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Abstract. When direct methods for solving sparse linearesyist of equations are used, an

important stage of the solution is to reorder manows and columns to reduce the number of
non-zero elements of the matrix factor. We preB8DRSy — a new tool for reordering sym-

metric sparse matrices. It is based on multilevedtad dissection algorithm with modifica-

tions for vertex separators. Experimental resultsve that MORSYy is competitive to METIS

and Scotch libraries both in ordering quality anerformance.
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1 INTRODUCTION

Systems of linear equatiods = b with sparse symmetric positive definite matfbarise
in a wide range of research and engineering prablenphysics, chemistry, economics, fi-
nance, and other domains. There are direct aratitermethods of solving such systems. Di-
rect methods are based on factorization of theixnAtnto two triangular matricesA(= LLT)

[1], while iterative methods are based on step-by-amggoximation to the solutior [2].
When direct methods are used, so-called fill-inhaf matrix occurs — as a rule, the number of
non-zero elements of the factor is much greater tha number of non-zero elements of ini-
tial matrix. This effect can lead to significantmery requirements for factor storage and crit-
ical increase in factorization time. For reductadrfactor fill-in, ordering of the matrix rows
and columns is applied. Finding correct orderingt tminimizes factor fill-in is an NP-
complete problem of discrete optimization [3]. kagtice, there are two commonly used heu-
ristic approaches for performing reordering to kfactor fill-in: nested dissection and min-
imum degree algorithms.

The minimum degree algorithm was proposed by Tirerey Walker in 1969 [4]. It mod-
els the Gaussian elimination process and is baseleolocal factor minimization strategy. At
each step of the algorithm the vertex with the ssaldegree is eliminated and numbered,
while its neighbors are contracted to the cliquiee Thost time consuming operation of this
algorithm is vertex degree recalculation after g\aep. Since 1980s a number of modifica-
tions of the minimum degree algorithm for improvitg runtime and quality has been devel-
oped, including Multiple Minimum Degree [5] (Liu985), Approximate Minimum Degree [6]
(Amestoy, Davis, Duff, 1996), Column Approximateridnum Degree [7] (Davis, Gilbert at
el., 2004) and others.

The nested dissection algorithm for finite elemmaeshes was proposed by George in 1973
[8] and was generalized for irregular graphs bytdmp Rose, Tarjian [9], and George, Liu
[10]. It is based on the global factor minimizatistnategy. The notion of separatoris cen-
tral to this algorithm. It is a set of graph veesxremoval of which divides the graph into two
disconnected parts. The nested dissection algorghas follows: to divide the matrix graph
into two disconnected subgraphs by a small verepamator, to number separator vertexes
from highest available indexes, and then to prottesgroduced subgraphs recursively. Find-
ing a small separator that divides the graph inio toughly equal subgraphs determines the
quality of ordering. Since 1993 modifications oé thested dissection algorithm based on the
multilevel graph partition procedure are widely dis€his approach was proposed by Bui and
Jonse [11] and improved by Karypis and Kumar [E2¢ndrickson and Leland [13], Hen-
drickson and Rothberg [14] and others. When theilewtl method for determining the sepa-
rator is used, finding graph separator consistthide stages: coarsening, partitioning, and
uncoarsening. During theoarseningstage matching techniques are used to constrget a
guence of graphs, where the structure of each gragisens the structure of the previous one.
During thepartitioning stage the separator of the coarsest graph isngdet. It is performed
by either direct finding vertex separator or finglisn edge separator followed by computing a
vertex separator from the edge separator. Duriegiticoarseningstage the separator of the
coarsest graph is projected back to the originaplgrthrough the sequence of intermediate
graphs. At each step of the uncoarsening stageetberrator is refined to reduce its size and to
balance subgraphs. Usually it is performed by thelifitations of the local optimization al-
gorithm by Kernighan-Lin [15] or Fiduccia-Matthegsg 6]. The advantage of the multilevel
scheme is that time-consuming separation algorithresapplied to small graphs, and refine-
ment of projected separators is carried out bytenative algorithm starting from good initial
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approximation. This allows to reduce reorderingetiand improve its quality in comparison
with the classical nested dissection method.

Currently, there exist a number of open source emgintations of sparse matrix ordering
that can be used sequentially or in parallel fetrtbuted memory systems. We compare our
results with widely used METIS [17] and Scotch [liBtaries that are based on the multilevel
nested dissection algorithm. Most of sparse lisedrers have interfaces for running external
reordering libraries and their own ordering impleaéions. For example, the modifications
of minimum degree and nested dissection orderingsnaplemented in Intel MKL Pardiso
[19], SuperLU [20], MUMPS [21], CHOLMOD [22], andttters. We present MORSy — a
new open source fill-in minimization software basedthe multilevel nested dissection algo-
rithm with modifications for using vertex separasbiall steps of multilevel scheme.

