
OPT-i
An International Conference on

Engineering and Applied Sciences Optimization
M. Papadrakakis, M.G. Karlaftis, N.D. Lagaros (eds.)

Kos Island, Greece, 4-6 June 2014

MORSy – A NEW TOOL FOR SPARSE MATRIX REORDERING

Anna Yu. Pirova1, Iosif B. Meyerov 1

1 Lobachevsky State University of Nizhni Novgorod
23 Gagarin av., 603950, Nizhni Novgorod, Russia

{pirova, meerov}@vmk.unn.ru

Keywords: multilevel nested dissection, sparse matrix reordering, reducing fill-in, vertex
separator, Cholesky factorization.

Abstract. When direct methods for solving sparse linear systems of equations are used, an
important stage of the solution is to reorder matrix rows and columns to reduce the number of
non-zero elements of the matrix factor. We present MORSy – a new tool for reordering sym-
metric sparse matrices. It is based on multilevel nested dissection algorithm with modifica-
tions for vertex separators. Experimental results prove that MORSy is competitive to METIS
and Scotch libraries both in ordering quality and performance.

Anna Yu. Pirova, Iosif B. Meyerov

1 INTRODUCTION

Systems of linear equations Ax = b with sparse symmetric positive definite matrix A arise
in a wide range of research and engineering problems in physics, chemistry, economics, fi-
nance, and other domains. There are direct and iterative methods of solving such systems. Di-
rect methods are based on factorization of the matrix A into two triangular matrices (A = LLT)
[1], while iterative methods are based on step-by-step approximation to the solution x [2].
When direct methods are used, so-called fill-in of the matrix occurs – as a rule, the number of
non-zero elements of the factor is much greater than the number of non-zero elements of ini-
tial matrix. This effect can lead to significant memory requirements for factor storage and crit-
ical increase in factorization time. For reduction of factor fill-in, ordering of the matrix rows
and columns is applied. Finding correct ordering that minimizes factor fill-in is an NP-
complete problem of discrete optimization [3]. In practice, there are two commonly used heu-
ristic approaches for performing reordering to reduce factor fill-in: nested dissection and min-
imum degree algorithms.

The minimum degree algorithm was proposed by Tinney and Walker in 1969 [4]. It mod-
els the Gaussian elimination process and is based on the local factor minimization strategy. At
each step of the algorithm the vertex with the smallest degree is eliminated and numbered,
while its neighbors are contracted to the clique. The most time consuming operation of this
algorithm is vertex degree recalculation after every step. Since 1980s a number of modifica-
tions of the minimum degree algorithm for improving its runtime and quality has been devel-
oped, including Multiple Minimum Degree [5] (Liu, 1985), Approximate Minimum Degree [6]
(Amestoy, Davis, Duff, 1996), Column Approximate Minimum Degree [7] (Davis, Gilbert at
el., 2004) and others.

The nested dissection algorithm for finite element meshes was proposed by George in 1973
[8] and was generalized for irregular graphs by Lipton, Rose, Tarjian [9], and George, Liu
[10]. It is based on the global factor minimization strategy. The notion of a separator is cen-
tral to this algorithm. It is a set of graph vertexes, removal of which divides the graph into two
disconnected parts. The nested dissection algorithm is as follows: to divide the matrix graph
into two disconnected subgraphs by a small vertex separator, to number separator vertexes
from highest available indexes, and then to process the produced subgraphs recursively. Find-
ing a small separator that divides the graph into two roughly equal subgraphs determines the
quality of ordering. Since 1993 modifications of the nested dissection algorithm based on the
multilevel graph partition procedure are widely used. This approach was proposed by Bui and
Jonse [11] and improved by Karypis and Kumar [12], Hendrickson and Leland [13], Hen-
drickson and Rothberg [14] and others. When the multilevel method for determining the sepa-
rator is used, finding graph separator consists of three stages: coarsening, partitioning, and
uncoarsening. During the coarsening stage matching techniques are used to construct a se-
quence of graphs, where the structure of each graph coarsens the structure of the previous one.
During the partitioning stage the separator of the coarsest graph is determined. It is performed
by either direct finding vertex separator or finding an edge separator followed by computing a
vertex separator from the edge separator. During the uncoarsening stage the separator of the
coarsest graph is projected back to the original graph through the sequence of intermediate
graphs. At each step of the uncoarsening stage the separator is refined to reduce its size and to
balance subgraphs. Usually it is performed by the modifications of the local optimization al-
gorithm by Kernighan-Lin [15] or Fiduccia-Mattheyses [16]. The advantage of the multilevel
scheme is that time-consuming separation algorithms are applied to small graphs, and refine-
ment of projected separators is carried out by an iterative algorithm starting from good initial

Anna Yu. Pirova, Iosif B. Meyerov

approximation. This allows to reduce reordering time and improve its quality in comparison
with the classical nested dissection method.

