linear systems: building blocks for iterative

methods. SIAM, 1994.

4. Gene H. Golub, Charles F. Van Loan. Matrix Computations. The John Hopkins University

Press, 1996.

5. James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

6. Richard L. Burden, J. Douglas Faires. Numerical Analysis. Brooks Cole, 2000.

7. Joe D. Hoffman. Numerical Methods for Engineers and Scientists. CRC Press, 2001.

8. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

9. G. Karniadakis, R. Kirby. Parallel scientific computing in C++ and MPI. Cambridge

university press, 2003.

10. M. Quinn. Parallel programming in C with MPI and OpenMP. McGraw-Hill, 2004.

11. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery.

Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, 2007.

12. Intel Math Kernel Library https://software.intel.com/en-us/intel-mkl/

8 Course support

The following software and hardware are used during course study:

Hardware

“Lobachevsky” supercomputer with the Intel Xeon Phi coprocessors is used.

Software

https://software.intel.com/en-us/intel-mkl/

Intel Parallel Studio XE (C/C++ Compiler for Intel Xeon Phi, Intel Amplifier, Intel MKL)

is used.

9 Authors

English version of the course is developed by K. Barkalov. V. Gergel, E. Kozinov,

A. Pirova, V. Kustikova participated in the Russian version preparation.

Associate prof. __ Konstantin Barkalov

Course program is discussed by Software Department members.

«______» ________________ 2014; Document # _______

The head of the Software Department, prof. __________________________ Roman Strongin

Course program is approved by methodical commission of Computational Mathematics and

Cybernetics Faculty of UNN,

 «______» ________________ 2014; Document # _______

The head of the commission _______________________________ Natalia Shestakova