The remainder of the paper is organized as foll&extion 2 defines the fill-in minimiza-
tion problem. Section 3 describes multilevel neslessection implementation in MORSy.
Section 4 presents the experimental results of MO&#l compares its performance and or-
derings quality with that of METIS and Scotch libes. Section 5 gives a summary of exper-
imental results and observes future work.

2 PROBLEM STATEMENT

Let A = (g;) be a sparse symmetndy n matrix. Let us construct a matrix grah= (V, E)
with the set of vertexeg and the set of edgé&s where each vertey is associated with ma-
trix rowi (i =1, 2, ...n), and each edgei(V,) is associated with non-zero element of matrix,
i.e. (4, v) e Eifand only ifa; 0 (, j = 1, 2, ...n; i #]). The set of vertexes that are adjacent
to a vertexv is denoted by Ady.

Wheneliminationof vertexv from graphG is performed, edges between vertexes adjacent
to vertexv are added to the graph so that they become ae¢chguitexv is deleted from the set
of vertexes together with all incident edges:

V=V\y
E=E\{(u,Vv): ueAdj(v)} U {(ug, Up): us, up € Adj(v)}

The added edges are associated with the elemeaitbebame non-zero during Gaussian
elimination ofv-th matrix row. Lett = (ny, 7o, ...,mn) be a permutation of the set of vertexes
Fill-in F(r) generated by the permutatianis a set of edges added during the consequent
elimination of vertexes, 7, ..., m. Problem of finding the permutation that minimizes
number of edges in produced fill-in is NP-compl&e

7 = argmin {F(z)|}

Let us denote thquality of orderingas the number of nonzero elements of the Cholesky

factor of the matrix after applying this ordering.

3 MULTILEVEL NESTED DISSECTION IN MORSY

Reordering in MORSYy is based on the classical teulti scheme with modification of
stages for vertex separator (Figure 1).

Program MultilevelNestedDissection (3/a, Ea), Iperm)

Input: Ga(Va, Ea) — a graph constructed from the sparse symmetrigxrastruc-
ture.

Output: Iperm— a new numbering d@ba vertexes A rows).

1 G(V, E)=CompresgGa)
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2 while Gisn't numberedo

3  &(Vo, Eo) = current subgraph &

4 if | V| is small enougthen

5 number the nodes (& by automatic nested dissection
6 V=V\Vy

7 else

8 i =0;

9 whileG; is big enougldo

10 Gi1(Vis1, E+1) =Coarse(Gy); i++;

11 end while

12 m=i;,

13 Pi(Sn Vi1, Vim2) = InitializePartition (G, with separatoBy;
14 fori = mdownto 1 do

15 R.1(S-1, Vi-11, Vi-12) = ProjectPartition (P));
16 R-1(S-1, Vi-11, Vi-12) = RefinePartition(P; . 1);
17 end for

18 Number vertexes fro®;

19 V=V\S;

20 endif

21 end while

22 Iperm= ProjectNumbers(Ga);

Figure 1: Structure of multilevel nested dissectmMORSy. Stages are modified for use of a vesieparator.

First, compressing of graph structure [14] is perfed to reduce reordering time (Figure 1,
line 1). Then, in the main loop of the algorithmgiire 1, lines 2-21) a separator is found for
each subgrapl, of the initial graphG, which is constructed during the processing otatks
dissection ordering. If the number of graph verseisebig enough, its separator is defined us-
ing the multilevel technique (Figure 1, lines 8-17)

At the coarsening stage (Figure 1, lines 8-11) quaece of graph&;, Gy, ..., Gm, IS
formed, where each following graph flows out of firevious one by contracting edges and
merging their incident vertexes. Heavy edge matglinrandom matching [12] are used for
this purpose.

At the partitioning stage (Figure 1, line 13) thertex separator of the graph is fined by
building a rooted level structure from pseudopeziphvertex [23].