Currently, there exist a number of open source implementations of sparse matrix ordering
that can be used sequentially or in parallel for distributed memory systems. We compare our
results with widely used METIS [17] and Scotch [18] libraries that are based on the multilevel
nested dissection algorithm. Most of sparse linear solvers have interfaces for running external
reordering libraries and their own ordering implementations. For example, the modifications
of minimum degree and nested dissection orderings are implemented in Intel MKL Pardiso
[19], SuperLU [20], MUMPS [21], CHOLMOD [22], and others. We present MORSy – a
new open source fill-in minimization software based on the multilevel nested dissection algo-
rithm with modifications for using vertex separator at all steps of multilevel scheme.

The remainder of the paper is organized as follows. Section 2 defines the fill-in minimiza-

tion problem. Section 3 describes multilevel nested dissection implementation in MORSy.
Section 4 presents the experimental results of MORSy and compares its performance and or-
derings quality with that of METIS and Scotch libraries. Section 5 gives a summary of exper-
imental results and observes future work.

2 PROBLEM STATEMENT

Let A = (aij) be a sparse symmetric n by n matrix. Let us construct a matrix graph G = (V, E)
with the set of vertexes V and the set of edges E, where each vertex vi is associated with ma-
trix row i (i = 1, 2, ..., n), and each edge (vi, vj) is associated with non-zero element of matrix,
i.e. (vi, vj) ∊ E if and only if aij ≠ 0 (i, j = 1, 2, ..., n; i ≠ j). The set of vertexes that are adjacent
to a vertex v is denoted by Adj(v).

When elimination of vertex v from graph G is performed, edges between vertexes adjacent
to vertex v are added to the graph so that they become a clique, vertex v is deleted from the set
of vertexes together with all incident edges:

V = V \ v;
E = E \ {(u, v): u ∊ Adj(v)} ∪ {(u1, u2): u1, u2 ∊ Adj(v)}

The added edges are associated with the elements that became non-zero during Gaussian
elimination of v-th matrix row. Let π = (π1, π2, ..., πn) be a permutation of the set of vertexes V.
Fill-in F(π) generated by the permutation π is a set of edges added during the consequent
elimination of vertexes π1, π2, ..., πn. Problem of finding the permutation π* that minimizes
number of edges in produced fill-in is NP-complete [3]:

π
* = argmin {|F(π)|}

Let us denote the quality of ordering as the number of nonzero elements of the Cholesky
factor of the matrix after applying this ordering.

3 MULTILEVEL NESTED DISSECTION IN MORSY

Reordering in MORSy is based on the classical multilevel scheme with modification of
stages for vertex separator (Figure 1).

Program MultilevelNestedDissection (GA(VA, EA), Iperm)
Input: GA(VA, EA) – a graph constructed from the sparse symmetric matrix A struc-
ture.
Output: Iperm– a new numbering of GA vertexes (A rows).

1 G(V, E) = Compress(GA)

Anna Yu. Pirova, Iosif B. Meyerov

2 while G isn' t numbered do
3 G0(V0, E0) = current subgraph of G
4 if | V0| is small enough then
5 number the nodes in G by automatic nested dissection
6 V = V \ V 0;
7 else
8 i = 0;
9 while Gi is big enough do
10 Gi+1(Vi+1, Ei+1) = Coarse (Gi); i++;
11 end while
12 m = i;
13 Pm(Sm, Vm,1, Vm,2) = InitializePartition (Gm) with separator Sm;
14 for i = m downto 1 do
15 Pi - 1(Si - 1, Vi - 1,1, Vi - 1,2) = ProjectPartition (Pi);
16 Pi - 1(Si - 1, Vi - 1,1, Vi - 1,2) = RefinePartition(Pi - 1);
17 end for
18 Number vertexes from S0;
19 V = V \ S0;
20 end if
21 end while
22 Iperm = ProjectNumbers(GA);

Figure 1: Structure of multilevel nested dissection in MORSy. Stages are modified for use of a vertex separator.