At the uncoarsening stage (Figure 1, lines 14-h&)Rrimitive moves method is used for
partition refinement. This method is a modificatiohthe iterative Kernighan-Lin method
adapted for vertex separator by Ashcraft and L#] hd modified for the multilevel scheme
by Hendrickson and Rothberg [14]. The method usesbtion of a partitio® = (S Vi, Vo)
as a union of free disjoint sets of graph vertexeseSis separator and,, V, are the sets of
vertexes of disconnected subgraphs produced adfmrator's deleting. The essence of the
method is as follows: each vertex S from the partitionP = (S Vi, V,) is associated with
“gain” — change of separator size when moving #egex to one of the parig, V- (let us
denote it gairg — V1), gainé — V,) respectively). Then as per rule from Figure 2i@es of
separator vertex moves is carried out:

1. M ={veV:vhave not been selected during this sequence oéshov
2. s, = argmax {gaing — Vi), ue SN M}; maxV1 = gaing, — Vy);
3. s, = argmax {gaing — V,), ue SN M }; maxV2 = gain§ — Vo);
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4. if maxV1 > maxV2hen

5 Moves toVy; M =M/ s;
6. else

7 if maxV2 > max Vlhen

8 Moves, toVo, M =M/ s;;
9. else/maxV1 = maxV2
10. if V1] < Mo| then

11. Moves, toV;; M =M/ s
12. else

13. Moves, to Vo, M =M /',
14. end if

15. end if

16.end if

Figure 2: The rule of moving the separator vertdx@® the Primitive move algorithm [1].

If moving of vertices improves the partition, then the best found partiP* is updated.
Then the process is repeated for a newly receiaetitipn P*. Thus, the algorithm consists of
two nested loops, the external one correspondsetéobp on various partitions, and the inter-
nal one corresponds to the loop on vertex moves fhe current partition.

The rule of moving of separator vertexes signiftgamfluences the quality of resulting
orderings. When using rule (Figure 2) it is possithlat the imbalance of partition received at
the previous iteration of the internal loop of @igorithm has to be compensated at the next
iteration. We changed the rule of vertex movesiiost effective balancing tracking so that at
each iteration of the external loop moves are edrout only into one part of partition (small-
er one at the beginning of the external loop)ldbaeduces storage requirements as it is not
necessary to store the gains of moving vertexasather part of the partition.

For reduction of run time of the algorithm at th&coarsening stage, partition refinement
can be used not for every intermediate graph flmersequence @, G,, ...,Gn, but once per
several iterations. Besides, it has been experitigrastablished that limiting the number of
algorithm iterations also reduces its run time vathinsignificant loss in quality for the ma-
jority of graphs.

4 EXPERIMENTAL RESULTS

4.1 Test environment

We tested MORSYy with the matrices from The Uniwgrsef Florida Sparse Matrix Collec-
tion [25]. Matrix sizes varied from 200 000 to 105000. Table 1 gives the description of the
set of matrices.

Matrix name N NZ Description
pwtk 217 918 11 524 432  structural problem
msdoor 415 863 19 173 163 structural problem
parabolic_fem 525 825 3674 625 computational fdydamics problem
tmt_sym 726 713 5080961 electromagnetics problem
boneS10 914 898 40878 708 3D structural problem
Emilia_923 923136 40 373 538 3D structural problem

audikw_1 943695 77651847 3D problem
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bone010 986 703 47 851 783 3D problem

ecology2 999 999 4995991 2D structural problem

thermal2 1228 045 8 580 313 unstructured FEM

StocF-1465 1465137 21005389 computational fluid dynamics problem
Hook 1498 1498 023 59 374451 3D structural problem

Flan_1565 1564 794 114 165 372 3D structural problem

G3_circuit 1585478 7 660 826 circuit simulationldem

Table 1: Description of the test matrices.
N is the number of matrix rows, NZ is the numbenoh-zero elements of the matrix.

All experiments were performed on Intel Xeon E5-Q&PU (8 cores, 2.9 GHz) with 64
GB of RAM, running OS Linux. MORSy was compiled iintel® C++ Composer (from
Intel Parallel Studio XE 2013); Intel MKL libraryas used for random number generation.

The quality of orderings was evaluated with respe¢he number of non-zero elements in
the factor of reordered matrix and time neededHerordering.

4.2 Reordering parameters

Reordering in MORSYy allows various parameter sgtfifiable 2), with prioritization of
run time minimization and reordering quality maxaation. Values of the parameters used in
experiments are described in Table 2.

Parameter name
Coarsening method

Range of values
Random matching, heavy edge

matching
Number of coarsening steps 10, 15
Partition quality evaluation function coefficient .20, 0.25, 0.30

Step of partitioning refinement during Uncoarsenih{for every intermediate graph),

process 2 (for every second intermediate
graph)

Limit of the number of iterations of the partitioe- No limits,

finement algorithm at intermediate UncoarsgnLimited — not more than one itera-

steps tion

Table 2: MORSYy parameters used in experiments.