First, compressing of graph structure [14] is performed to reduce reordering time (Figure 1,
line 1). Then, in the main loop of the algorithm (Figure 1, lines 2-21) a separator is found for
each subgraph G0 of the initial graph G, which is constructed during the processing of nested
dissection ordering. If the number of graph vertexes is big enough, its separator is defined us-
ing the multilevel technique (Figure 1, lines 8-17).

At the coarsening stage (Figure 1, lines 8-11) a sequence of graphs G1, G2, ..., Gm, is
formed, where each following graph flows out of the previous one by contracting edges and
merging their incident vertexes. Heavy edge matching or random matching [12] are used for
this purpose.

At the partitioning stage (Figure 1, line 13) the vertex separator of the graph is fined by
building a rooted level structure from pseudoperipheral vertex [23].

At the uncoarsening stage (Figure 1, lines 14-17) the Primitive moves method is used for
partition refinement. This method is a modification of the iterative Kernighan-Lin method
adapted for vertex separator by Ashcraft and Liu [24] and modified for the multilevel scheme
by Hendrickson and Rothberg [14]. The method uses the notion of a partition P = (S, V1, V2)
as a union of free disjoint sets of graph vertexes, were S is separator and V1, V2 are the sets of
vertexes of disconnected subgraphs produced after separator's deleting. The essence of the
method is as follows: each vertex s ∊ S from the partition P = (S, V1, V2) is associated with
“gain” – change of separator size when moving this vertex to one of the parts V1, V2 (let us
denote it gain(s → V1), gain(s → V2) respectively). Then as per rule from Figure 2 a series of
separator vertex moves is carried out:

1. M = {v ∊ V: v have not been selected during this sequence of moves}
2. s1 = argmax {gain(u → V1), u ∊ S ∩ M }; maxV1 = gain(s1 → V1);
3. s2 = argmax {gain(u → V2), u ∊ S ∩ M }; maxV2 = gain(s2 → V2);

Anna Yu. Pirova, Iosif B. Meyerov

4. if maxV1 > maxV2 then
5. Move s1 to V1; M = M / s1;
6. else
7. if maxV2 > max V1 then
8. Move s2 to V2; M = M / s2;
9. else // maxV1 = maxV2
10. if |V1| < |V2| then
11. Move s1 to V1; M = M / s1;
12. else
13. Move s2 to V2; M = M / s2;
14. end if
15. end if
16. end if

Figure 2: The rule of moving the separator vertexes from the Primitive move algorithm [1].

If moving of vertice s improves the partition, then the best found partition P* is updated.
Then the process is repeated for a newly received partition P*. Thus, the algorithm consists of
two nested loops, the external one corresponds to the loop on various partitions, and the inter-
nal one corresponds to the loop on vertex moves from the current partition.

The rule of moving of separator vertexes significantly influences the quality of resulting
orderings. When using rule (Figure 2) it is possible that the imbalance of partition received at
the previous iteration of the internal loop of the algorithm has to be compensated at the next
iteration. We changed the rule of vertex moves for most effective balancing tracking so that at
each iteration of the external loop moves are carried out only into one part of partition (small-
er one at the beginning of the external loop). It also reduces storage requirements as it is not
necessary to store the gains of moving vertexes to another part of the partition.

For reduction of run time of the algorithm at the uncoarsening stage, partition refinement
can be used not for every intermediate graph from the sequence of G1, G2, ..., Gm, but once per
several iterations. Besides, it has been experimentally established that limiting the number of
algorithm iterations also reduces its run time with an insignificant loss in quality for the ma-
jority of graphs.

4 EXPERIMENTAL RESULTS

4.1 Test environment

We tested MORSy with the matrices from The University of Florida Sparse Matrix Collec-
tion [25]. Matrix sizes varied from 200 000 to 1 500 000. Table 1 gives the description of the
set of matrices.

Matrix name N NZ Description
pwtk 217 918 11 524 432 structural problem
msdoor 415 863 19 173 163 structural problem
parabolic_fem 525 825 3 674 625 computational fluid dynamics problem
tmt_sym 726 713 5 080 961 electromagnetics problem
boneS10 914 898 40 878 708 3D structural problem
Emilia_923 923 136 40 373 538 3D structural problem
audikw_1 943 695 77 651 847 3D problem

Anna Yu. Pirova, Iosif B. Meyerov

bone010 986 703 47 851 783 3D problem
ecology2 999 999 4 995 991 2D structural problem
thermal2 1 228 045 8 580 313 unstructured FEM
StocF-1465 1 465 137 21 005 389 computational fluid dynamics problem
Hook_1498 1 498 023 59 374 451 3D structural problem
Flan_1565 1 564 794 114 165 372 3D structural problem
G3_circuit 1 585 478 7 660 826 circuit simulation problem

Table 1: Description of the test matrices.
N is the number of matrix rows, NZ is the number of non-zero elements of the matrix.

All experiments were performed on Intel Xeon E5-2690 CPU (8 cores, 2.9 GHz) with 64
GB of RAM, running OS Linux. MORSy was compiled with Intel® C++ Composer (from
Intel Parallel Studio XE 2013); Intel MKL library was used for random number generation.

The quality of orderings was evaluated with respect to the number of non-zero elements in
the factor of reordered matrix and time needed for the ordering.

4.2 Reordering parameters

Reordering in MORSy allows various parameter setting (Table 2), with prioritization of
run time minimization and reordering quality maximization. Values of the parameters used in
experiments are described in Table 2.

Parameter name Range of values
Coarsening method Random matching, heavy edge

matching
Number of coarsening steps 10, 15
Partition quality evaluation function coefficient 0.20, 0.25, 0.30
Step of partitioning refinement during Uncoarsening
process

1 (for every intermediate graph),
2 (for every second intermediate
graph)

Limit of the number of iterations of the partition re-
finement algorithm at intermediate Uncoarsening
steps

No limits,
Limited – not more than one itera-
tion

Table 2: MORSy parameters used in experiments.

4.3 Comparison with other ordering libraries

Table 3 shows the quality of orderings produced by MORSy, METIS and Scotch. MORSy
was run with the best parameter configuration with respect to factor fill-in for each matrix.
We denote this parameter configuration as “quality-priority”. METIS and Scotch were run
with the default parameters of ordering routines. Scotch was run under the METIS-compatible
interface.

In comparison with METIS, in 7 test matrices out of 14 MORSy provided orderings with a
better quality. For ecology2 matrix the size of the factor is 26% better, for other matrices it is
1-3% better. For the remaining 7 matrices from the test set MORSy provides orderings with a
worse quality than METIS. The size of the factor is 9-10% larger for two matrices (boneS10,
Hook_1498), for other matrices it is 1-3% larger. Thus, in 12 matrices out of 14 MORSy pa-
rameter adjustment allows orderings that are very close to orderings of METIS or better in
quality.

Anna Yu. Pirova, Iosif B. Meyerov

In comparison with default reordering in Scotch, MORSy orderings are better for all test
matrices. The factor size advantage is 20 to 60% for 5 matrices, 10 to 20% for 5 matrices, and
less than 10% for 4 matrices (19% on average).

Matrix name N
Factor NZ,
METIS

Factor NZ,
MORSY

Factor NZ,
Scotch

pwtk 217 918 47 124 530 46 784 875 56 116 478
msdoor 415 863 51 483 893 52 085 831 83 374 463
parabolic_fem 525 825 25 607 853 24 923 337 28 575 855
tmt_sym 726 713 29 507 621 28 741 732 35 754 899
boneS10 914 898 267 940 257 295 723 050 339 280 809
Emilia_923 923 136 1 636 886 316 1 650 689 751 1 715 779 992
audikw_1 943 695 1 216 865 448 1 200 984 910 1 204 126 326
bone010 986 703 1 049 932 740 1 035 907 995 1 249 173 615
ecology2 999 999 35 641 736 30 081 507 43 675 655
thermal2 1 228 045 50 430 085 51 356 445 58 403 914
StocF-1465 1 465 137 1 037 743 963 1 072 623 748 1 111 688 726
Hook_1498 1 498 023 1 484 282 865 1 617 131 106 1 863 646 578
Flan_1565 1 564 794 1 456 370 148 1 415 670 363 1 546 352 973
G3_circuit 1 585 478 90 916 423 91 292 425 107 035 058

Table 3: Comparison of number of factor non-zero elements after performing reordering.
N is number of matrix rows, NZ is number of non-zero elements after factorization.