4.3 Comparison with other ordering libraries

Table 3 shows the quality of orderings producedMidyRSy, METIS and Scotch. MORSy
was run with the best parameter configuration wspect to factor fill-in for each matrix.
We denote this parameter configuration as “quadrigrity”. METIS and Scotch were run
with the default parameters of ordering routinet&h was run under the METIS-compatible
interface.

In comparison with METIS, in 7 test matrices outldfMORSYy provided orderings with a
better quality. Foecology2matrix the size of the factor is 26% better, ftres matrices it is
1-3% better. For the remaining 7 matrices fromtdse set MORSYy provides orderings with a
worse quality than METIS. The size of the facto®i80% larger for two matrices (boneS10,
Hook 1498), for other matrices it is 1-3% largehnus, in 12 matrices out of 14 MORSYy pa-
rameter adjustment allows orderings that are végecto orderings of METIS or better in
quality.
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In comparison with default reordering in Scotch, RI®y orderings are better for all test
matrices. The factor size advantage is 20 to 609 foatrices, 10 to 20% for 5 matrices, and
less than 10% for 4 matrices (19% on average).

. Factor NZ, Factor NZ, Factor NZ,
Matrix name N

METIS MORSY Scotch
pwtk 217918 47124530 46784875 56116478
msdoor 415863 51483893 52085831 83374463
parabolic_fem 525825 25607853 24923337 28575855
tmt_sym 726 713 29507 621 28741732 35754899
boneS10 914 89¢ 26794025 295723050 339 280 809
Emilia_923 923 13¢ 163688631 1650689 7511 715 779 992
audikw_1 943 69t 1216 86544 1200984 9101 204 126 326
bone010 986 70: 104993274 1035907 9951249173 615
ecology?2 999999 35641736 30081507 43675655
thermal2 1228 04! 5043008! 51356445 58403914

StocF-1465 146337 1037 74396 1072623 7481 111 688 726
Hook_1498 149823 148428286 16171311061 863 646 578
Flan_1565 156494 145637014 14156703631 546 352 973
G3_circuit 1585478 90916423 91292425 107 035058

Table 3: Comparison of number of factor non-zeemmants after performing reordering.
N is number of matrix rows, NZ is number of nonezetements after factorization.

Table 4 presents the comparison of run time of M@REETIS and Scotch for obtaining
the above mentioned orderings. On 5 matrices otlieoi4 MORSy works 1.13 to 1.99 times
faster than METIS, and on 4 matrices it is 1.02#®4 times slower, and on 5 matrices it
works 2.11 to 2.53 times slower. In comparison vtlotch, MORSy has 1.04 to 2.64 times
performance advantage on the half of the test oestrand 1.05 to 1.92 times disadvantage on
other matrices.

Matrix name N Reordering time,Reordering timeReordering

METIS MORSY time, Scotch
pwtk 217 918 0,44 0,34 0,46
msdoor 415 863 0,59 0,60 0,60
parabolic_fem 525 825 2,75 5,95 3,76
tmt_sym 726 713 4,04 9,77 5,10
boneS10 914 89¢ 5,43 8,92 5,95
Emilia_923 923 13¢ 5,48 3,74 5,64
audikw_1 943 69¢ 8,27 4,16 10,99
bone010 986 70: 7,08 8,26 7,86
ecology?2 999 999 4,50 9,66 5,99
thermal2 1228 04¢ 7,31 18,46 10,44
StocF-1465 146337 14,96 31,52 26,81
Hook 1498 149823 9,73 8,62 8,98
Flan_1565 156794 11,47 10,07 12,37
G3_circuit 1585 478 9,19 9,43 13,33

Table 4: Comparison of the run time of METIS, MORSgotch.
N is number of matrix rows, NZ is number of nonezetements after factorization. All times are ic@sds.
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Table 5 shows MORSy quality and run time with tlegmeter configuration that mini-
mizes reordering time while keeping factor increkess than 10%, in comparison with the
previous results. Let us denote this parameterBgroation “time-priority”.

Factor NZ, Reordering Factor

Matrix name N MORSy time, MORSy increase Time decrease
Pwtk 217918 48112 201 0.31 2.8% 9.7%
Msdoor 415863 53500 238 0.5 2.7% 20.0%
parabolic fem 525825 25450 749 3.45 2.1% 72.5%
tmt_sym 726 713 29517 952 6.28 2.7% 55.6%
boneS10 914 89¢ 315302577 5.81 6.6% 53.5%
Emilia_923 923 13¢ 1 713 036 243 3.45 3.8% 8.4%
audikw_1 943 69t 1 200 984 910 4.16 0.0% 0.0%
bone010 986 70: 1 081 234 524 5.38 4.4% 53.5%
ecology2 999999 33076977 56 10.0% 72.5%
thermal2 1228 04t 53088 061 11.8 3.4% 56.4%
StocF-1465 1 46%37 1 159 553 480 19.57 8.1% 61.1%
Hook 1498 149823 1682 587 980 8.11 4.0% 6.3%
Flan_1565 156294 1 464 331 428 8.08 3.4% 24.6%
G3_circuit 1585478 92 706 938 9.27 1.5% 1.7%

Table 5: Comparison of MORSYy quality and run timiéhyparameters for minimizing run time
of reordering (time-priority), with parameters foaximizing quality (quality-priority).

N is the number of matrix rowdractor NZ, MORSys the number of matrix factor non-zero
elements after "time-priority" reorderinBeordering time, MORSY' time-priority" reorder-
ing run time. Factor increasas an increase in the size of the matrix factazxamparison with

the "quality-priority" configuration. All times ari@ seconds.

MORSYy run time reduction by 1.06 to 1.72 times\a#iabtaining the ordering that gives
at most 10% of excess non-zero factor elementsnmparison with the best MORSYy results.
For 3 test matrices MORSYy produced orderings wi8¥%d better factor fill-in compared with
METIS, for 8 matrices factor fill-in is 0.5-5% wasand for 3 matrices it is 12-18% worse.
However, for a half of the test matrices MORSYy vgoflk18-1.99 times faster than METIS
(1.44 times faster on average). With other matribedifference is by 1.01 - 1.61 times (1.29
times on average). In comparison with Scotch, ander made by MORSy with "time-
guality" parameters provide a 0.2-35% better filfor 13 matrices (12% on average), for one
matrix it is 4% worse. Thus, for 12 matrices rumdiis worse than with Scotch by 2-62%
(25% on average). For the rest two matrices tHergifice is 13% and 23%.

Figure 3 shows the quality of orderings producedM®&TIS, Scotch and MORSy with
"quality-priority” and "time-priority" parameter afigurations. Figure 4 presents the time for
obtaining these orderings. It has been shown tieattis a parameter configuration that pro-
vides orderings with a better fill-in, than obtainey METIS, during a possibly longer period
of time, and orderings with a not critically worléin, during shorter periods of time for all
test matrices. In comparison with Scotch, orderiregeived using MORSYy with various pa-
rameter settings are of a better quality and, ftwakh of the tested matrices, are less time-
consuming.
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ecology2 audikw_1

bone010
= Scotch === MORSy, time priority = ====MORSy, quality priority = =====METIS

Figure 3: Comparison of number of factor non-zdemnents received using MORSy, METIS, Scotch. Reult
MORSy and Scotch are given with relation to the hanof non-zero elements of the factor receivedgusi
METIS.

G3_circuit

bone010
= Scotch  ====MORSy, time priority = === MORSy, quality priority = === METIS

Figure 4: The run time of MORSy, METIS, Scotch. €imf MORSy and Scotch is shown in relation to METIS
time.
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5 CONCLUSIONS AND FUTURE WORK

We have presented MORSYy — a new reordering toakftucing sparse matrix fill-in based
on the multilevel nested dissection algorithm witlodifications for vertex separator at all
steps of the multilevel scheme. Our experimentsatestnate that MORSYy is competitive with
the widely used open source ordering libraries ME@hd Scotch. MORSYy is cross-platform
and is publically available [26]. The software ised in the High Performance Computing
Center of the State University of Nizhny Novgor@Y] for solving sparse systems of linear
equations in the process of finite element simoatf heart activity.

We plan to improve MORSYy performance with qualitiepty settings to achieve METIS
and Scotch performance on the full set of testioedr The main line of future research is to
develop a parallel version of MORSYy for shared-megnsystems. While there are a number
of successful implementations for distributed megmsystems (ParMetis [28], PT-Scotch
[29]), developing parallel reordering tools for sfdhmemory systems is still an open question.
The recent reports presented parallel versionsuifilevel graph partitioning algorithms by
Scotch [30] and METIS [31] which are designed t® télative problem. While multicore and
manycore systems is widely used today, developargliel reordering algorithms that will
combine high quality of orderings with efficienteusf computational resources of modern
shared-memory systems, are of great importance.
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