Table 4 presents the comparison of run time of MORSy, METIS and Scotch for obtaining
the above mentioned orderings. On 5 matrices out of the 14 MORSy works 1.13 to 1.99 times
faster than METIS, and on 4 matrices it is 1.02 to 1.64 times slower, and on 5 matrices it
works 2.11 to 2.53 times slower. In comparison with Scotch, MORSy has 1.04 to 2.64 times
performance advantage on the half of the test matrices and 1.05 to 1.92 times disadvantage on
other matrices.

Matrix name N
Reordering time,
METIS

Reordering time,
MORSY

Reordering
time, Scotch

pwtk 217 918 0,44 0,34 0,46
msdoor 415 863 0,59 0,60 0,60
parabolic_fem 525 825 2,75 5,95 3,76
tmt_sym 726 713 4,04 9,77 5,10
boneS10 914 898 5,43 8,92 5,95
Emilia_923 923 136 5,48 3,74 5,64
audikw_1 943 695 8,27 4,16 10,99
bone010 986 703 7,08 8,26 7,86
ecology2 999 999 4,50 9,66 5,99
thermal2 1 228 045 7,31 18,46 10,44
StocF-1465 1 465 137 14,96 31,52 26,81
Hook_1498 1 498 023 9,73 8,62 8,98
Flan_1565 1 564 794 11,47 10,07 12,37
G3_circuit 1 585 478 9,19 9,43 13,33

Table 4: Comparison of the run time of METIS, MORSy, Scotch.
N is number of matrix rows, NZ is number of non-zero elements after factorization. All times are in seconds.

Anna Yu. Pirova, Iosif B. Meyerov

Table 5 shows MORSy quality and run time with the parameter configuration that mini-
mizes reordering time while keeping factor increase less than 10%, in comparison with the
previous results. Let us denote this parameters configuration “time-priority”.

Matrix name N
Factor NZ,
MORSy

Reordering
time, MORSy

Factor
increase Time decrease

Pwtk 217 918 48 112 201 0.31 2.8% 9.7%
Msdoor 415 863 53 500 238 0.5 2.7% 20.0%
parabolic_fem 525 825 25 450 749 3.45 2.1% 72.5%
tmt_sym 726 713 29 517 952 6.28 2.7% 55.6%
boneS10 914 898 315 302 577 5.81 6.6% 53.5%
Emilia_923 923 136 1 713 036 243 3.45 3.8% 8.4%
audikw_1 943 695 1 200 984 910 4.16 0.0% 0.0%
bone010 986 703 1 081 234 524 5.38 4.4% 53.5%
ecology2 999 999 33 076 977 5.6 10.0% 72.5%
thermal2 1 228 045 53 088 061 11.8 3.4% 56.4%
StocF-1465 1 465 137 1 159 553 480 19.57 8.1% 61.1%
Hook_1498 1 498 023 1 682 587 980 8.11 4.0% 6.3%
Flan_1565 1 564 794 1 464 331 428 8.08 3.4% 24.6%
G3_circuit 1 585 478 92 706 938 9.27 1.5% 1.7%

Table 5: Comparison of MORSy quality and run time with parameters for minimizing run time
of reordering (time-priority), with parameters for maximizing quality (quality-priority).

N is the number of matrix rows. Factor NZ, MORSy is the number of matrix factor non-zero
elements after "time-priority" reordering. Reordering time, MORSy - " time-priority" reorder-

ing run time. Factor increase is an increase in the size of the matrix factor in comparison with
the "quality-priority" configuration. All times are in seconds.

MORSy run time reduction by 1.06 to 1.72 times allows obtaining the ordering that gives
at most 10% of excess non-zero factor elements in comparison with the best MORSy results.
For 3 test matrices MORSy produced orderings with 1-3% better factor fill-in compared with
METIS, for 8 matrices factor fill-in is 0.5-5% worse, and for 3 matrices it is 12-18% worse.
However, for a half of the test matrices MORSy works 1.18-1.99 times faster than METIS
(1.44 times faster on average). With other matrices the difference is by 1.01 - 1.61 times (1.29
times on average). In comparison with Scotch, orderings made by MORSy with "time-
quality" parameters provide a 0.2-35% better fill-in for 13 matrices (12% on average), for one
matrix it is 4% worse. Thus, for 12 matrices run time is worse than with Scotch by 2-62%
(25% on average). For the rest two matrices the difference is 13% and 23%.

Figure 3 shows the quality of orderings produced by METIS, Scotch and MORSy with
"quality-priority" and "time-priority" parameter configurations. Figure 4 presents the time for
obtaining these orderings. It has been shown that there is a parameter configuration that pro-
vides orderings with a better fill-in, than obtained by METIS, during a possibly longer period
of time, and orderings with a not critically worse fill-in, during shorter periods of time for all
test matrices. In comparison with Scotch, orderings received using MORSy with various pa-
rameter settings are of a better quality and, for a half of the tested matrices, are less time-
consuming.

Anna Yu. Pirova, Iosif B. Meyerov

pwtk

msdoor

parabolic_fem

tmt_sym

boneS10

Emilia_923

audikw_1

bone010

ecology2

thermal2

StocF-1465

Hook_1498

Flan_1565

G3_circuit

Scotch MORSy, time priority MORSy, quality priority METIS

Figure 3: Comparison of number of factor non-zero elements received using MORSy, METIS, Scotch. Results of

MORSy and Scotch are given with relation to the number of non-zero elements of the factor received using
METIS.

pwtk

msdoor

parabolic_fem

tmt_sym

boneS10

Emilia_923

audikw_1

bone010

ecology2

thermal2

StocF-1465

Hook_1498

Flan_1565

G3_circuit

Scotch MORSy, time priority MORSy, quality priority METIS

Figure 4: The run time of MORSy, METIS, Scotch. Time of MORSy and Scotch is shown in relation to METIS

time.

Anna Yu. Pirova, Iosif B. Meyerov

5 CONCLUSIONS AND FUTURE WORK

We have presented MORSy – a new reordering tool for reducing sparse matrix fill-in based
on the multilevel nested dissection algorithm with modifications for vertex separator at all
steps of the multilevel scheme. Our experiments demonstrate that MORSy is competitive with
the widely used open source ordering libraries METIS and Scotch. MORSy is cross-platform
and is publically available [26]. The software is used in the High Performance Computing
Center of the State University of Nizhny Novgorod [27] for solving sparse systems of linear
equations in the process of finite element simulation of heart activity.

We plan to improve MORSy performance with quality-priority settings to achieve METIS
and Scotch performance on the full set of test matrices. The main line of future research is to
develop a parallel version of MORSy for shared-memory systems. While there are a number
of successful implementations for distributed memory systems (ParMetis [28], PT-Scotch
[29]), developing parallel reordering tools for shared memory systems is still an open question.
The recent reports presented parallel versions of multilevel graph partitioning algorithms by
Scotch [30] and METIS [31] which are designed to the relative problem. While multicore and
manycore systems is widely used today, developing parallel reordering algorithms that will
combine high quality of orderings with efficient use of computational resources of modern
shared-memory systems, are of great importance.

ACKNOWLEGEMENTS

The study was partially supported by the RFBR, research project No. 14-01-3145514.

REFERENCES

[1] T. A. Davis, Direct methods for sparse linear systems. Vol. 2. Siam, 2006.

[2] Y. Saad, Iterative methods for sparse linear systems. Siam, Philadelphia, 2003.

[3] M. Yannakakis, Computing the minimum fill-in is NP-complete. SIAM J. on Algebraic
and Discrete Methods, 2(1), 77–79, 1981.

[4] W. Tinney, J. Walker, Direct solutions of sparse network equations by optimally ordered
triangular factorization. Proceedings of the IEEE, 55(11), 1801–1809, 1967.

[5] J. W. H. Liu, Modification of the minimum-degree algorithm by multiple elimination.
ACM Trans. Math. Software, 11(2), 141–153, 1985.

[6] P. R. Amestoy, T. Davis, I. Duff, An approximate minimum degree ordering algorithm.
SIAM. J. on Matrix Anal. Appl., 17(4), 886–905, 1996.

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, E. G. Ng, A column approximate minimum de-
gree ordering algorithm. ACM Trans. Math. Software, 30(3), 353–376, 2004.

[8] A. George, Nested dissection of a regular finite element mesh. SIAM J. on Numerical
Analysis, 10(2), 345–363.

[9] R. J. Lipton, D. J. Rose, R. E. Tarjan, Generalized nested dissection. SIAM J. on Numeri-
cal Analysis, 16(2), 346–358, 1979.

[10] A. George, J. W. H. Liu, An automatic nested dissection algorithm for irregular finite el-
ement problems, SIAM J. on Numerical Analysis, 15(5), 1053–1069, 1978.

Anna Yu. Pirova, Iosif B. Meyerov

[11] T. N. Bui, C. Jones, A Heuristic for Reducing Fill-In in Sparse Matrix Factorization.
PPSC, 445-452, 1993.

[12] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregu-
lar graphs. SIAM J. on Scientific Computing, 20(1), 359–392, 1998.

[13] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs. Technical Re-
port SAND93-1301, Sandia National Laboratories, 1993.

[14] B. Hendrickson, E. Rothberg, Improving the runtime and quality of nested dissection or-
dering. SIAM J. on Scientific Computing, 20, 468–489, 1999.

[15] B. W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 29, 291–307, 1970.

[16] C. M. Fiduccia, R. M. Mattheyses, A linear time heuristic for improving network parti-
tions. Proceedings 19th IEEE Design Automation Conference, 175–181, 1982.

[17] G. Karipis, METIS. A Software Package for Partitioning Unstructured Graphs, Partition-
ing Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Version 5.0.
Technical report, University of Minnesota, Department of Computer Science and Engi-
neering, 2011. http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

[18] F. Pellegrini, Scotch and libScotch 6.0 User’s Guide. Technical Report LaBRI, 2012.
https://gforge.inria.fr/docman/view.php/248/8260/scotch_user6.0.pdf

[19] Intel Math Kernel Library Reference Manual.
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman.pdf.

[20] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, I. Yamazaki, SuperLU Users’
guide. Technical report LBNL-44289, 2011.
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf

[21] MUltifrontal Massively Parallel Solver (MUMPS 4.10.0) User’s guide. Technical report
ENSEEINT-IRIT, 2011. http://mumps.enseeiht.fr/doc/userguide_4.10.0.pdf

[22] T. A. Davis, User Guide for CHOLMOD: a sparse Cholesky factorization and modifica-
tion package. Department of Computer and Information Science and Engineering, Uni-
versity of Florida, Gainesville, FL, USA, 2008.

[23] A. George, J. W. H. Liu, Computer solution of large sparse positive definite systems.
Prentice-Hall, Englewood Cliffs, New York, 1981.

[24] C. Aschcraft, J. W. H. Liu, A partition improvement algorithm for generalized nested
dissection. Boeing Computer Services, Seattle, WA, Tech. Rep. BCSTECH-94-020, 1994.

[25] The University of Florida Sparse Matrix Collection:
http://cise.ufl.edu/research/sparse/matrices/

[26] MORSy – Sparse Matrix Ordering Software for reducing fill-in:
http://hpc-education.unn.ru/research/overview/sparse-algebra/morsy.

[27] S. Bastrakov, I. Meyerov, V. Gergel et al. High Performance Computing in Biomedical
Applications. Procedia Computer Science, 18, 10–19, 2013.

[28] G. Karypis, V. Kumar, ParMETIS: Parallel graph partitioning and sparse matrix ordering
library. Technical Report TR 97-060, Department of Computer Science, University of
Minnesota, 1997.

Anna Yu. Pirova, Iosif B. Meyerov

[29] C. Chevalier, F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering. Paral-
lel Computing, 34(6), 318–331, 2008.

[30] F. Pellegrini, Shared memory parallel algorithms in Scotch 6. MUMPS Users Group
Meeting, May 29th-30th, EDF, Clamart, France, 2013.
http://graal.ens-lyon.fr/MUMPS/doc/ud_2013/Pellegrini.pdf.

[31] D. LaSalle, Karypis G., Multi-threaded graph partitioning. Parallel & Distributed Pro-
cessing (IPDPS), 2013 IEEE 27th International Symposium on IEEE, 2013.

